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Summary. The following results are proved:  1) For  the upper  invariant mea- 
sure of the basic one-dimensional supercritical contact process the density 
of l ' s  has the usual large deviation behavior:  the probabil i ty of a large 
deviation decays exponentially with the number  of sites considered. 2) For  
supercritical two-dimensional nearest neighbor site (or bond) percolation 
the density YA of sites inside a square A which belong to the infinite cluster 
has the following large deviation properties. The probabil i ty that YA deviates 
from its expected value by a positive amount  decays exponentially with 
the area of A, while the probabil i ty that it deviates from its expected value 
by a negative amount  decays exponentially with the perimeter of A. These 
two problems are treated together in this paper  because similar techniques 
(renormalization) are used for both. 

1. Introduction 

In a previous paper, [LS], Joel Lebowitz and one of the authors obtained 
some large deviation properties for F K G  random fields and more  specific results 
when the r andom field corresponds to an invariant measure of a translation 
invariant attractive spin system. In this paper  we will obtain more information 
for the upper  invariant measure of the one-dimensional basic contact process, 
solving a question which was left open in [LS]. We will show that for this 
measure the density of l 's  has the usual large deviation behavior  (the probabil i ty 
of a large deviation decays exponentially with the number  of sites considered). 

We will also consider large deviation for a field which appears in connection 
with two-dimensional site or (unoriented) bond percolation in the supercritical 
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regime: a(x)=l  if x is in the infinite cluster and a(x)=O otherwise. For  this 
field we will show that the probability that the density of l 's inside a large 
square deviates from its expected value by a positive amount  decays exponential- 
ly with the area of the square, but the probability of the deviation by a negative 
amount  decays only as an exponential of the perimeter of this square. 

While the two problems considered in this paper at first sight may seem 
very different, they are in fact closely related. This fact is not so surprising 
when one remembers the similarity between the contact process and oriented 
percolation [Dur].  The strategy that we will use to prove the surface behavior 
(exponential decay with the perimeter) for percolation will be to first consider 
large deviations for one-dimensional embedded processes which are very similar 
to the upper invariant measure of the contact process. 

These techniques are (rigorous) renormalization group type arguments, which 
in fact where first used for percolation [Rus 2] and later adapted to the contact 
process in [DG].  This technique permits us to transform the original problem 
into a similar one for a slightly more complicated model - one-dependent ori- 
ented site percolation - but with the probability of occupancy very close to 
one. For  this latter process one can use contour  estimates to establish the desired 
results. 

In Sect. 2 we introduce the basic terminology and notation and review the 
previous results. In Sect. 3 we recall some basic facts about  the contact process 
and state our new result for this model, which will be proven in Sect. 5. In 
Sect. 4 we list some basic facts about  percolation that we need and state our 
results, which will be proven in Sect. 6. 

2. Terminology, Notation and Previous Results 

Let Qa be the configuration space {0, 1} z~ endowed with the product  topology 
corresponding to the discrete topology on {0, 1}. The random fields on ~2 a 
correspond to probability measures on its Borel a-field Z a. The points of Z a 
are called sites and given a configuration ~/~2d, ~(i)~{0, 1} iS called the spin 
at site i. 

Let ~ be the set of continuous functions from ~2 a to ]R and J// be the 
subset of these functions which are coordinatewise non-decreasing. A measure 
# on Za is said to be F K G  or to have positive correlations if for any pair 
of functions f, g ~ ~ ' ,  

f f gd#>Sfd#Igd# .  

A measure # is said to be stochastically greater than another one v if for any 

f ~ '  Ifd#>=Ifdv. 

In this case we write #=>v or v=<#. A measure # is translation invariant if 
for any f~c~ and any i~Z a 

yf(~) d~(~)= ~f(~-0 d~(~), 
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where ( q -  i)(j)=q (] + i). For  q = 0, 1, 6c will represent the measure concentrated 
on the configuration which is identically q. 

We will consider large deviations for the spin per site. For  this purpose, 
for any F ~ Z a and t/ef2e write IF[ for the cardinality for F and set 

Set also 

and 

xr(n)=lr1-1 ~ n(i). 
i E r  

A(,~)={iEZe: l<ir<=n,r=l,. . . ,d},  

x(nd) y ( d )  
~x An .  

v . ) .  r=X(2~ We will use the abbreviations X,  = A,  . 
Theorem 1 in [LS] states that if # is a translation invariant and F K G  mea- 

sure on Sd, which is not 6o or 61 then for any xs [0 ,  1], 

(2.1 a) lim n -a log # {X(,a) > x} = - 9 + (x), 
n 

(2.1 b) lim n-  ~ log # {X(, d) < x} = - q~ _ (x) 
n 

where ~o + (.) and q)_ (-) are convex and bounded functions. Moreover, defining 

(2.1 c) 9 (x) = max (~0_ (x), ~0 + (x)) 

it is clear that (p: [-0, 13 ~ [ 0 ,  oe] is a convex function and it follows that 
for any 0 < a < b < 1 such that 

(2.2) max(~o (a), q) (b)) > 0, 

the following holds: 

(2.3) lim n-1 log # {X~)e [a, b]} = - inf q)(x) 
n a<<-x<--b 

Except for the annoying restriction (2.2) on a and b this statement is a 
large deviation property for X~ ). Simple examples, such as mixtures of product  
measures with different densities show that this restriction cannot be eliminated 
only with the hypothesis above and more information about # is needed to 
improve this result. 

Further  information about  q) was obtained in [-LS] when/~ is an invariant 
measure of a translation invariant attractive spin system (TIASS). Our next 
task is to explain the last five words. 

A spin system is a particular type of continuous time Markov process with 
states on f2 a. Each spin t/(i) flips to the value 1 -~ ( i )  according to a rate c(i, 
q). Each spin does this independently of the others, but since the rates depend 
on the configuration q, the spins do interact in general. In order for the rates 
c(i, ~) to define a unique process there are some restrictions that they must 
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satisfy. For  our purposes in this paper  it is enough to know that  these conditions 
are satisfied when the rates have finite range. 

In [-LS] a subclass of these systems was considered which satisfies: 

(a) translation invariance: c (i, t/) = c (i +j ,  q +j) ;  
b) attractiveness: c(i, ") is non-decreasing on {t/: q (/)= 0} and non-increasing 

on {q: q(i)= 1}. 

The TIASS have some nice properties (for proofs see [Lig]). In particular 
if S(t) is the corresponding semigroup, then 61 S(t) (resp. 6 o S(t)) converges weak- 
ly as t--*oo to an invariant measure v§ (resp. v_). These measures, v+ and 
v_, are translation invariant F K G  and ergodic with respect to translations. 
The set of invariant measures for the system is unique if and only if v_ = v § 
which is also equivalent to p_ = p § where 

p_+ =v+_{.(0)=l}. 

Theorem 2 in [-LS] implies that  if v is an invariant measure for a TIASS 
which is also translation invariant and F K G  (for instance v_ or v+), then the 
corresponding function (p defined by (2.1) satisfies 

q~(x)>0 if x < p _  or x>p+.  

This result is most  useful when the system has a unique invariant measure. 
Then ~o (x)= 0 if and only if x = p_ = p +; (2.2) is empty and therefore (2.3) holds 
for any ON a <  b____ 1. On the other hand the previous result does not tell us 
anything about  q) (x) for p _ < x < p +, when p_ < p +, as in the case of the super- 
critical contact process. 

3. The Contact Process 

Contact  processes, first studied by Harris  [-Har2], are TIASS which can be 
thought  of as models for the spread of an infection. Here we will restrict ourselves 
to the one dimensional basic contact process and refere to it simply as the 
contact process. This model can be described as follows. One individual is located 
at each site of the lattice Z. The individual at site i may be healthy (q(i)=0) 
or infected (~/(i)= 1). Sick individuals recover at a constant rate which will be 
chosen to be 1. A healthy individual is contaminated by its infected neighbors 
at a rate which is proport ional  to the number  of neighbors who are infected. 
So the rates are 

c(i, 11)={1 if t/(i)= 1 
2 ( t / ( i -  1) + t/(i + 1)) if rl(i)=O , 

where 2e  [-0, oo] is called the infection parameter.  We refer the reader to Chap. 6 
of [-Lig] for a good review of the state of knowledge for this model by the 
end of 1984. For  earlier reviews see [ G r i l l  and [-Gri2]. The contact process 
is also closely related to oriented percolation in two dimensions; see I-Duff] 
for a review of this latter model and its relation with the contact process. The 
results below have analogues for oriented percolation and, in particular, Theo- 
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rem 1 can be proven for this model with the same arguments used for the 
contact process. 

The basic result for the contact process is the existence of two different 
behaviors for 2 small and large: there is a 2ce(0, oo) such that 

a) if 2<2c ,  then v_ =v+ =~5 o, 
b) if 2 > 2c, then there are exactly two extremal invariant measures: v_ = 6o 

and v + = v. (Of course, v depends on 2). 

Moreover  p + = p = p ( 2 )  is a continuous function on [2c, oo). It is still an 
open question whether p(2) is continuous on [-0, oo), i.e., whether p(2c)=0, or, 
in other words, whether v+ = 6o at 2~ or not. 

If 2 > 2~, it follows from the results in ELS] quoted in Sect. 2 that for v, 
(p(x)>0 if x>p(2) .  It was also proved in [LS] that for x small enough q~(x)>0. 
In this paper we will prove that, in fact, qo(x) is strictly positive except at x = p(2). 
It follows then that (2.2) is always satisfied and therefore, 

Theorem 1. I f  v is the upper invariant measure of  the contact process for some 
2>2~, then there exists a convex function (p: [0, 1] ~ [0, oo) such that q~(x)=0 
if  and only if x = p (2) and 

l imn -1 l o g v { X , ~ [ a , b ] } ~ -  inf ~0(x), 
n a < x < _ b  

for any O < a < b <  1. 

It is interesting to contrast this result with the large deviation properties 
of the invariant measures of stochastic Ising models (see Chap. 4 of [Lig] for 
a description of these models). For  the subclass of these models which are also 
TIASS, v_ and v+ are both Gibbs measures which correspond to a same poten- 
tial. Therefore the corresponding functions ~0 are the same and if p_ < p + (which 
is well known to occur for some potentials), then this function is identically 
zero on [p_, p+] and strictly positive outside this interval  Large deviation 
properties for a larger class of Gibbs measures were first derived in [Lan] and 
more recently in a stronger sense (the Donsker-Varadhan formulation) in [Com],  
JEll], [FO] and [Oll]. Their results show that the pattern above is universal 
for Gibbs measures: the function (p is the same for all the Gibbs measures 
corresponding to a given potential and it has a horizontal flat part if and only 
if there is more than one Gibbs measure for this potential (phase transition). 

4. Percolation 

Percolation models have been extensively studied by physicists and mathemati- 
cians (see [-Kes] or [CC] for reviews of rigorous results). Here we consider 
site percolation on Z 2, but it will be clear that everything will apply as well 
to bond percolation. 

First we need a little more terminology. Say that i, j e Z  2 are neighbors 
if they have one coordinate in common and the other differs by one unit. They 
will be said to be (*) neighbors if either they are neighbors or both their coordi- 
nates differ by one unit. A chain (resp. (*) chain) is a set of sites {il, i2, ..., in} 
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such that ir and ir+l are neighbors (resp. (*) neighbors) for r =  1, ..., n - 1 .  In 
this case, ii and i, are called the terminal points of the chain or (*) chain. 

Site percolation is defined by associating to each site i e Z  2 an independent 
random variable e(i) which assumes the values + 1 with probability p and - 1  
with probability 1 - p .  If e(i) = 1 we say that i is occupied and if e(i) = - 1 that 
i is vacant. Each realization of the random field c~ induces a partition of Z 2 
defined by saying that i and j are in the same cluster if and only if there exists 
a chain of occupied sites with i and j as terminal points. 

The basic result about  this model is the existence of poe(0, 1) such that: 

a) if p ____ Pc then all clusters are finite with probability 1 ; 
b) if p > Pc there exists exactly one infinite cluster with probability 1. 

Define now 
a( i )= {10 if/otherwise.belongs to the infinite cluster 

The random field o- is ergodic with respect to translations. This fact can be 
proved using a multidimensional analogue of Proposition 6.31 of [Bre]; for 
this purpose observe that a can be expressed by cr(i)=~(c~-i), where ~ ( e )=  1 
(resp. 0) if the origin belongs (resp. does not belong) to the infinite cluster, 
when the sites are occupied or vacant according to the field cc It follows that 
in particular -(2) 1 Y,(a) = z G ] - ~, a(i) ~ O(p) a.s. as n --* ~ ,  where O(p) is the prob- 

i e A ~  2) 

ability that a given site, say the origin, belongs to an infinite cluster. O(p) is 
known to be a continuous function of p and 0 (p)> 0 if and only if p > Pc. 

The random field a is FKG.  This follows from the fact that for each i ~ Z  2 
a(i) is a coordinatewise increasing function of the product  random field c~ and 
this latter field is FKG,  as was first proven in [-Har 1]. Therefore Theorem 1 
in [LS] applies to a. Nevertheless we will prove that the two tails of the distribu- 
tion of Yn(a) have different large deviation properties. We will prove that if 
# is the law of a, 

Theorem 2. For P>Pc there exists a convex function ~o: [0(p), 1] ~ [ 0 ,  oe) s.t. 
(p(x) = 0  if  and only if  x=O(p)  and 

(4.1) lim n -2 log # {Y~e [a, b]} ~ - inf cp(x), 
n a<~x<-b 

for any O ( p ) < a < b <  1. 

Theorem 3. For P > Pc and any O < a < b < O(p) there exist C1, C2, 7i, 72 > 0  (which 
depend on a and b) such that 

(4.2) C1 e - ~ l n < # { Y , ~ [ a ,  b]} < C 2 e -~2n 

Remark. From Theorem 3 it is clear that if we extend the function ~o in Theorem 2 
by defining q~(x)=0 for x~[0,  O(p)), then (4.1) is satisfied for any O < a < b <  1. 

These results tell us that while the probability of deviations above O(p) decay 
exponentially with the area of A (2) the probability of deviations below O(p) 
decay only as an exponential of the perimeter of A(, 2). It is trivial to prove 
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the lower bound in (4.2) when a = 0 .  Indeed, if all the sites on the exterior 
boundary of A {2) are vacant, then no site in A(, 2) can belong to the infinite 
cluster. It follows that 

#{Yn_~--<h} >=#{Yn=0 } ~ (1  __p)4(n+ 1). 

We believe, but were not able to prove that the following result, sharper 
then Theorem 3, holds: 

Conjecture 1. There exists  a funct ion 7: [0, 0 (p)] --* [0, oo) such that ? (x )=0  if 
and only i f  x = O(p) and 

l i m n - l  l o g # { Y , e [ a , b ] } =  - inf 7(x), 
n a < x < _ b  

for  any O < a < b < O ( p ) .  

After thinking about  this problem, we believe that when Y,(q)<b it does 
so because of the appearance of one bubble inside of which the sites do not 
percolate. For  b close to O(p) this bubble must be small and therefore completely 
contained in A {2). In this case the volume V of such a bubble must satisfy 
O(n 2 -  V)= b n 2, from which V= ( 1 -  b/O)n 2. Since the price to form such a bubble 
is proport ional  to its perimeter which grows like C V 1/2, we expect 

Conjecture 2. For x close to O(p), 7 (x )= C ( 1 - x / 0 )  1/2 for  some constant C which 
may depend on p. 

The remarks above will clearly be difficult to make rigorous (see [MS] for 
related results about  the Ising model). We have however been able to verify 
Conjecture 1 in the extreme case Y,= 0. To state this result we have first to 
introduce the correlation length ~(p) defined by 

- 1/~(p) = l i m  n -  1 log  P(C{o,o),(.,o)) 
n 

where C~,j is the event that there is a (*) chain of vacant sites from i to j. 
The limit exists by superadditivity (see Lemma 1 in Sect. 6) and is strictly nega- 
tive if p > Pc. 

Theorem 4. For p > p~, 

(4.3) Iim n-  ~ log/~ { Y, = 0} = -- 4/4 (p), 
n 

In order to prove the upper bound in (4.2) we will first prove a large deviation 
property for the random field a restricted to one dimensional subsets of Z 2. 
Set 

Zn=n -1 ~ ~ 
i1=1 

For  these random variables we will prove 
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Theorem5. For P>Pc there exists a convex function ~:: [0, 1 ] ~ [ 0 ,  oe) such 
that ~(x)=0  if and only if x=O(p) and 

(4.4) lim n-  1 log # {Z,~ [a, b]} --, - inf ~c(x) 
n a<-x<--b  

for any O<=a<b<_ 1. 

One of our motivations for studying the random field a is the fact that 
it has the unusual large deviation behavior stated in Theorems 2 and 3, which 
contrast with the usual behavior for the upper invariant measure of the contact 
process or the one-dimensional restriction of a considered in Theorem 5. Similar 
results were obtained for the Gibbs measures corresponding to nearest neighbor 
ferromagnetic interactions in [Sch], using some of the techniques in the present 
paper. 

5. Proof of Theorem 1 

Warning. In this and in the next section C and 7 will represent positive finite 
constants, but their values may change from expression to expression. 

F rom the results reviewed in Sect. 2, all we have to prove is that ~o(x)>0 
if x < p .  In other words, given x < p  we have to prove that there are C, ? > 0  
such that 

(5.1) v { X , < X } < C e - ' " .  

In order to prove (5.1) we construct v using a percolation substructure on 
Z x l R +  as in [-Gril], [Gri2]  or Sect. III.6 of [Lig]. To each i eZ  associate 
three independent Poisson process with rates 1, 2 and 2 respectively. Let {T~(k)(n): 
n = 1, 2, ...}, k-- 1, 2, 3, be the arrival times for each one of these Poisson pro- 
cesses. Write a 6 at each point (i, r/(1)(n)), ieZ,  n--1,  2, .... Draw an arrow 
from (i, Ti(Z)(n)) to ( i+1,  T/(2)(n)), for each ieZ,  n = l ,  2, .... Draw an arrow 
from (i, Ti(a)(n)) to ( i - 1 ,  Ti(a)(n)) for each i sZ ,  n =  1, 2, .... The effect of the 
6's is to heal the infected individuals and the effect of each arrow is to contami- 
nate a healthy individual which is at its tip by an infected one which is at 
its origin. Say that there is a path from (i, s) to (], t) if it is possible to go 
from the former to the latter following straight lines up (with the first coordinate 
kept fixed and the second increasing) and across arrows in the direction of 
their orientation, without crossing any 6's. 

Define now the random field 

if for any t => 0 there is a path from (i, 0) to some (j, t),j~Z, 
otherwise. 

From the basic properties of the contact process (see the reviews) it follows 
that z is distributed according to the law of v. 

Let c~ = c~(2) be the edge speed for the contact process defined by 

= lim t -  ~ E rt, 
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where 

rt = max {ieZ:  there is a path from some (j, 0),j < 0 to (i, t)}. 

We will now introduce the renormalized bond construction; for details see 
Sect. VI.3 in [Lig] or Sects. 9 and 10 in [-Dur]. We adopt the notation of the 
second paper and choose the quantity called 6 there to be .1. Set 

5~ = {(m, n): m + n is even, n > 0}, 

with the norm [l(m, n)[[ =([m[ + [hi)/2. For  each (m, n ) e ~  define 

C,,., = (0.9 e lm ,  Ln) 

where L will be chosen later. The C,,,, are the sites of the renormalized lattice. 
Let Ao, o be the parallelogram with vertices U o = ( - 0 . 1 5 e L ,  0), v o =(-0.05c~L,  0), 
ul=uo+l.lL(c~,  1), v~=vo+l.lL(ct ,  1). Let Bo, o be the parallelogram whose 
vertices are obtained from those of Ao,o by inverting the sign of the first coordi- 
nate. Set A,,,, = Ao,o + C . . . .  B,,,, = Bo, o + Cm,,. 

Using the construction above we define a random field ~/(z), z e s t  by setting 
rl(z ) = 1 if the following good event G,,,, happens and q (z)= 0 otherwise. 

G,,,, = {there is a path inside A . . . .  which joins its two 
horizontal sides and there is a path inside B,,,, which 
joins its two horizontal sides}. 

The random field q has some nice properties. The first two are: 

(5.2) the random variables t/(z) are 1-dependent, i.e., if Zl, ..., z, are points 
with [[ z i -  zj 1[ > 1 for i ~ j  then t/(z 0 . . . .  , t/(z,) are independent. 

(5.3) If e > 0  and 2>2c then we can pick L large enough so that p:=P(tl(Z)= 1) 
> l - e .  

The next property relates oriented percolation in the original substructure 
R 

to oriented percolation for the t/ field. For  this purpose write z ---, oo (R 
stands for renormalization) if there is an infinite sequence of sites in ~ ,  z=(m~, 
n l )  , (m2,  n2) , . . . ,  such that for i=1 ,  2, ..., (mi+l, ni+l)~{(mi-1 , ni+1), (mi+ 1, 
ni + 1)} and tl((mi, n~))= 1. Define now the following subsets of Z x IR+ 

Ro={i~Z;O<=i<O.O5c~L} x {0}, 

R, ,=Ro +C,,,o for mE2Z, 

T o =tr iangle with vertices (--0.15aL, 0), (0.15eL, 0) and (0, 0.15L), 

Tm=To+Cm, o for m~2Z.  

The reason for introducing these definitions is that (see Fig. 1) 

R 
(5.4) for (i, 0)eR,,,  if (m, 0) --~ oo and there is a path from (i, 0) to (Tin) c 

in the original percolation substructure, then z(i) = 1. 
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5L 

(i ,0) 
I I I I 

-0.15-0.05 005 0.15 x aL 

Fig. 1. Occurrence of a path from (i, 0) to (To) c and of the event G(o, o) 

We will use the construction above to show that given x < p we can choose 
L such that there exist C, ~ > 0 which satisfy 

(5.5) P(IS~I -a ~ ~(i)<x)<Ce -~, 
ieSr 

where 
r - 1  

St= U R2k" 
k=O 

It is clear that (5.5) implies (5.1) since 36 translations of Sr cover the set {ieZ: 
0 _< i _< 1.8 eLr} and therefore by translation invariance, if n = [1.8 eLr] 

n -  1 i=~1 x )  P z(i)< __<36P(IS, 1-1 ~ z(i)<=x)<=Ce -~". 
ieSr 

So (5.1) holds when n =  [1.8aLr] for some integer r. This result is enough for 
our purposes since we know already that the limit (2.1.b) exists. (Using this 
argument it follows also that (5.1) holds for any n.) 

Our strategy to prove (5.5) can be divided into two steps. First let 

r - 1  
U~=r -x ~ (1--I{(2k,0) R , co}), 

k=0 

where I{.~ is the indicator function of the event {'}. U, is the fraction of the 
sites {(0, 0), ..., ( 2 ( r - l ) ,  0)} of 5f which do not percolate. We will use (5.2) 
and (5.3) to verify that choosing L large enough there are C, ? >0  such that 

(5.6) P(U,>=p--x)<=Ce -~r. 
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The second step is to use (5.4). For  (i, O)sR m set 

~(i)={~ i f there isa  pa th f r~  

Define 

V~=IR~I -~ y' ~(i), 
iERm 

r - - 1  

w~ =r-~ ~2 vzk=l&1-1 ~2 f(i). 
k = 0 ieS~ 

By (5.4) and the fact that Vm < 1 it follows that if W~ > p and U, < p - x, 
then 

Y~ ~(i)_-__lSrl ~ - I & l  g~>l&lx. 
ieSr 

Hence 

(5.7) P(ISrl -~ ~ .c(i)<=x)<=P(l/V~<=p)+P(U~>=p-x). 
i~Sr 

But W~ is the average of the i.i.d, random variables Vm. Since EVr,>p it follows 
from the large deviation theorem for bounded i.i.d, random variables that there 
exist C, ~ > 0 (which depend on L) such that 

(5.8) P(W~<=p)<Ce -~r. 

From (5.7) and (5.8) the proof  will be complete once we verify (5.6). This will 
be done using contour methods as in Sect. 10 of [Dur].  

Given a finite T c  2Z, define the event 

R 
E r = {there is no ze  Tx {0} such that z --. oe }. 

In order for E w to happen there must be a contour  F which "isolates T from 
infinity" and which may be constructed as follows. Let 

R 
C = (z ~ ~ :  there is m e Twith (m, 0) , z}, 

D =  {(a, b)e]R2 : [a[ + [b] __< 1}, 

H =  U (z+D). 
z~C 

If I Cl < ~ let F be the boundary of the unbounded component  of OR x ( - 1 ,  
oe))\H. Set al - -max T. The segment from (al, - 1) to (a~ + 1, 0) is always present 
in F and can be considered as its first segment. Give to this segment the orienta- 
tion indicated and continue to follow F in this direction until it hits the line 
IR x { -  1} again. At that moment  there are two possibilities: either we walked 
along the whole contour  F, and in this case it is connected or it has more 
than one connected component  and we just walked along one of them - let 
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us call it F 1. In the second case let T1 be the subset of T which F~ isolates 
from infinity and set a 2 = m a x ( T ~ T  0. Then the segment from (a2, - 1) to (a 2 + 1, 
0) is present in F and we can proceed as above and define recursively F~ and 
a i, i = 1, ..., k, where k is the number of connected components of F. 

It follows from the discussion above that there are at most 3 t-  1 contours 
of length I. If F is connected this is the usual estimate, which follows from 
the fact that a contour  never passes through an arc twice. And if F is not 
connected then each time it reaches the line lRx  { - 1 }  it must restart at a 
precise arc. 

An argument in Sect. 10 of [Dur]  shows that the probability that F above 
is a given contour with length l is small then (1 _p)t/a6, where p was defined 
in (5.3). A contour  which isolates T from infinity must have at least length 
2[ TI. Therefore 

P(ET)=< ~, 31(l--p) t/36. 
I=2ITI  

By (5.3) we can choose L large enough so that p >  1 - 3  -36. Then 

P(ET) <= Ce-~'plTI, 

where C is a positive constant and 

7p = - log(9(1  _p)l/ ls) .  

Note  that 

(5.9) lim 7p = oe. 
p ~ l  

N O W ,  

P(U~>p-x)< ~ P(Er)<2rCe-~p (~ 
T ~  {0,2, . . . ,  2 r - -  2} 

ITl > ( p -  x)r 

C e (l~ 2 - (p - x )  ?'o)r. 

From (5.3) and (5.9) it is possible to choose L large enough so that l o g 2 - ( p  
- x )  7p < 0. This finishes the proof. []  

6. Proof of the Results About Percolation 

We will need some more notation. A circuit ((*) circuit) is a chain ((*) chain) 
whose terminal points are neighbors ((*) neighbors). A set S c Z 2 is said to 
be connected ((*) connected) if every pair of points in S are terminal points 
of a chain ((*) chain) contained in S. A set S surrounds a set R if any infinite 
connected set which intersects R intersects also S. Given S c Z 2, ~ S will denote 
its (interior) boundary, i.e., the set of sites in S which are neighbors to sites 
in S c. 

Connectivity and (*) connectivity are related by duality relations (see [Kes]). 
For  instance a point belongs to an infinite cluster of occupied sites if and only 
if it is not surrounded by a (*) circuit of vacant sites. 
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Proof of Theorem 2. We will prove that given x>O(p) there exists C, 7 > 0  such 
that 

(6.1) #(Yn>=x)<=Ce -~n. 

This implies that ~0+(x) defined by (2.1.a) is strictly positive in this interval 
and therefore so is ~0(x). If 0 ( p ) < b < l ,  then (2.2) is satisfied and (4.l) holds 
in this case. Observe that since the limit (2.1.a) exists it is enough to proof 
that (6.1) holds for a subsequence of (i1,). 

The proof of (6.1) will be very similar to the proof  of Theorem 2 in [LSl 
(for the invariant measures of TIASS). Given a positive integer N, to be chosen 
later, and keZ 2 let 

F(k) = {i~Z2: i-- kN e F), 

where 
r = {i, . . . ,  N }  2. 

Given iGZ 2 let ki be defined by ieF(ki). Define now 

~(i)={10 iftheclusterofireaches3F(ki),otherwise. 

Then it is clear that 

#(Y,>-x)<P(n -2 ~ ~(i)>=x). 
i e A ~  z) 

Furthermore, the restrictions of ~ to different boxes F(k) are i.i.d. If 

(6.2) x > ON(p).'=E(IF 1-1 ~, ~(i)) 
ie/" 

and if n = m N  for some integer m, then, from the large deviation theorem for 
bounded i.i.d, random variables 

P(n -2 ~ ~(i)~x)~Ce-Tm=Ce -(#N)m, 
i ~ A ~  2) 

with C, 7>0.  Therefore (6.1) will be proven once we show that given x>O(p) 
there exist N such that (6.2) is satisfied, i.e., 

(6.3) lira ON=O(p) 
N~ao 

For each N let I ~ = F \ [ N  1/2, N-N1/2] 2. Now, for any ie/~, by translation 
invariance P(~(i)= 1)<P( the  cluster of the origin contains at least N 1/2 sites) 

: = a  N . 

Hence 

O(p)<ON<aIv+4N -l/z, 

from which (6.3) follows since clearly lira aN = O(p). 
N~oo 

[] 
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The rest of this section is organized as follows" first we prove Theorem 4 since 
it is simplier than the other theorems and the arguments used to prove it will 
illustrate some techniques that we use to prove the lower bound in Theorem 3. 
Then we prove Theorem 5 which is the key step for our proof  of the upper 
bound in Theorem 3. Finally we prove Theorem 3. We start with some lemmas. 

Write C .~ . for the event that there is a (*) chain of vacant sites connecting 
i and j and contained in the strip Z • { -  a, ..., a}. As in the introduction, omit 
a in the notat ion above if the strip is replaced by the whole space Z 2, or use 
the notat ion C~. 

Lemma 1. For any 0 <= p <__ 1 and 0 < a N co the following limit exists 

a lim n-  1 log P(C(o,o),(.,o)).= - A.(p). 
n --* o o  

Furthermore 

Lemma 2. For any 0 < p N 1 

P(C~o,o),(.,o)) < e - Aa(p)'n. 

lira A, = A 0o -'= 1/4 (p). 
a ~ o o  

For  i, j e Z 2, let d (i, j)--  max (I il - J l  l, 1i2 - J2  I)- 

Lemma 3. For any 0 < p < 1 

P (C~, j )  < e - e" ' j ) /~te)  

The proofs of these lemmas appeared in several places (for instance, they 
appeared partly in [CC] and [Ng]), but they are short, so for the reader's 
convenience we repeat them here. 

Proo f  o f  Lemma 1. By the F K G  property and translation invariance 

P(C(ao,o),(n+m,O)) ~ P(C(ao,o),(n,o) t~ C(an, O),(n + m, 0)) 

> P(C(ao,o),(.,o)) P (C(~., o),(. +,., o)) 
- -  t t  a 

- P(C(o,o),(.,o)) P(C(o,o),(m,O)). 

From this the result follows by standard superaditivity arguments (see the proof  
of (1) in [Dur]  or of Theorem VI.2.6 in [Lig]). []  

Proo f  o f  Lemma 2. It is clear that A,(p) > A ~ (p). On the other hand, by Lemma 1, 
for any ~ > 0 there is an n such that 

e x p ( -  n(A ~ (p) + ~)) _< P (C(~,o),(,,o)) 
a < = lim P(C(o,o),(,,o))= lim exp( - -nAa(p)  ). 

a --4 ~o  a ~ o 9  

Hence 

and since e is arbitrary, the result follows. 

Ao~(p)+~> Ao(p) 

[] 
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R 4 R3 

R 1 = R 5 R2 

Fig. 2. The four * chains ab, cd, e f  and gh are those mentioned in the proof of the upper bound 
in Theorem 4 

Proof of Lemma 3. Without loss of generality assume that i=(0, 0), d(i, J)=]il 
- j l [ =  [jl 1. Define k = (2j~, 0). Then by F K G  

P(Ci,k) >= P(Ci 4) P(Czk). 
But by symmetry 

Hence by Lemma 1 

P(Ci,j)=P(Cj, k). 

P(Cij) <= (P(Ci.k)) 1/2 
<(e-21Jd/~(P))l/2 = e  -d(i,j)/~(p) [] 

What does not follow from the arguments above is the finiteness of ~(p) 
for p >Pc. This fact, which will be fundamental for us, follows from the results 
in [Rus 1] (see [CC] or [Kes]). 

Proof of Theorem 4. Consider the following four straight half lines (see Fig. 2): 

RI=Rs={iEZ2: i~ =i2 <0}, 

R2={iEZ2: il=-i2+n>=n}, 
R3={iEZ2: i~=i2>=n }, 

R4={i6ZZ: il=--i2+n<=O}. 

If no site in A~, 2) belongs to the infinite cluster, then A(, 2) must be surrounded 
by a (*) circuit of vacant sites. Therefore there must be four (*) chains of vacant 
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n + o  I 

0 0 n n + c l  

Fig. 3. Occurrence  of the events  T~, i = 1, . . . ,  4 

sites connecting/~i to /~i+1, i=  1 . . . .  ,4, where for S c Z 2 we define S = { i e Z 2 :  
ieS or i is * neighbor to a point in S}. Furthermore each one of these four 
paths must be in a different region. Therefore 

~ , (~=0)  

=< [P(/~I is connected to Rz by a vacant * chain)] 4. 

But using Lemma 3 the r.h.s, above is bonded above by ( f  (n) e-"/r 4, where 
f(n) grows only polynomially with n. Hence 

lira sup n-  ~ log/~ (I1. = 0) = - 4/4 (p). 
n --} oo 

To prove a bound in the other direction consider for a fixed a the following 
rectangles (see Fig. 3) 

S t = { - a ,  . . . , n + a ) } x { - a ,  . . . ,0), 

$2= {n, . . . ,n+a} x { - - a  . . . .  ,n+a},  

S 3 = { - a  . . . .  , n+a} x {n . . . . .  n+a}, 

S 4 = { - a  . . . .  ,0} x { - a  . . . .  ,n+a}. 

Let Ti, i = l , . . . ,  4, be the event that there is a (*) chain of vacant sites 
4 

in Si, joining its parallel sides of length a +  1. The occcurence of N Ti implies 
that no site in A(, 2) belongs to the infinite cluster, i= t 

By F K G  4 

#(Y,,=O)>= I~ P(T~). 
i = 1  

Using Lemma 1 

lira inf n - 1 log # (Y, = 0) => - 4 A a (p). 
n ---~ (x3 

Since a is arbitrary, Lemma 2 implies the desired lower bound. []  
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5N 

Z,N 

2N 

N 

-N 

-2N 
-5N 

I 

> 

-LN -2N -N N 2N 4N 

Fig. 4. Occurrence of events H(_ 1, o), H(o, o) and H(~, ~) 

5N 

Before proving Theorem 5 we need one more lemma. Let a and b be two 
positive real numbers and consider the event E,  that there is a chain of occupied 
sites connecting the two vertical sides of the rectangle { i ~ Z  2" 0 < i  I < an, 0 <  i 2 

<bn} .  

Lemlna 4. For any p > Pc, 
lira P ( E , ) =  1. 

n~oo 

Proo f  If E,  fails then there is a (*) chain of vacant sites connecting the two 
horizontal sides of the rectangle. Using Lemma 3 and the finitness of ~(p) it 
is easy to see that the probability of such an event vanishes as n --+ oo. []  

We define now a "renormalized site" construction which will play for perco- 
lation the same role as the "renormalized bond"  construction played for the 
contact process (see Fig. 4). Consider the following rectangle, where N is an 
integer 

A = { - Z N  . . . . .  2N} x { - 2 N , . . . , - - U } ,  

B = { N  . . . . .  2N} x { - 2 N  . . . .  ,2N},  

C = { - 2 N  . . . .  , 2N}  x { N  . . . . .  2N}, 

D = { - - 2 N  . . . .  , --N} x { - - 2 N  . . . .  ,2N}.  

For  k ~ Z  2 define A k = A + 3 N k  and analogously for Bk, Ck and D k. Say that 
the good event H~ A) happens if there is a chain of occupied sites inside A k 
connecting its two smaller sides. Define H~ B), H~ c) and H~ D) analogously and 
set H k = H{kA) C~... C~ H~ m. Define now a random field ~(k), k E Z  2 by setting ~(k)= 1 

R 
if H k happens and ~(k)=0 otherwise. For  k s Z  2 write k , oo if k belongs 
to an infinite (*) cluster of ~. The field ~ has all the nice properties of the 
"renormalized bond"  field defined for the contact process" 
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i) ~ has a finite range of dependence 
ii) lim P(~(k)= 1)= 1 

N --~ oo 

iii) If the site i belongs to the square { - N  . . . . .  N } 2 + 3 N k  and its cluster 
(in the original field) reaches the boundary of the larger square { -  2N . . . . .  2N} 2 

R 

+ 3 N k, then a (i) = 1, provided that k , oo. 

Furthermore percolation for the field ( on Z 2 obviously dominates oriented 
percolation for this same field restricted to ~ = {(m, n): n >0,  m +  n is even} 
as defined in Sect. 5. But when restricted to 5r ( is 1-dependent, therefore the 
very same contour estimates used in Sect. 5 can be used here. 

Proof of Theorem 5. We have only to prove that there are constants C and 
7 which depend on x such that 

(6.4) # ( Z . > x ) < C e  -~" if x>O(p), 

(6.5) # ( Z . < x ) < C e  -~" if x<O(p). 

(6.4) can be proven with the same argument used to prove (6.1). The proof  
of (6.5) using the "renormalized site" construction is analogous to the proof  
of (5.1). []  

Proof of Theorem 3. 

a) Proof of the upper bound. By translation invariance and (6.5) 

#(Y,e [a, b]) <#(Y, < b) 

<-_P n - t  a(i)<=b 
i 1 i 1 = 1  

<n.#{Z,<__b}<Ce-'". 

b) Proof of the lower bound. The strategy of the proof will be to force the 
sites inside a box contained in A(. 2) not to percolate by constraining the sites 
on its boundary to be vacant. This has a cost which grows only with the length 
of the boundary of the box. Assuming that the field a outside this box is not 
affected very much by this conditioning, it follows that the density of percolating 
sites in A(, 2) can be forced by this procedure to be, with large probability, between 
a and b for n large. The technical part will be to show that the assumption 
in the reasoning above is in some sense correct. 

If we choose a square box, its side l can be taken such that O(p).(n2-12) 
[(a + b)/2] n 2. Accordingly, solving for l in the last equation, let O, c A (2) be 

a square whose side I, is the integer part of n ( 1 - ( a  + b)/20(p)) t/2. Now consider 
the event A, that all the sites in ~ f~, are vacant. Then 

P(A . )=(1 -  p)4t.= C e -~" 
and 

# { Y.e[a, b]} >= P(Y.(a)e[a, b] ]A.). P(A.). 
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The proof  will be finished once we prove that 

lim P (Yn (a) ~ [a, b] I A,) = 1. 
n --+ oo 

Now,  

(6.6) P (Y, (o-) E I-a, b] IA,) = P(Yn(a) < b IA.) - P ( ~  (o-) < a IA.). 

Clearly, using F K G  

P(Y~(a)<=b[A,)=P(n -z ~ a(i)<blAn) 
i~A~Z)\f2n 

>P(n -2 ~ a(i)<b) 
I ~ A ~ 2 ) \ . Q n  

=P(IA(.2)\Q,[ -~ ~, a(i)<=bn2/(n:-l~)), 
ieA~2)\g2n 

which goes to 1 by the ergodicity of a and the choice of l,. 
We will show now that the last term on the r.h.s, of (6.6) goes to zero. 

For  6 > 0 let f2, ~ be a square with the same center as f2, and side l, + 2 En6]. 
Let B, be the event that f2, is surrounded by a circuit of occupied sites contained 
in the annulus O,~ Using Lemma 4 it is easy to prove that for any 3 > 0 

lira P (B, IA,) = lim P (B.) = 1 
n --+ oo n - + o o  

(6.7) 

Now,  

(6.8) 

But 

P(Y,(a) < [A.)<P(Y,(a)<aIA.c~B.).P(B.IA.) 

+ P((B.)~IA.). 

P(Y,(a)<aIA, nB,) 

<P( n-2 Z a(i)<alA, nBn) 
/ ~ A~2)\.Q6n 

= P ( n  -2 ~ a(i)<alB,,). 
i~A~2)\f2~ n 

And using F K G  the r.h.s, above is less than or equal to 

P( n-z Z cr(i)<a) 
i~a~2)\f2dn 

( 2 )  5 -- 1 =P([A,  \s Z a(i) 

< a n2/(n 2 -- (l, + 2 [6 hi)a)), 

which goes to zero by the ergodicity of a and the choice of l,, provided that 
6 is small enough. The conbination of this fact with (6.7) and (6.8) completes 
the proof. []  

The lower bound obtained above is of the form 

,u(Y,e [a, b ] )>  C(1 _ p)4,,o - t,, + b)/2 otp))'/~ 
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Choosing 1. as the integer part of n (1 - ( b -  e)/0(p))l/2 for positive e < b - a, 
the proof  would still be correct and after taking the limit e --, 0 we would get 

lim inf n -  1 l o g  # (Y. ~ [-a, b ] )  > 4 (1 - b/O (p)) 1/2 log (1 - p). 

Observe that the r.h.s, goes to zero as b ~ O(p) and it has the form proposed 
in Conjecture 2. Nevertheless, as we know from Theorem 4, the correct price 
to "kill the sites inside O,"  is not (1 _p)4Z. but Ce -4z"/r Using the techniques 
of te proof  of Theorem 4 it is easy to modify the proof  above to get then 

lim inf n - 1 log/t  ( Y, e [a, b]) __> - 4 (1 - b/O (p)) 1/2/4 (p). 
n ---~ o o  

Still, it is not clear that this is a sharp estimate, since bubbles with a different 
shape than a square may have a smaller cost per volume. The estimate above 
can be reproduced for other shapes of bubbles. But the comparison between 
the results, needed to decide which one is the correct shape, depends on having 
sharp relations between correlation lengths in different directions, which to our 
knowledge is still an open problem. Even if the approach above could produce 
a sharp lower bound, the corresponding upper bound would have to be proven 
by a method different from the one we used. 
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