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Our  aim in this paper is to explain some of the results 
about  interacting particle systems to someone who  has 
no knowledge of probability theory but unders tands  
w h a t  it means  to flip a coin wi th  a probabili ty p of 
heads.  In what  follows we will discuss five models. 
The last three are h inted at in the title. The first two 
are simpler systems that  will be useful in explaining 
the others. 

then ~n is the set of wet  sites on level n when  there is a 
source of fluid at (0,0). The model above is appropriate 
(if somewhat  oversimplified) if one is thinking about 
the movemen t  of oil in the ground pulled down by the 
force of gravity. With the last interpretation in mind,  it 
is natural  to ask if the material is porous enough  for 
the fluid to penetrate it, or (letting P denote proba- 
bility) "Is P(~, ~ 0 for all n) > 0?" When ~ ~ 0 for all 

1. Oriented Percolation This model takes place on 
a g raph  wi th  vert ices {(x,n):x,n ( Z and  x + n is 
even} and an oriented bond  connecting (x,n) to (x + 1, 
n + 1) and  to (x - 1, n + 1). It will be convenient  to 
reverse the usual orientation of the vertical axis, so n 
increases as we move down:  

J(x 'n)" . . .N. . ,  
( x -  1, n + 1) (x + 1, n + 1). 

Each bond  is independent ly  open with probability p 
and  closed with probability 1 - p. Open bonds are 
t h o u g h t  of as air spaces  that  are large e n o u g h  to 
permit  the passage of a fluid, so if we let 

~n = {Y: there is an open path from (0,0) to (y,n)}, 

* This paper is based on a talk given at the annual meeting of the 
American Mathematical Society in San Antonio, TX, January 21-24, 
1987. This work was, partially supported by the National Science 
Foundation and by the Army Research Office through the Mathe- 
matical Sciences Institute at Cornell. 

THE MATHEMATICAL INTELLIGENCER VOL. 10, NO. 2 �9 1988 Springer-Verlag New York 37 

Crabgrass, Measles, and
Gypsy Moths: An Introduction
to Interacting Particle Systems*

Richard Durrett

Our aim in this paper is to explain some of the results
about interacting particle systems to someone who has
no knowledge of probability theory but understands
what it means to flip a coin with a probability p of
heads. In what follows we will discuss five models.
The last three are hinted at in the title. The first two
are simpler systems that will be useful in explaining
the others.

then ~" is the set of wet sites on level n when there is a
source of fluid at (0,0). The model above is appropriate
(if somewhat oversimplified) if one is thinking about
the movement of oil in the ground pulled down by the
force of gravity. With the last interpretation in mind, it
is natural to ask if the material is porous enough for
the fluid to penetrate it, or (letting P denote proba­
bility) "Is P(~" ¥- 0 for all n) > O?" When ~" ¥- 0 for all

1. Oriented Percolation This model takes place on
a graph with vertices {(x,n):x,n E Z and x + n is
even} and an oriented bond connecting (x,n) to (x + 1,
n + 1) and to (x - 1, n + 1). It will be convenient to
reverse the usual orientation of the vertical axis, so n
increases as we move down:

/(x,n)~

(x - 1, n + 1) (x + 1, n + 1).

Each bond is independently open with probability p
and closed with probability 1 - p. Open bonds are
thought of as air spaces that are large enough to
permit the passage of a fluid, so if we let

~n = {y: there is an open path from (0,0) to (y,n)},

Richard Durrett

~ This paper is based on a talk given at the annual meeting of the
American Mathematical Society in San Antonio, TX, January 21-24,
1987. This work was. partially supported by the National Science
Foundation and by the Army Research Office through the Mathe­
matical Sciences Institute at Cornell.

Richard Durrett received a Ph.D. in Operations Research
from Stanford in 1976. He taught at UCLA for nine years
before moving to Cornell. He has been a Sloan fellow and
an AMS "mid-career" fellow.

THE MATHEMATICAL INTELLIGENCER VOL. 10, NO. 2 ~ 1988 Springer-Verlag New York 37



Figure 1. Oriented Percolation. p = .55.

Figure 2. Oriented Percolation. p = .60.

Figure 3. Oriented Percolation. p = .65.
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Figure 4. Oriented Percolation. p = .70.

n, we say that percolation occurs, and because the
probability of percolation is a nondecreasing function
of p, we define the critical value of P by

Pc = inf {p:P(£n ¥- 0 for all n) > O}.

Here and throughout the article, we do not know
the exact value of Pc' Rigorous bounds are not very
informative, so to get a feel for what Pc is and what the
process looks like, we will resort to simulation. Before
rushing off to the computer, we should think for a
minute. Each wet site gives rise to 2p wet sites on the
average. A simple argument shows that the average
number of wet sites at time n is at most (2p)". If p < lf2,
it follows that the probability of percolation is O. With
this in mind we start our investigations with p = .55.
All the pictures show what happens when we start
with {80, 82, 84, ... , 240} occupied at n = 0 and run
the system until n = 175. We will comment on the
pictures separately.

p = .55: The process "dies out." The reason for this is
that even though an isolated particle will have 2p =
1.1 > 1 particles on the average, two adjacent particles
will on the average have 4p - p2 = 1.8975 < 2 chil­
dren.

p = .60: Even though the process survived to level 175
in this realization, it can be shown that the system will
eventually die out, By exploiting special properties of
the model, one can show easily that Pc> .618. With a
lot of work and a small computer, the last result can be
improved to Pc > .6298.

P = .65: If numerical results can be trusted, and I be-



lieve they can, we are just  above the critical value (Pc ~- 
.645). Compar ing  this picture with the ones before and 
after  it should explain w h y  we say a "phase  transi- 
t ion"  occurs at Pc. 

p = .70: The process is growing well at this point.  The 
wh i t e  f jords  of the p r e v i o u s  p ic ture  have  b e c o m e  
lakes. In this and the next  picture we can see the phe  - 
n o m e n o n  that  is used to characterize the critical value: 
if we let r,  be the r ightmost  wet  site on level n w h e n  
initially {0, - 2 ,  - 4  . . . .  } is wet,  then r,/n has a limit, 
d e n o t e d  offp), as n ~ ~ and  Pc = inf {p:c~(p) > 0}. 

p = .75: Looking at the picture it is hard to believe that 
we cannot  prove Pc < .75, but  the best k n o w n  result  is 
Pc < .84. It is surprisingly nontrivial to prove that Pc < 
1, and  the reader  is invi ted to do so. For the answer  to 
this problem and more  about  oriented percolat ion (in- 
c luding all the facts cited above), see Durret t  (1984). 

2. Richardson's  M o d e l  In this model  the state at 
t ime n is a subset  ~, of Z e. We think of each point  in ~, 
as being occupied by an object that we call a "part ic le"  
and  that  you  should think of as being a plant or an 
immobile  animal (e.g., barnacle or mussel). The set of 
o c c u p i e d  po in t s  evo lves  acco rd ing  to v e r y  s imple  
rules: 

if x E ~,, then  x ( ~,+1; 

if x { ~,, then  
P(x ~ ~ n + l i ~ n )  = ( 1  - -  p)# Of occupied neighbors 

The first rule says there  are no deaths.  To explain the 
second rule we begin wi th  the left-hand side. It says: 

"The  probabil i ty x is not  in ~,+1 given that ~, is the 
state at t ime n ."  On the r ight-hand side, the neighbors 
of x are the 2d points wi th  Irx - ylll = 1 (where Jix - yJil 
= Ix1 - yll + �9 �9 �9 + Ixu - y~]). In words ,  the rule says 
each occupied neighbor  independen t ly  sends a par- 
ticle to x with probabili ty p, so the probability they all 
fail is the r ight-hand side. The reader  should  note that 
the state at t ime n is a subset of Ze; i.e., each site is 
occupied by I or 0 particles, so if two neighbors  simul- 
taneously  make  the site occupied,  only one particle re- 
sults. 

Our  a t tent ion focuses on how ~, grows. The main 
result  says that  if ~, is the set of occupied sites w h e n  ~0 
= {0}, then  ~, has a limiting shape: 

There  is a convex set D so that for any ~ > 0 we have 

n(1 - e ) D f 3 Z  d C ~ . C n ( 1  + e)D 

for all n sufficiently large. 

Loose ly  speaking,  ~, looks like nD N Z d w h e n  n is 
large. In one  d imens ion  D = [ - p , p ] ,  bu t  we don ' t  
know much  about  D w h e n  d > 1, except  for the trivial 
observat ions that  it has the same symmet ry  as Z d, it 
contains {x:llxl]l <~ p}, and  it is conta ined in {x:iixH1 ~< 1}, 
which is the limit w h e n  p = 1. This state of affairs 
exists because the result is p roved  by  using the subad- 
ditive ergodic theorem to show that  if 

then  

tk = inf {n:(k,0 . . . . .  0) E ~,} 

tk/k ~ inf E(ti/j) as k ~ ~, 
j ~ l  
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Figure 5. Oriented Percolation. p = .75.

lieve they can, we are just above the critical value (Pc =
.645). Comparing this picture with the ones before and
after it should explain why we say a "phase transi­
tion" occurs at Pc

P = .70: The process is growing well at this point. The
white fjords of the previous picture have become
lakes. In this and the next picture we can see the phe~

nomenon that is used to characterize the critical value:
if we let r" be the rightmost wet site on level n when
initially {O, - 2, - 4, ...} is wet, then rIn has a limit,
denoted o.(p), as n~ 00 and Pc = inf {p:o.(p) > O}.

P = .75: Looking at the picture it is hard to believe that
we cannot prove Pc < .75, but the best known result is
Pc < .84. It is surprisingly nontrivial to prove that Pc <
I, and the reader is invited to do so. For the answer to
this problem and more about oriented percolation (in­
cluding all the facts cited above), see Durrett (1984).

2. Richardson's Model In this model the state at
time n is a subset £" of Zd. We think of each point in £"
as being occupied by an object that we call a "particle"
and that you should think of as being a plant or an
immobile animal (e.g., barnacle or mussel). The set of
occupied points evolves according to very simple
rules:

if x E £"' then x E 1;"+ I;

if x { £"' then
P(x ( £" +11£") = (1 - p)# of occupied neighbors

The first rule says there are no deaths. To explain the
second rule we begin with the left-hand side. It says:

"The probability x is not in £"+1 given that £" is the
state at time n." On the right-hand side, the neighbors
of x are the 2d points with Ilx - ylll = 1 (where Ilx - ylll
= IXI - YII + ... + IXd - Ydl)· In words, the rule says
each occupied neighbor independently sends a par­
ticle to x with probability p, so the probability they all
fail is the right-hand side. The reader should note that
the state at time n is a subset of Zd; Le., each site is
occupied by 1 or 0 particles, so if two neighbors simul­
taneously make the site occupied, only one particle re­
sults.

Our attention focuses on how £" grows. The main
result says that if £" is the set of occupied sites when £0
= {O}, then £" has a limiting shape:

There is a convex set 0 so that for any e > 0 we have

n(1 - e)O n Zd c £" c n(1 + e)O

for all n sufficiently large.

Loosely speaking, £" looks like nO n Zd when n is
large. In one dimension 0 = [- P,P], but we don't
know much about 0 when d > 1, except for the trivial
observations that it has the same symmetry as Zd, it
contains {x:llxlll :% p}, and it is contained in {x:llxlll :% I},
which is the limit when p = 1. This state of affairs
exists because the result is proved by using the subad­
ditive ergodic theorem to show that if

tk = inf {n:(k,O, ... , 0) E £"}

then

ti/k~ inf E(t/j) as k~ 00,
);;>1
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w h e r e  E(tj / j )  s t a n d s  for  the  a v e r a g e  va lue  of the  
r a n d o m  variable in parentheses .  

The expression for the limiting constant  is mathe-  
matically nice because the inf imum exists, is nonnega-  
tive, and is finite. It does  not lend itself well to com- 
puta t ion (except of course  for uppe r  bounds) ,  so we 
will cont inue  our  discussion by looking at some pic- 
tures .  There  are two sets of three.  In each set the 
mode l  is shown  in d = 2 at the times it first reached 
the edge of {x:llxll~ ~< k} w h e n  k = 20, 40, and  80. (Here 
Ilxll= = supilxil. ) One site is 4 pixels by 4 pixels in the 
first picture, 2 pixels by  2 pixels in the second,  and a 
single pixel in the third; we have economized  on ink 
by  only coloring the sites in 6, that have a neighbor  
no t  in 6,. 

In the first set of pictures p = .25. The reader  should 
notice that the times roughly  double going f rom one 
picture to the next, consis tent  with the linear growth  
stated above, and the set has very  few holes. The last 
observat ion has p roved  difficult to make rigorous,  and 
even  nonr igorous  s tudies cannot  agree on the number  
of holes and how close they  are to the boundary .  An 
in t e r e s t i ng  u n s o l v e d  p r o b l e m  re la ted  to this  is to 
p rove  the central limit theorem for the passage times; 
i.e.,  find constants  c k so that  

(tk -- Ixk)/Ck--+ a normal  distribution. 

In d = 1 the result  holds  with c k = k w. In d > 1 smaller 
no rming  constants  are probably needed ,  bu t  there is 
little consensus  about  wha t  to guess. The first studies 
sugges ted  c k = log k, bu t  c k = k ~ with 0 < o~ < 1//2 is 
probably  correct. 

The  second set of pictures has p = .75 and  demon-  
strates the one  nontrivial  fact that we can prove  about  
D. The limiting shape has a "fiat edge"  if p is greater  
t h a n  the  critical va lue  of o r i en ted  pe rco la t ion  dis- 

cussed earlier. The proof  is simple: 6, is contained in 
{Z ~ Z2:llzl]l ~ n}, and if we look at 6, f~ {Z 'Zl  q- z2 = n}, 
then we get  a process equivalent  to oriented percola- 
tion. From the last observat ion it follows that if p > Pc, 
t h e n  the  in t e r sec t ion  g rows  l inear ly  wi th  posi t ive  
probability. With a little more work  it can be shown 
that D A {x:llxlll <~ 1} is an interval of length V ~ .  effp), 
where  effp) is as in the previous section. 

3. Measles  The next  process can be used to model  
the spread of a disease or a forest  fire. The state of the 
process  at t ime n is a funct ion 6 n l Z  2 --+ {1,i,0}. The 
states 1, i, and  0 have the following meanings  in the 
two interpretat ions:  

1 tree heal thy 
i on fire infected 
0 burned  immune  

We have chosen measles for the disease because in 
that case once  you  have had the disease you  cannot  
have it again. With this or a forest  fire in mind,  the 
dynamics  of the model  can be described as follows: 

if 6,(x) = 0, then  6,+1(x) = 0; 
if 6,(X) = i, t hen  ~,+l(x) = 0; 
if ~,(x) = 1, then  

P(6,,+I(x) = laG.) = (1 - p)# of infected neighbors 

P({, ,+I(x) = /16.) = 1 - P(6 .+I(x )  = lit .) .  

The reason  for the first rule was explained above. In 
the second we have taken the unreasonable  v iewpoint  
that the disease always lasts for exactly one unit  of 
time. This can be genera l ized  considerably ,  bu t  we 
only consider  the simplest case here.  The third rule 
should be familiar f rom the last model:  each infected 
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Figure 6. Richardson's Model.
p = .25, time 39.

Figure 7. Richardson's Model.
p = .25, time 81.

We have chosen measles for the disease because in
that case once you have had the disease you cannot
have it again. With this or a forest fire in mind, the
dynamics of the model can be described as follows:

3. Measles The next process can be used to model
the spread of a disease or a forest fire. The state of the
process at time n is a function ~n:Z2 ~ {I,i,O}. The
states 1, i, and ahave the following meanings in the
two interpretations:

if ~n(x) = 0, then ~n+l(X) = 0;
if ~n(x) = i, then ~n+1(x) = 0;
if ~n(x) = 1, then

P(~n+l(X) II~n) = (1 - p)#ofinfectedneighbors

P(~n+l(X) = il~n) = 1 - P(~n+l(x) = II~n)'

The reason for the first rule was explained above. In
the second we have taken the unreasonable viewpoint
that the disease always lasts for exactly one unit of
time. This can be generalized considerably, but we
only consider the simplest case here. The third rule
should be familiar from the last model: each infected

healthy
infected
immune

tree
on fire
burneda

1

cussed earlier. The proof is simple: ~n is contained in
{z E Z2:llzll1 ~ n}, and if we look at ~n n {Z:Zl + Z2 = n},
then we get a process equivalent to oriented percola­
tion. From the last observation it follows that if p > Pc'
then the intersection grows linearly with positive
probability. With a little more work it can be shown
that D n {x:llxlll ~ I} is an interval of length v'2 . a(p),
where a(p) is as in the previous section.

(tk - fJ-k)/Ck ~ a normal distribution.

where E(t/j) stands for the average value of the
random variable in parentheses.

The expression for the limiting constant is mathe­
matically nice because the infimum exists, is nonnega­
tive, and is finite. It does not lend itself well to com­
putation (except of course for upper bounds), so we
will continue our discussion by looking at some pic­
tures. There are two sets of three. In each set the
model is shown in d = 2 at the times it first reached
the edge of {x:llxll"" ~ k} when k = 20,40, and 80. (Here
Ilxll"" = sUPilxJ) One site is 4 pixels by 4 pixels in the
first picture, 2 pixels by 2 pixels in the second, and a
single pixel in the third; we have economized on ink
by only coloring the sites in ~n that have a neighbor
not in ~n'

In the first set of pictures p = .25. The reader should
notice that the times roughly double going from one
picture to the next, consistent with the linear growth
stated above, and the set has very few holes. The last
observation has proved difficult to make rigorous, and
even nonrigorous studies cannot agree on the number
of holes and how close they are to the boundary. An
interesting unsolved problem related to this is to
prove the central limit theorem for the passage times;
i.e., find constants Ck so that

In d = 1 the result holds with Ck = k'IJ.. In d > 1 smaller
norming constants are probably needed, but there is
little consensus about what to guess. The first studies
suggested Ck = log k, but Ck = k« with a< a < V2 is
probably correct.

The second set of pictures has p = .75 and demon­
strates the one nontrivial fact that we can prove about
D. The limiting shape has a "flat edge" if p is greater
than the critical value of oriented percolation dis-
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neighbor independently tries to infect x with proba­
bility p.

We will be interested in what happens when in the
initial state one individual is infected and all others are
healthy. This initial state is given by: ~(O) = i and ~(x)

= 1 for x ¥- O. Let In = {x:sn(x) = i} be the set of in­
fected individuals at time n and let flao be the event
that the infection does not die out or "percolation
occurs," meaning that In ¥- Q) for all n. As in the case of
oriented percolation, the probability of flao is a nonde­
creasing function of p, so we define

Pc = inf{p:Pp(flao) > O}.

For once in this paper we know exactly what Pc is!
Pc = 112.

The last fact is the reason we have chosen to discuss
the discrete time model here. To explain how we
know Pc = 1/2, and to state what we know about the
asymptotic behavior of sw we need to introduce a re­
lated percolation process. For each point x and each of
its neighbors y, we flip a coin to see if x will try to
infect y at the one time x is infected (if this ever
occurs), and we draw an arrow from x to y if it will try.
Let Co = {x:O ~ x} where 0~ x means there is a path
of arrows from 0 to x. A little thought reveals that Co is
the set of points that will ever be infected and flee =
{Co is infinite}.

The percolation process described in the previous
paragraph is not the same as the usual bond percola­
tion model in which we flip a coin for each pair of
neighbors x and y to see if they are connected by a
bond that can be traversed in either direction. Some­
what surprisingly it is equivalent in a very strong
sense: if 5 and T are two subsets of Z2, then the proba­
bility of a path from 5 to T is the same in the two
models. The last fact is surprising, but once guessed

Figure 9. Richardson's Model. p = .75, time 19.
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Figure 10. Richardson's Model. p = .75, time 41.

Figure 11. Richardson's Model. p = .75, time 86.
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can easily be verified by induction on the number of 
bonds in the graph (with a passage to the limit to 
handle Z2). With the equivalence just described in 
hand,  the fact that Pc = 1/2 follows from what is known 
about bond percolation (see Kesten [1982] for a survey 
of results on this process), and the techniques used to 
s tudy  that model can be used to prove a "shape  
theorem" for the model under consideration: 

Let ], = {x:{,,(x) = 0} be the set of sites that are im- 
mune at time n. There is a convex set D so that for all 
e > 0  

n(1 - e ) D M C 0 C J n C n ( 1  + e)D 

for all n sufficiently large. 

As before, we will close the discussion by looking at 
some simulations. Again, we have two sets of three 
pictures that show the model at the first time the in- 
fection reaches the edge of {x:]]xllo~ <~ k} for k = 20, 40, 
and 80. In all three pictures healthy sites are black, 
and immune sites are white. In the first picture, sites 
are 4 pixels by 4 pixels, and infected sites are marked 
with an X. In the second, sites are 2 pixels by 2 pixels, 
and infected sites have 2 of their 4 pixels black. Fi- 
nally, the sites in the last picture are 1 pixel, and in- 
fected sites are white. 

The first three pictures show the system with p = 
.60. As the limit theorem predicts, the times approxi- 
mately double from one picture to the next, and by 
time 100 the set of immune sites looks roughly like a 
growing ball. The behavior for p = .51 is much more 
irregular, but this is to be expected. The value of p is 

close to the critical value, and the correlation length--  
which measures the distance we have to go until the 
limiting shape starts to appear-- is  large. Nonrigorous 
results tell us that the correlation length diverges like 
(p - 1,/2)-v as p ~ 1/2, where v ~ 4 / / 3 ,  and that if we look 
at the system inside the correlation length and let p 
1/2, the limit will be a fractal object with Hausdorf di- 
mension less than 2, but we are far from proving any- 
thing like this. 

4. Gypsy Moths In this process (officially called the 
contact process) and the next one, time is continuous; 
i.e., the process is defined for all t ~ 0. Otherwise, 
these processes are much like a version of Richard- 

can easily be verified by induction on the number of
bonds in the graph (with a passage to the limit to
handle Z2). With the equivalence just described in
hand, the fact that Pc = V2 follows from what is known
about bond percolation (see Kesten [1982] for a survey
of results on this process), and the techniques used to
study that model can be used to prove a "shape
theorem" for the model under consideration:

Let In = {x:~n(x) = O} be the set of sites that are im­
mune at time n. There is a convex set D so that for all
e>O

n(l - e)D n Co C In C n(l + e)D

for all n sufficiently large.

As before, we will close the discussion by looking at
some simulations. Again, we have two sets of three
pictures that show the model at the first time the in­
fection reaches the edge of {x:llxlloo ~ k} for k = 20, 40,
and 80. In all three pictures healthy sites are black,
and immune sites are white. In the first picture, sites
are 4 pixels by 4 pixels, and infected sites are marked
with an X. In the second, sites are 2 pixels by 2 pixels,
and infected sites have 2 of their 4 pixels black. Fi­
nally, the sites in the last picture are 1 pixel, and in­
fected sites are white.

The first three pictures show the system with p =
.60. As the limit theorem predicts, the times approxi­
mately double from one picture to the next, and by
time 100 the set of immune sites looks roughly like a
growing ball. The behavior for p = .51 is much more
irregular, but this is to be expected. The value of p is

Figure 15. Forest Fire. p = .51, time 23.

close to the critical value, and the correlation length­
which measures the distance we have to go until the
limiting shape starts to appear-is large. Nonrigorous
results tell us that the correlation length diverges like
(p - V2)-V as p ~ V2, where v = %, and that if we look
at the system inside the correlation length and let p ~

1/2, the limit will be a fractal object with Hausdorf di­
mension less than 2, but we are far from proving any­
thing like this .

4. Gypsy Moths In this process (officially called the
contact process) and the next one, time is continuous;
i.e., the process is defined for all t ~ O. Otherwise,
these processes are much like a version of Richard-
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Figure 12. Forest Fire. p = .60, time 22.
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Figure 13. Forest Fire. p = .60, time 47.



son's  model in which occupied sites become vacant 
wi th  positive probability. The state at time t is ~t C Z a. 
As before, we could think of ~t as the set of "occupied"  
sites, but to be true to our  title, we think of the points 
of Z a being trees, and the ~t as indicating the trees in- 
fected by gypsy moths.  

The system evolves according to the following rules: 

if x ( ~t, then  P(x ~ ~t+slr = s + o(s); 
if x { ~t, then  P(x ~ ~t+s l~ t )  = 

13s(# of occupied neighbors)/2d + o(s), 

where  o(s) means that the missing terms when  divided 
by s go to 0 as s --~ 0. For readers familiar with Markov 

chains, the rules may be expressed as: particles die at 
rate one and  are born at vacant sites at rate [3(# of 
occupied  neighbors) .  If you  are not  "familiar wi th  
Markov chains, the best way to think about the system 
is in the way  it is implemented in a computer.  To do 
this w h e n  [3 /> 1, we pick a site at r andom from the 
finite set of sites under  consideration and  call it x. If x 
is vacant, we pick one of its neighbors at random and 
make x occupied if the neighbor is. If x is occupied, we 
pick a number  at r andom from the interval (0,1) (by 
calling the compute r ' s  r andom-number  generator),  
and kill the particle if (and only if) the number  is less 
than  1/[3. We repeat  this procedure  to simulate the 
system.  If there are m sites, t hen  tf3m cycles corre- 
spond roughly to t units of time. 

From the descriptions above, it should be clear that 
the contact process is the continuous time analog of 
oriented percolation. With this analogy in mind,  we 
let 

f3r = inf {[3:P(~ # 0 for all t) > 0}, 

where  ~0 is the state at time t starting from ~0 = {0}. 
By now the reader should not  be surprised that we 

do not  know the value of [3 c. Two results worth men- 
t ioning are: (1) it is easy to show [3c /> 1; and  (2) a 
clever a rgument  of Holley and Liggett shows [3 c ~< 4. 
The second bound  is good in low dimensions and the 
first in high dimensions.  Numerically [3 c ~ 3.3 for d = 
1, ~c ~ 1.65 for d = 2, and it has been shown that ~c---~ 
1as  d--~ ~. 

In the last two sections we have seen that starting 
from a finite set the system expands linearly and has 
an asymptotic  shape. This is true again here, but  we 
will have to introduce a few concepts to state the limit 
result. We begin by considering what  happens  in the 
process ~ starting from all sites occupied; i.e., ~10 = Z a. 
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Figure 16. Forest Fire. p = .51, time 55. Figure 17. Forest Fire. p = .51, time 128.

son's model in which occupied sites become vacant
with positive probability. The state at time l is ~I C Zd.
As before, we could think of ~t as the set of "occupied"
sites, but to be true to our title, we think of the points
of Zd being trees, and the ~t as indicating the trees in­
fected by gypsy moths.

The system evolves according to the following rules:

if x E ~I' then P(x { ~t+sl~t) = 5 + 0(5);
if x { ~I' then P(x E ~t+sl~t) =

135(# of occupied neighbors)/2d + o(s),

where o(s) means that the missing terms when divided
by 5 go to aas 5 - O. For readers familiar with Markov

Figure 14. Forest Fire. p = .60, time 100.

chains, the rules may be expressed as: particles die at
rate one and are born at vacant sites at rate 13(# of
occupied neighbors). If you are not 'familiar with
Markov chains, the best way to think about the system
is in the way it is implemented in a computer. To do
this when 13 ~ I, we pick a site at random from the
finite set of sites under consideration and call it x. If x
is vacant, we pick one of its neighbors at random and
make x occupied if the neighbor is. If x is occupied, we
pick a number at random from the interval (0,1) (by
calling the computer's random-number generator),
and kill the particle if (and only if) the number is less
than 1113. We repeat this procedure to simulate the
system. If there are m sites, then lf3m cycles corre­
spond roughly to l units of time.

From the descriptions above, it should be clear that
the contact process is the continuous time analog of
oriented percolation. With this analogy in mind, we
let

f3c = inf {f3:P(~ # 0 for all l) > a},

where ~? is the state at time l starting from ~ = {a}.
By now the reader should not be surprised that we

do not know the value of f3C' Two results worth men­
tioning are: (1) it is easy to show f3c ~ 1; and (2) a
clever argument of Holley and Liggett shows f3c ~ 4.
The second bound is good in low dimensions and the
first in high dimensions. Numerically f3c = 3.3 for d =
I, f3c = 1.65 for d = 2, and it has been shown that f3c­
1 as d _ 00.

In the last two sections we have seen that starting
from a finite set the system expands linearly and has
an asymptotic shape. This is true again here, but we
will have to introduce a few concepts to state the limit
result. We begin by considering what happens in the
process ~} starting from all sites occupied; Le., ~A = Zd.
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N o w  Z d is the largest state (in the partial order D), and 
the computer  implementat ion of the model described 
above has the property  that  if we use it to run  two 
versions of the process ~ and ~ starting from initial 
states A D B, then we will have ~A D ~t B for all t. If we 
let A = Z d and B = ~ in the last observation, then we 
see that  ~1 t is larger than  ~t~+s in the sense that the two 
r a n d o m  sets can be const ructed  on the same space 
wi th  ~} D ~l+s. Once one unders tands  the last sen- 
tence, a simple a rgument  shows that as t ~ % ~ de- 
creases to a limit we call ~ ,  where the convergence 
occurs in the sense that 

p(~l n C ~a 0) $ P ( ~  n C # 0) for all finite sets C. 

It follows from Markov chain theory that ~ is an 
equilibrium distribution for the process; i.e., if the ini- 
tial state has this distribution, then this will be the dis- 
tribution at all t i> 0. If 13 < ~c then ~ is not interesting 
- - i t  is 0 with probability 1 - - b u t  if ~ > ~c it is a nontri- 
vial equilibrium distribution. The reader will note that 

= ~c has been left out  in the last statement. Presum- 
ably this value falls under  the first case, but this is a 
very difficult open problem. 

With the equil ibrium distr ibut ion in t roduced,  we 
are now in a position to describe the limiting behavior 
start ing from a finite set. Suppose we use the com- 
puter  implementat ion to run  two versions of the pro- 
cess, one start ing f rom a finite set A and  the other  
starting from all of Z d occupied, and we call the two 
result ing processes ~A and ~ .  The "shape theorem" in 
this setting is: 

There is a convex set D so that if ~A # 0 for all t, then 
for any e > 0 we have 

t(1 - e ) D n  ~ c ~ A c  t(1 + e)D 

for all t sufficiently large. 

The s ta tement  of the result is contorted by the fact that 
~A may become 0, in which case it stays 0 for all time. 
The theorem tells us that when  this does not occur ~A 
look roughly like ~ n tD. In words,  it is a linearly 
growing "blob in equilibrium"; more poetically, it is 
an "expanding  gray disk."  The disk is called gray be- 
cause the equilibrium state has correlations that are ex- 
ponentially decaying, and hence if we look at the con- 
figuration of occupied (white) and vacant (black) cells 
from a distance, all we will see is the average value (a 
shade of gray). 

To illustrate the last theorem, we have included pic- 
tures of a simulation of the process in d = 2 with 13 = 
3 and A = {0,1,2,3} 2, viewed at t imes 0, 20, 40, and 60. 
Ones  mark the points in ~A. Periods mark points of ~ 
that are not  in Ht = s<Ut ~A (the set of points hit by time 
t), and blanks mark the points in the complement  of Ht 

that are not  in ~ .  Finally zeros mark the points in H t 

that are not  in ~t 1 (and hence not  in ~A), and x's mark 
the points in H t that are in ~1 t but not  in ~A. The point 
of this labeling scheme is that ones and  zeros mark the 
points in H t where  ~ and ~ agree, and  x's mark the 
points where  they  disagree, so one sees that the two 
processes agree across most  of H t. 

In addit ion to illustrating the shape theorem, the 
pictures are supposed  to give you  a feel for what  the 
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Figure 18. Gypsy Moths. Tim O.

Now Zd is the largest state (in the partial order ~), and
the computer implementation of the model described
above has the property that if we use it to run two
versions of the process (j and ~ starting from initial
states A ~ B, then we will have Ej ~ ~~ for all t. If we
let A = Zd and B = ~~ in the last observation, then we
see that ~} is larger than ~l+s in the sense that the two
random sets can be constructed on the same space
with ~} ~ ~l+s' Once one understands the last sen­
tence, a simple argument shows that as t _X>, ~} de­
creases to a limit we call ~~, where the convergence
occurs in the sense that

P(~} n C "" 0) ~ P(~~ n C "" 0) for all finite sets C.

It follows from Markov chain theory that ~ is an
equilibrium distribution for the process; i.e., if the ini­
tial state has this distribution, then this will be the dis­
tribution at all t ~ O. If 13 < I3c then ~ is not interesting
-it is 0 with probability I-but if 13 > I3c it is a nontri­
vial equilibrium distribution. The reader will note that
13 = I3c has been left out in the last statement. Presum­
ably this value falls under the first case, but this is a
very difficult open problem.

With the equilibrium distribution introduced, we
are now in a position to describe the limiting behavior
starting from a finite set. Suppose we use the com­
puter implementation to run two versions of the pro­
cess, one starting from a finite set A and the other
starting from all of Zd occupied, and we call the two
resulting processes ~1 and ~}. The "shape theorem" in
this setting is:
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Figure 19. Gypsy Moths. Time 20, density .5812.

There is a convex set D so that if ~1 "" 0 for all t, then
for any e > 0 we have

t(I - e)D n ~} c Ej C t(I + e)D

for all t sufficiently large.

The statement of the result is contorted by the fact that
Ej may become 0, in which case it stays 0 for all time.
The theorem tells us that when this does not occur ~1

look roughly like ~~ n to. In words, it is a linearly
growing "blob in equilibrium"; more poetically, it is
an "expanding gray disk." The disk is called gray be­
cause the equilibrium state has correlations that are ex­
ponentially decaying, and hence if we look at the con­
figuration of occupied (white) and vacant (black) cells
from a distance, all we will see is the average value (a
shade of gray).

To illustrate the last theorem, we have included pic­
tures of a simulation of the process in d = 2 with 13 =
3 and A = {0,I,2,3}2, viewed at times 0, 20, 40, and 60.
Ones mark the points in Ej. Periods mark points of ~}

that are not in HI = st.dl ~1 (the set of points hit by time
t), and blanks mark the points in the complement of HI
that are not in ~}. Finally zeros mark the points in HI
that are not in ~} (and hence not in Ej), and x's mark
the points in HI that are in ~} but not in ~1. The point
of this labeling scheme is that ones and zeros mark the
points in HI where Ej and ~} agree, and x's mark the
points where they disagree, so one sees that the two
processes agree across most of HI'

In addition to illustrating the shape theorem, the
pictures are supposed to give you a feel for what the



equil ibrium state looks like. When ~ = 3 the densi ty  
of occupied sites in equil ibrium is about  .6, and the 
sys t em is ve ry  close to equi l ibr ium at t ime 20. The 
r eade r  shou ld  note  tha t  while the discussion above 
stated that ~} decreases to a limit, the densities at times 
20, 40, and 60 are .5812, 5952, and .6316! 

5. Crabgrass In this process the state at t ime t is ~t  C 
Za/M = {z/M:z E Ze}, where  M is a large integer.  Think 
of a lawn consis t ing of a lot of plants wi th  a small 
spacing be tween  them. With this (and the contact  pro- 
cess) in mind,  we say two points x and y are neighbors  
if IIx - YlI~ ~< 1 and formulate  the dynamics  as follows: 

if x E ~t, then  P(x ~ ~t+sl~t) = s + o(s); 
if x { ~t, then  P(x E ~t+J~t) = 

Bs(# of occupied neighbors) /v(M)  + o(s), 

whe re  the o(s) was explained in the last section, and 
v(M) = (2M + 1) a - 1 = the number  of neighbors  a 
point  has (v is for volume).  

The normalizat ion above is chosen so that the birth 
rate f rom an isolated particle is ~, and hence the crit- 
ical value ~c(M) (defined in the last section but  now 
recording the dependence  of M) satisfies Be(M) >/1. At 
first glance, increasing the range of the in teract ion 
makes  the process more  complicated,  but  in fact as M 

cr things get much  simpler: ~c(M) ~ 1 and  if we fix 
> 1 then  

P(~t ~ # 0 for all t) --~ (13 - 1)/13. 

The  r ight-hand side is the probability of survival for a 

branching p r o c e s s - - a  system in which particles die at 
rate 1, r ep roduce  at rate 13, and are not  limited by the 
restriction of at most  one  particle per  site. 

Intuit ively the results above say that the contact pro- 
cess behaves  like the branching  process  w h e n  M is 
large. The difficulty in proving this is that for any fixed 
M, differences appear  when  t is about  (log M)/(f3 - 1), 
and  in the last two s ta tements  we are letting t ~ oc 
before M ~ ~. If we keep ~ and t fixed as M ~ ~, we 
get a si tuation that is much  easier to analyze but  still 
says someth ing  about  the time evolut ion of the pro- 
cess. Cons ide r  a sequence  of initial states in which  
sites are i ndependen t ly  designated as occupied or va- 
cant and with P(x E ~00) ~ u(x,0) uni formly on com- 
pact sets. In this case, the states of various sites at time 
t are asymptot ical ly i ndependen t  as M ~ ~ ("propaga-  
t ion of chaos" ) ,  and  the  probabi l i ty  of occupancy  
uM(x,t ) = P(x E ~Mt) converges uni formly  on compact  
sets to a limit u(x,t) that  satisfies 

3u 

3t 
- u + 13(1 - u ) ( u , ~ )  ( * )  

where  

(u.r = /u (y ) r  - y)@ 

and  

qJ(y) = I(V2)d if rlyil~ ~< 1 

t o  otherwise.  

The last asser t ion  is easy  to explain (and not  much  
ha rde r  to prove) .  The - u  comes  f rom the fact that 
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Figure 20. Gypsy Moths. Time 40, den ity .5952.
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Figure 21. Gypsy Moths. Time 60, density .6316.

branching process-a system in which particles die at
rate 1, reproduce at rate 13, and are not limited by the
restriction of at most one particle per site.

Intuitively the results above say that the contact pro­
cess behaves like the branching process when M is
large. The difficulty in proving this is that for any fixed
M, differences appear when t is about (log M)/(13 - 1),
and in the last two statements we are letting t _ IX

before M - oc,. If we keep 13 and t fixed as M - x" we
get a situation that is much easier to analyze but still
says something about the time evolution of the pro­
cess. Consider a sequence of initial states in which
sites are independently designated as occupied or va­
cant and with P(x E r;'(1) - u(x,O) uniformly on com­
pact sets. In this case, the states of various sites at time
t are asymptotically independent as M - x, ("propaga­
tion of chaos"), and the probability of occupancy
uM(x,t) = P(x E ~) converges uniformly on compact
sets to a limit u(x,t) that satisfies

equilibrium state looks like. When 13 = 3 the density
of occupied sites in equilibrium is about .6, and the
system is very close to equilibrium at time 20. The
reader should note that while the discussion above
stated that ~} decreases to a limit, the densities at times
20, 40, and 60 are .5812, 5952, and .6316!

5. Crabgrass In this process the state at time t is ~t C
ZdlM = {zIM:z E Zd}, where M is a large integer. Think
of a lawn consisting of a lot of plants with a small
spacing between them. With this (and the contact pro­
cess) in mind, we say two points x and yare neighbors
if Ilx - ylloo ~ 1 and formulate the dynamics as follows:

if x E ~t, then P(x 4: ~t+sl~t) = 5 + 0(5);
if x 4: ~t, then P(x E ~t+sl~t) =

135(# of occupied neighbors)lv(M) + 0(5),

where the 0(5) was explained in the last section, and
v(M) = (2M + 1)d - 1 = the number of neighbors a
point has (v is for volume).

The normalization above is chosen so that the birth
rate from an isolated particle is 13, and hence the crit­
ical value I3c<M) (defined in the last section but now
recording the dependence of M) satisfies I3c(M) ;e: 1. At
first glance, increasing the range of the interaction
makes the process more cflmplicated, but in fact as M
- 00 things get much simpler: I3c(M) - 1 and if we fix
13 > 1 then

P(~~ ¥- 0 for all t) - (13 - 1)/13·

where

and

au
- = - U + 13(1 - u)(u*!\J)
at

(u*!\J)(x) = IU(y)!\J(x - y)dy

!\J(y) = {(V2)d if Ilylloo ~ 1° otherwise.

(*)

The last assertion is easy to explain (and not much
The right-hand side is the probability of survival for a harder to prove). The - u comes from the fact that
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deaths  occur at rate 1; the other  term from the facts 
that  (1) births f rom y to x occur at rate f3/v(M) if x is 
vacant ,  y is occupied,  and  IIx - YI]~ ~ 1, and (2) in the 
limit as M ~ ~ the occupancy  of y and the vacancy of x 
are independen t .  

The last result  is useful  because it tells us something 
concrete about  the t ime evolut ion of the process w h e n  
M is large, and a l though the information is not  very  
explicit, it is much  bet ter  than what  we know about  
the case M = 1. It is interest ing to note that by using 
some facts about  the particle system we can derive a 
representa t ion  for the solut ion of (*) that allows us to 
show that there is a convex set D (which can be de- 
scribed explicitly) so that  starting from compact ly  sup- 
por t ed  nonzero  initial data 

u(x,t)  ~ (~ - 1)/13 if x E (1 - e)tD 
~-0 if x ~ (1 + e)tD. 

Finally, of course,  we have some computer  pictures 
to illustrate the last theorem. The pictures show the 
system in d = 1 with 13 = 2 w h e n  the range M is 64, 
128, and 512, starting from an interval in which every 
other  site is occupied.  Each pixel across represents  M/4 
si tes ,  a n d  the  h e i g h t  of the  b lack  c o l u m n  is the  
number  of occupied sites divided by 1, 2, or 4, respec- 
tively. The reader  should note that while the linear 
spread is clearly visible in all three cases, the picture is 
quite ragged w h e n  M = 64, and  smoothes  out  as M 
increases,  bu t  there  are still s ignificant f luctuat ions 
when  M = 512. 

46 THE MATHEMATICAL INTELLIGENCER VOL. I0, NO. 2, 1988 

50

45

49

29

_1_5 -.oIJM_~...,_. _

_ 1_9 '"',,_,1_1.00.11' _
__5 --....I,4........._b......, ~ 2_._9_
TIME 9 _ RANGE 64
---------- '-----------
Figure 22, Crabgrass. Range = 64.
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deaths occur at rate 1; the other term from the facts
that (1) births from y to x occur at rate l3/v(M) if x is
vacant, y is occupied, and Ilx - yll", ~ 1, and (2) in the
limit as M~ 00 the occupancy of y and the vacancy of x
are independent.

The last result is useful because it tells us something
concrete about the time evolution of the process when
M is large, and although the information is not very
explicit, it is much better than what we know about
the case M = 1. It is interesting to note that by using
some facts about the particle system we can derive a
representation for the solution of (*) that allows us to
show that there is a convex set 0 (which can be de­
scribed explicitly) so that starting from compactly sup­
ported nonzero initial data
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u(x,t) = (13 - 1)/13 if x E (1 - E)tD
= 0 if x { (1 + E)tD,

Finally, of course, we have some computer pictures
to illustrate the last theorem, The pictures show the
system in d = 1 with 13 = 2 when the range M is 64,
128, and 512, starting from an interval in which every
other site is occupied. Each pixel across represents M/4
sites, and the height of the black column is the
number of occupied sites divided by 1, 2, or 4, respec­
tively, The reader should note that while the linear
spread is clearly visible in all three cases, the picture is
quite ragged when M = 64, and smoothes out as M
increases, but there are still significant fluctuations
when M = 512,
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Truth is much too complicated to allow anything
but approximations:

John von Neumann
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