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1. Introduction 

In this paper we will prove theorems which describe the asymptotic behavior of 
two closely related processes: one which has been used ta model the spread of 
epidemics (Bailey (1965), Mollison (197?), Cardy (1983 j, Grassberger (1983), Cardy 
and Grassberger (1985), Kuulasmaa (1982)) and forest fires (McKay and Jan (1984), 
von Niessen and Blumen (19$6), Ohtsuki and Keyes (19&g)), and a second which 
can be used to study path iengths in percolation clusters. 

In the first model ,pach site z E Z2 can be in one of three states: I, i, or 0. In the 
epidemic interpretation 1 = healthy, i = infected, and 0 = immune, while for a forest 
fire 1= a live tree, i = on fire, and 0 = burned. Let q, denote the process, r),(x) is 
the state of site x at time t. We will generally favor the epidemic formulation of the 
model, but occasionally we will talk abowt forest fires. We begin by describing the 
model in epidemic language following Mollison (1977). 

An infected individual emits germs according to a Poisson process with rate (Y. 
A germ emitted from x goes to one of the four nearest neighbors x + (1, 0), x + (0, l), 
x + (-1, O), or x+ (0, -1) chosen at random (with equal probabilities). If the germ 
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goes to the site of a heaith>: individual then that individual immediately becomes 
infected and begins to emit germs. It stays infected for a random time with 

distribution function F, then recovers and is immune to further infection (e.g. 
consider measles). We assume that F is concentrated on the nonnegative half line 
and is not the unit point mass at zero. To complete the description we declare that 
the infection periods and Poisson processes of germs associated with different sites 

are independent. 
Given the description in tile last paragraph the reader can undoubtedly construct 

the process in question, but for what follows it will be useful to have a special 
construction which we will give now. Let TX, XE 2’ be independent identically 
distributed random variables with distribution F and for x, y E 2* with Ix - yl = 1 
let e(x, y) be independent identically distributed random variables with P(e(x, y) > 
t) = exp(-crt/4). TV is the amount of time x will stay infected (if it ever becomes 
infected) and e(x, y) is the time lag from the infection of x until the first germ from 
x is sent to y. We let 

a, Y) = 1 4x, y) if TX > 44 v), 
a0 if TX Q e(x, y), 

(1.1) 

and say the oriented bound (x, y) is open if T(X, y) c 00 and closed otherwise. Given 
the definition of T” and e(x, y) it should be clear that bond (x, y) is open if x tries 
to infect y during its “lifetime,” and T(X, y) gives the time lag from the infection 
of x until it tries to infect y, with 7(x, y) = 00 if this never happens. 

Let C, = {x: x can be reached from 0 by a path of open bonds}. In percolation 
language C, is the open cluster containing the origin 0. The relationship of Co to 
the epidemic model is explained by: 

(1.2) C, = the set of sites that will ever become infected if initially the origin is 
infected and all other sites are healthy. 

Pmoof. Clearly if y becomes infected at some time then y E C, (because y was 
infected by a neighbor, who was infected by a neighbor, . . . who was infected by 
0). We argue the other inclusion by induction on the length of the shortest path to 
x. If the path has length 1 this is clear because when 0 tries to infect it either (a) 
the site is not infected and it succeeds or (b) the site is already infected and hence 
it isin C,,. IfxECOandO,x, ,..,, x,,-,, x, = x is a shortest path to x then we can 
apply the last argument with 0 replaced by xn_, . The induction hypothesis implies 
x0-i E C’, and when x,,_~ tries to infect x,, either (a) or (b) above occurs and in either 
case we can conclude x, E C,,. 

The relationship of the general epidemic model to the percolation process 
described above was first noticed by Mollison (1977) (see p. 322) and developed 
by Kuulasmaa f B982), who called ihe resulting structures llocaliy de gndent randosa 

plying the clutter percolation theorem of iarmid (1980) he was 
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able to prove a useful comparison theorem. To state this result we need some 
notation: If A c {z: lzl= 1) let 4(A) = P(al1 edges (0, z) z E A are closed). 4 is called 
the zero-function of the epidemic model. 

(1.3) Let B be a collection of paths in L* and let .B be the event that some path 
in B is open. If two epidemic models have &(A) 3 4,(A) for all A then P,(B) G 

p2@3a>. 

The proof is in Kuulasmaa (1982), see pages 749-750. 
If we consider the density of open bonds 

fm 
p = P((0, (0,l)) is open) = 1 - 

J 
eerrs14 dF(s) 

0 

as a parameter then the last result allows us to identify two extreme cases: 

&&A) = (1 -P) IAl (all bonds independent) 

where IA( = the cardinality of A and 

(b,i,,(A) = (I -p) if IAl 2 1 (perfect correlation). 

It is clear that any epidemic model has 

4,i,,(A) = (I -P) 3 4(A). 

Harris’ (1960) inequality implies that the random variables l~,x,.r+z,open~ are positively 
correlated (see (2.1) in Section 2 for a proof) so 

Combining the last two observations with (1.3) gives 

TO explain the notation we have used for the extreme cases, we begin by observing 
that in the “site” epidemic model either all the bonds (x, x + z) with lzl = 1 are open 
or all are closed. A little thought reveals that the resulting percolation model is 
equivalent to the usual site percolation model in which sites z E 2’ are independently 
called open or closed with probabilities p and 1 -p and two sites x and y belong 
to the same cluster if y can be reached from x by a path of open sites, See Kesten 
(1982) for a discussion of this model tirid for the other facts about percolation we 
will use below. 

Having heard the term “site” explained the reader can probably guess what the 

“bond” model refers to, but this time things are not quite as simple. In the “bond” 
epidemic model each bond (x, x + z) is independently open or closed but unlike 
the usual bond percolation model in which a bond is either open for passage in 
both directions or closed, the state of (x, x + z) and (x-t z, 
distinction, however, turns out to be a minor difference. 
(1963) showed that the two processes have the same critical 
two sets of Sites S and e probability t ere is an open p 
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same in the two models. See Theorem 3.1 in McDiarmid (1980) for a simple proof 

of this result. 
Combining the observations in the last three paragraphs it follows that if we let 

a:(F) = inf{cu: Pa,&JOl = 00) > 0) 

(where the subscripts on B indicate the parameters of the model, the superscript 0 

is for “out from 0”) and 

J 
a pm = 1 - e-.qW4 ds o 

then 

$ < pJ F) < p,.(site) = 0.5927. 

The number at the left end is a rigorous bound coming from Kesten’s solution of 
the bond problem, the number on the right is not rigorous but is the consensus of 
a large number of numerical studies in the physics literature. 

The results in the last paragraph (which are due to Kuulasmaa (1982)) show that 
0 < cuF( F) < 00, and if one accepts the 0.5927, give reasonable bounds on the critical 
value. Having established the existence of a phase transition we come now to the 
question which is the main focus of our work: What does the epidemic look like 
when it lasts forever? IBefore answering this question we will start with a simpler 
problem which is the second model referred to in the first paragraph of the 
introduction. 

Consider the usual bond percolation model in which bonds are open (in both 
directions) with probability p, closed with probability 1 -p, and distinct bonds are 
independent. If we think of the open bonds as pieces of wood which take one unit 
of time to burn, and if we set the origin on fire at time 0, then at time n all sites in 
C0 a distance less than n from 0 will be burnt and those at distance n will be on 
fire. If we let 6” = the set of sites burnt at time n, 5, = the set of sites on fire at time 
n, and for any set S use @S to denote (@: 0 E S}, then our result about the asymptotic 
behavior of this model can be stated as: 

(1.4) If cy > a:(F) then there is a convex set D such that for any E > 0, 

P(C,,nn(l-&)DCf;,Cn(l+&)D forali sufficiently large n)==l 

and 

P(& c n(I + E)D- n( 1 - E)D for all sufficiently large n) = 1. 

Given results in Cox and Durrett (1981) (hereafter abbreviated as CD), and what 
is now known about percolation, it is easy to make (1.4) seem plausible. The paper 
just cited considered first passage percolation, a model in which undirected bonds 
[x, JJ] with Ix-u] = I are assigned independent nonnegative random variables r[x, y] 
and one studies the first passage times 

I[x, y] = inf c 
1 

i T[X, ,, x,]: x,,, . . . , x,,, is a path from x to y 1 
8 1 li’ 
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(Notice the square brackets. Here and in what follows they indicate we are dealing 

with the ordinary unoriented situation.) If we let 

r[x, yl= 
1 if [x, y] is open, 

00 if [x, y] is closed, 

then it is easy to see that & = {n: =![O, X] < a) and SW = (x: t[O, x] = n}. So the burning 
percolation cluster fits into the first passage percolation set-up. 

The last paragraph as the old joke goes is the good news. The bad news is that 

results of CD cannot be applied zince they assume ~[x, y] <a. The last problem 

however is a minor difficulty. The proof of the main result in CD (see p. 584) starts 

by picking M so that P(r[x, y] G M) zi, declaring bonds [x, y] to be open if 

T[X, y] s M and closed otherwise, and then bounding passage times by constructing 

paths’which consist only of open bounds. We will say more about the details of 
this proof in Section 3 when we have to generalize it to the current setting, but since 
the general strategy is to ignore closed bonds it should not be hard for the reader 
to believe that ;he proof given in CD generalizes immediately to the case P( T[ x, y] = 
Co)<& 

The last restriction comes fro- ‘21 f 111 u e act that when the density of closed bonds < $, 
it is very easy to prove that eve.ry point is surrounded by a circuit of open bonds 
and give bounds on the circuit’s size. By working harder (which was unnecessary 
in CD) one can show that the same bounds hold whenever the density of closed 
bonds is less than 1 -pc9 and the proofs of CD can be repeated to prove the result 
stated above. 

We wiii not give the details of the proof of (1.4) for the burning percolation 
cluster. There are two reasons for this. The first is that Y. Zhang and Y.C. Zhang 
(1984) have already proved a closely related result-they considered the first passage 
percolation model with P(r[O, y] = 0) = 1 - P(*r[O, y] = 1) = p, y one of the four 
neighbors of 0, and studied the asymptotic behavior of the length of the shortest 
path from 0 to x which achieves the passage time t[O, x]. The second is that we 
swill give all the details of the more difficult pr:jof of our shape theorem for the 
epidemic model. 

Returning to the epidemic model, define 5, as ,$he set of immune (or “removed") 
sites at time t and 6, as the set of infected sites !\t time ?, that is, 

5, = {x: T,(X) = 0) and 6, = {x: q,(x),= i}. 

We assume that initially the origin is infected a,ld all other sites healthy, 

rl0(x) = 1 

I‘ 

if x =O, 

1 if x+0. 

The shape theorem is 
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The second moment assumption is necessary for (ii) to hold. It is clear that if F 
has a very fat tail then some individuals will remain infected a very long time, thus 
preventing the boundary type behavior of (ii). A simple Borel-Cantelli argument 

shows that “fat” means infinite second moment. 
In Section 2 we will show that the percolation estimates needed for the arguments 

of CD can be generalized to our epidemic model. The key to the developments in 
that section is (2.2), whose proof is a generalization of an argument of Russo. Once 
this is proved modern percolation technology, in particular (2.5) the “Resealing 
Lemma” of Aizenman, Chayes, Chayes, Frohlich, and Russo takes over and allows 
us to prove the estimates we need. An interesting consequence of the developments 
in Section 2 is that we can prove that at the critical value a:(F) the epidemic dies 
out with probability one (see Theorem 2). This is the behavior expected in models 
of this type (e.g. critical branching processes die out) but it is rare that one can 
prove it. 

In Section 3 we begin the proof of the shape theorem by investigating the limiting 
behavior of the first passage times. Define the directed first passage process t(x, y) 
using the 7(x, y) defined in (1 .l) just as i[x, y] was defined using the ~[x, y]. We prove 

Theorem 3. if 8 E Z2 then there is a constant p ( 0) so that, as n + 00, 

1 t W, no)-p(6) ltneECi,,+O a-s. 1 
Given the percolation estimates developed in Section 2 the proof of Theorem 3 

is almost a word for word repetition of the proof of Theorem 1 in CD. The only 
new difficulty is that we are dealing with oriented percolation, so that we have to 
exercise some care in tying open paths together. 

In Section 4 we complete the proof of the shape theorem. The first step is to 
extend Co and t(0, x) by assuming that when z E P2 becomes infected then so do 
all the points in z + (-5, f]‘, and to prove that Theorem 3 holds for all 8 E IX’. With 
this done we can identify the limiting set as D = (0 E R”: p( 0) s 1). The limit theorem 
for first passage times allows us to prove that if we pick a finite set (8,). . . ,&) c 

(0: p( 0) s 1) and points xi E C, near 8;t then all the Xi will be in {, with high 
probability. The last observation gives us a fairly dense set of points in D which 
are in t-l<,. Then to complete the proof it suffices as it has seve,al times in the past 
(Richardson (1973), Schurger (1979,1980), Bramson and Griffeath (1980), Cox and 
Durrett (1981), Durrett and Griffeath (1982)) to prove there is 6>0 so that with 
probability one for all large enough t 

This last result can be prove 
shape theore then follows easily. 

roofs in Sections 3 and 4 of CD. The 
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The last three paragraphs can be summarized in one sentence: by combining ideas 

from percolation with results of CD on first passage percolation we are able to treat 
first passage percolation on infinite clusters and analyze a model for epidemics 
and forest fires. This state of affairs makes it seem that things are well understood, 
but the very opposite is true. Minor changes in the model lead to (hard) open 
problems: 

(i) Suppose we cor;sider (as Savit and Ziff (1985) did) the site version of the 
model: an individual becomes infected at rate a if at least one of its neighbors is 
on fire. The construction used above breaks down (try it) and we can say almost 
nothing. 

(ii) Suppose we consider (as Bailey (1965) did) the dis,rete time model in which 
the disease lasts one unit of time and an infected individual can infect his four 
nearest neighbors x + (1, 0), . . . , x+(0, -1) and the four diagonally adjacent ones 
x+(1, l), . . . ,x+(1, -l), flipping 8 independent coins to see which sites become 
infected. Bailey observed (see p. 255) that “the range between p = 0.2 and p = 0.4 
obviously deserves close attention” because a “steady shift in distribution with 
changes in p is immediately apparent.” Kuulasmaa’s theorem applies to Bailey’s 
model so we can identify the shift in distribution with the onset of percolation. 
Thanks to Frisch and I-Iammersley we can identify the threshold with the critical 
value of ordinary bond percolation on the obvious graph (but we do not know what 
this value is). What is worse the percolat.ion machinery used above breaks down 
on this non-planar graph, so we cannot analyze this epidemic model. This problem 
should not be too far out of reach, but will take some serious work to solve. 

(iii) A third variation of the model which has been considered is “forest fire with 
wind” (Ohtsuki and Keyes (1986)). In this discrete time model a burning tree at x 
can ignite the trees at x + (1,O) and x + (0,l) with probability p but will ignite the 

trees at x+(-1,0) and x+(0, -1) with probability q <p. Wben q = 0 this reduces 

to oriented percolation and if p>pc the forest fire will burn a cone with opening 
angle 8(p) in the first quadrant (see Durrett (1984)). It is easy to see that this can 
happen when q > 0. Mapping out the “phase diagram” of this system is a difficult 
problem, but there is some hope because we are dealing with a planar graph and 
there is a duality for these models (see the end of Section 2). 

(iv) The results mentioned above show that if we consider ordinary bond percola- 
tion with p > pc. (=$) and let !,, be the length of the shortest open path from 0 to 

(n, 0) then there is a constant v(p) so that 

as n + 00. Many papers in the physics literature (Ritzenberg and Cohen (1984), 
rassberger (1985), Edwards and Kerstein (1985)) have ad 

ow does ~(p)-+oO as p.J e of answer is 

desired we recall that Chayes, Chayes, and urrett (1987) have studied the problem 
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in which T[X, y] = 0 with probability p and T[X, y] = 1 with probability 1 -p, and 
have shown that as p t pc the time constant p(p) + 0 like e(p)-‘, t(p) = the correla- 
tion length. Leaving the last term undefined (see the paper cited for further explana- 
tion) we can at least state our last problem: show that, as p 1 pc, v(p) + 00 like 
(e(p))” where 8 > 1 is related to the connectivity properties of the “incipient infinite 
cluster”. See Kesten (1986) for a rigorous definition. Even the physicists cannot 
decide if 8 is a new exponent or related to the other ones. Rigorous results on this 
question will be difficult to come by. 

(v) Last but not least (as the referee pointed out) is the problem of what happens 
in the epidemic when recovery is possible: e.g. O-, 1 at rate /3 (independent of the 
state of its neighbors). We have considered the case p = 0. If p = co then we never 
see the O’s, and if F is exponential then the l’s and i’s form a contact process, 
A shape result for this process has been proved by Durrett and Griffeath (1982). 
Generalizing their proof to 0 < p c 00 seems to be a difficult problem. One complica- 
tion (absent when j3 = 0) is the possibility for the origin to be infected infinitely 
many times. 

2. Percolation theory 

In this section we will show that although our model has dependent directed bonds 
it is enough like “ordinary” two dimensional percolation so that the results needed 
for the arguments in CD can be proved. As in the case of ordinary percolation the 
study of sponge crossings is the key. Let R,,K = R(J, K) be the probability that there 
is a right-left crossing of the “sponge” (0, J) x (0, K) by open bonds. We will drive 
inequalities relating the R kL,L for various values of k. These results will imply that 
if we define the sponge crossing critical value IY, by 

LY, = inf(a: lipzp RL,L = l}, -b 

then a:= cy,, and the epidemic dies out at the critical value. 
Our first step is to prove the T(X, y) are “associated” in the sense of Newman 

and Wright (1981). 

ma. lf f and g are b;strnded coordinatewise increasing functions, 

x =.04x.1, *VI 1, * ’ * , am ym )I 

and 

y = gb(xI, Y'l), * * - I Ma, YXh 

then EXYaEXEY. 

. +GY)=~(+,Y), -W where 
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is an increasing function in each of its two arguments. Thus X and Y are. increasing 
functions of independent random variables and it follows from the original result 
of Harris (1960) that EXY 3 EXEY. 

With this preliminary established we can begin the real work of this section. The 
hardest step of what follows is to prove the “RSW” (for Russo (1978) and (1981), 
and Seymour and Welsh (1978)) lemma. 

(2.2) k.emma (RSW). &L,~,~ 2 !I - (I- RL,L)“2)3. 

Note. When we are done with the model under consideration we will need to claim 

that the proof of (2.2) works for a slightly different mod&’ .-. sth positively correlated 
bonds. To prepare for this we ask the reader to check as he goes along that in all 
steps but one the argument uses only positive correlations. We need independence 
only when the primed variables are introduced in the proof of (2.2) and used to 
conclude 

We will start the proof of (2.2) with a lemma which explains the unusual formula 
in the answer. An event A is called increasing if whenever w E A and every open 
bond in w is open in w’, then W’E A. 

(2.3) Lemma (The square root trick). Let A, and A2 be increasing euenfs. I’ A = A, u 
A2 and P( A,) = P(A,) then 

P(A,)~1-(i-;“<4))“2. 

Proof. From set theory and Harris’ inequality, we get 

(1-P(A,))2=P(A;)2=P(Af’)P(A;)sP(AfnA;)=l-P(A) 
so 

P(A,) 2 1 - (1 - P(A))““. 

The lemma above allows us to have paths begin or end in one half of an LX L 
square without dividing the probability by 2. With this and a little geometric trickery, 
we can tie three paths together to cross a 3L/2 x L rectangle. In this part of the 
proof we follow Russo (1981, p. 230-231) very closely. Here and in what follows 
all paths are assumed to be sel$auoidin_n. 

Let s be a right-left crossing of (0, L) x (0, L) such that the first point of intersection 
of s and (L/2} x (0, L) has y-coordinate s L/2. Let E,$ be the event that s is open 

and is the lowest open right-left crossing of (0, L) x (0, L). (We should prove as 
Kesten (1980) did that there is a lowest crossing but we omit this tedious detail. At 
the end of the section, when we discuss duality, we will sketch a proof.) Let s, be 
the portion of this path from {L} x (0, L-) until the first time it hits (L/2} X (0, L), 
and let s,, = the reflections of s, through {L} x (0, L). Let .r4(sr u s,) = the ~~~~~ts in 

(L/2,3L/2) x ( ) dbOVe S, V Src e points is. (0, L.) x (0, 

below s. 
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up to this point everything has been the same as in Russo’s proof, but for reasons 
we will explain in a minute, the next step must be different. For all the XE B(s) 
define new variables T_& e’(x, y), #(x, y) which are independent of the original 
random variables and have the same distribution, and extend the definition of the 

primed variables to (0,3L/2) x (0, L) by setting Ti = TX, e’(x, y) = e(x, y), T’(x, y) = 
T(X, y) for x & 93(s). For convenience of exposition we will refer to the variables 
with the primes as new variables and call the original variables old. 

Since & is measurable with respect to the o-field of the bonds which begin in 
.B(s), the new variables have the same distribution as the old ones. Let F: be the 
event that there is an open path t in the new system starting from (L/2,3L/2) x {L} 

and connected to s, in S?(S,U s,,). In Russo’s original proof this path could be 
combined with s to make a path to S, in the old system but this time the orientation 
is wrong (see Fig. 1). Forttunatelv there is a way around this. 

Let r’ consist of the bonds in t which begin in d(s, u s,,)\B(s). We claim that 
the union of s and t’ protects {L/2} x [L/2, L] (see Fig. 1). That is, if u is a right-left 
crossing of (L/2,3L/2) x (0, L) which ends in {L/2} x [k/2, k) then s, t’, and u can 
be combined to give a right-left crossing of (0,3E/2) x (0, I!.). To prove this, we 
begin by observing that the. Jordan curve theorem implies that ti must intersect s 
or t. If u intersects s then following u until it first hits s and then continuing along 
s gives the desired path. If u intersects r, and if the first intersection (along U) is 
in a(s) then we are done, since u must have intersected s at an earlier (s) time. 
If, on the other hand, the first intersection is in .B(s)~, we follow t’ from this point 
until the next time it hits s and continue with s to cross the rectangle. 

l/2 L 

Fig. 1. 

3L/2 

own that U, t’, and s can be combined to give the desired path the rest 
is the same as in Russo (1981). Let G be the union of ES n Ft over all 
hiah the !ast point of So has y-coordinates L/2. Let H be the event 

that there is an open kg t-left crossing of (k/2,3e/2) x (0, ?_,) which ends at a point 
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with y-coordinate 2 L/2. Since the occurrence of G and H guarantees the desired 
crossing, it suffices to show 

P(G~N)z=(~-(~--R~,~)“*)~. 

The lFlrst step in doing this is to observe that Harris’ inequality implies P( G n W) 2 
P( G)P(H). Using the square root trick with = {there is a right-left crossing of 
(L./2,3L/2) x (0, L)} and A, = 

P(Hj+V--(l-R,,)“‘“]. 

To estimate P(G) we write 

P(G)=CP(E,nF:j 

=; R(RM(E), 
s 

and use the square root trick with A, = Fi and A = {there is a path from (L/2,3L/2) x 
{t} down to s, u s,, in &( s, u s,,) in the “new” system) to conclude 

Pal-(l-P(A))“* 

2 1 -(l -RJ’2. 

Here we are using the fact that E, depends only on the old variables in B(s), and 
hence is independent of F.:, which depends only on the new variables. 

With the last inequality in hand the proof is complete because it implies 

P(G)a(l-(l-R,,)“*)C P(E,). 
.F 

Another use of the square root trick gives 

P(G)s(l-(l-R,,)“*)*, 

the last piece of the puzzle. This completes the proof of (2.2). 
With (2.2) in hand, the rest of the developments are almost exactly as in the 

ordinary case. The next step is to prove 

1 -RRL,+4(1 -R~L+~)~,z,L.~ for ka 1. (2.4) 

Proof. To prove this we draw a picture (Fig. 2) and observe that if all 4 paths exist 
then there is a crossing. The inequality above results from 

s ; P(At’). 
i=l 

Using (2.2j and (2.4), we obtain 

R ~L/z,L~ U-0 - R,..L)“‘)~, 

R 2L.L 2 l-4(1 - &L/2,,_), 

) 2L.L 9 

and so on. The point is that once RL,L is close to 1 all the RkL,L are. 
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(k-1)L;O (k+l)L/2 kL 

Fig. 2. 

The next two inequalities (due to Aizenman, Chayes, Chayes, Frohhch, and &rsso 
(1983)) will allow us to conclude that if R L,L is close enough to one for some L, 

then RL,L +l as L+oO. 

1 - &L,L s 70 - RzL,L), (2Sa) 

%L.~L 2 1 - (I- Ru?*. (2.Sb) 

Proof. For (2Sa) we draw another picture (Fig. 3), observe that if all seven paths 
exist then there is a crossing, and then argue as in the proof of (2.4). To prove 
(2Sb) we observe that the existence of open crossings in (0,4L) x (a, I,) and (0,4L) x 
(L, 2L) are independent-this is the reason for using open rectangles in the definition 

of RK.L- 
Lombining (2Sa) and (2.5b) gives 

% ~2~2 1-W - R2t.,d2. (2.6) 

If we iterate (2.6) assuming that R2L,L = 1 -h/49 for some h < 1 we get 

% L,2L 2 I- h”/49, 

R f.J&g#_ 2 1 - A4149 

and by induction 

R(2kL, 2k-‘L) 2 1-h exp(2k-’ log A). 

Combining this with (2Sa) we atso obtain 

R(2k+‘L, 2k-s L) 3 I --! exp(2k-’ log A). i? 7; 
\A.’ I 

0 L 21. 41 

Fig. 3. 
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From this result it follows that if R2L0,L0 is close enough to one then 
R(2k+‘L0, 2k-‘L0)+ 1 as k+oo, and RZL,L+ 1 as L+m. 

The development above motivates defining 

Lo(a) = inf{L: R,,,(a) a 0.99), 

which must be finite for a > a,. We will introduce a final critical value, ai. defined 

by 

a: = inf(a: P,(C, is inkite) > 0) 

where pi = 1;: CI can be reached from x by a path of open bonds}. The next result 
shows &at all three critical values are the same, and tE:* *q1e epidemic dies aut at 

the critical value. 

2. a,=a~=a~ and 

roof. First let a > as, let n = L,(a), and for j z 1 let 

Bzj_, = (22’-2n, 22j-‘n) X (0,2*%), 

B*j = (092 ?i+rn) x (2V-In, 2z.in), 

A,-, = {there are top-bottom and bottom-top crossings of Bv-l}, 

A, = {there are left-right and right-left crossings of Bzj} 

(see Fig. 4). By (2.7) and Harris’ inequality 

’ ( ) ke, Ak 
2 ki, R(2k+‘n, 2k-‘n)2> 0. (2.8) 

Since there is positive probability that all the bonds on the segment from (0,O) to 
(2n, 0) are open it follows that both P,(IC,I = 00) and ?a(lCil= 00) are strictly positive. 

The construction above shows a,$2 max(ar, a: j. To prove the other inequa!ity 
observe that if a <a, then RZL,L- -Z 48/49 for all L, or else (2.7) would imply 

R(2”+‘L, 2k-‘L) 3 1 md hence a > a,s. So it follows from (2.2) and (2.4) that there 

is an E*> 0 so that RL,,(a) s 1 - tzo for all L and a < a,V. By continuity, the last 
conclusion implies RL,L( a,5) c 1 - co. With the probabilities of sponge crossings 

bounded away from 1, we can now use the original argument of Marris (1960) to 
show there is no percolation. Introduce the dual percolation process with sites 
Y2 = (i,$ +Z’, and call the bond (u, V) between neighboring points in Y* open 
(closed) if the bond on the original lattice obtain by rotating it 90” counterchzkwise 
around its midpoint is closed (respectively op 

This duality is the natural generalization to oriented percolation of the duality 

used in the ordinary case (see Cha 
same properties. In particular, we have: 

(2.9) of( ottom crossing 

of (:, L-4) x (f, L -$) on the dual, but not both. 
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0 n 2n 4n 8n 16n 32n 

Fig. 4. 

The proof of (2.9) is almost the same as in the ordinary case. A detailed proof 
is given in Section 2 of Durrett and Schonmann (1987). For the convenience of the 
reader we will sketch the argument here. First, if there is a top-bottom crossing on 
the dual then there is a self-avoiding one (i.e. each site appears at most once in the 
path). If we call the path U, an application of the Jordan curve theorem shows that 
u divides the interior of the square into 2 parts-one we call TE which lies to the 
right of g, and one we call T2 which lies to the left of u. If we move along u in the 
direction olr ihe orientation then T, is always on our left and Tz is always 8x1 GMT 
right. From this, we see that if there is 2 path of open bonds from right to left then 
any time it crosses from T, to Tz it does so along a bond which is a 90” clockwise 
rotation of a bond on u. But z:.ch bonds are closed, so no open path exists. 

To prove the other direction, we will suppose there is no right-left crossing and 
construct a top-botr,lil one. Let C be the set of points which can be reached from 

en bounds. Let D = {(a, 6) E R2: 1 lb1 s i}, and orient 
in a counterclockwise fashion. Finalliy let =uzcc (z+k)). If 

with z E C, an let oppositely directed 
elz the boundaries which remain are close paths on the dual. 
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One of them, I’ = the boundary of the component of (i, 6, -4) x (i, E -$\ IV which 
contains the left side of the box, is the path we want. For more details see Durrett 
and Schonmann (1987). The reader should note that a similar construction can be 
used to prove that there is a lowest right-left crossing. 

With (2.9) established, we can conclude that the probability of a top-bottom 
crossing of (f, L-i) x (i, L-4) is bounded away from 0 when cu = cy,. If we let I?,,, 
denote the last probability then applying (2.3) generalized to the model under 
consideration we have 

i&L 2 (1 - (1 - R&‘2)3. (2.10) 

To &e that this is legitimate, recall the note after the -tat-ment of (2.2). Although 
thedualbonds(x,y)~(x+!,y),-,(x+l,y+l),-,(x,y+l),-,(x,y)aredependent, 
bonds which go counterclockwise around different squares are independent. From 
the last observation we see that if there is a right-left crossing u then all the bonds 
above u are independent of it and the previous argument works. 

With (2.10) the rest is easy and follows Narris (1960). Using the construction 
used to prove (2.4) but making a different estimate shows 

(2.11) 

so we have 

and 

By combining crossings of 3L x L rectangles, we get a circuit in an annulus (see 
Fig. 5). Since R’ L,L is bounded away from 0, we have a ridiculously smah but, 

nonetheless, positive lower bound on the occurrence of a dual circuit in an annulus. 
By considering an infinite disjoint sequence of annuli we see there is no percolation 
out or in when a! = IY,~. This completes the proof of Theorem 2. 
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We will need one more estimate for the next section. Let r(k) be the event that 
there is an open circuit around the square [-k, k12 that is contained in the square 
[ -2k, 2k]’ and that there are infinite open paths starting and ending on [-k, k]‘. 
If n = k,(a) then there is a finite positive constant _y’ such that 

P(T(252)) 2 1 - y’ exp(2k log A). (2.12) 

The proof is now standard. The circuit in the annulus can be constructed by 
constructing four paths each at cost R(2k+2 n, 2&n) and paths to and from infinity 

can be constructed as in the proof of Theorem 2. The relevant probability estimates 
are (2.7) and (2.8). 

3. iaI limits 

In this section we will prove Theorem 3, the existence of radial limits. Since the 
result is trivial if Q’ G a:, we now assume in the following that a! > a:. With the 
percolation estimates of the last section established we can prove Theorem 3 using 
the approach of Section 2 of CD. There are two differences: (i) bonds (and paths) 
are oriented, and (ii) if 7(x, y) c 00 then 7(x, y) is bounded above by an exponential 
random variable with mean 4/cu. 

The first difference makes things a little harder, as we must take care in tying 
paths together. The second difference makes things L little easier since truncation 
is no longer required. In what follows, we will use the notation of Section 2 of CD 
as much as possible to bring out similarities in the proof, and to make it possible 
to use some results from that paper without reproving them. We start with some 
notation. 

For each z E Z2 let K(Z) be the smallest k 2 1 such that: (i) the;*e are infinite open 
paths to and from the square z + C-k, k]‘, and (ii) there is an open circuit around 
z + [ -k, Ej2 contained in z + [-2k, 2k]‘. For each k a 1 determine an arbitrary 
ordering of circuits around z + C-k, k]* contained in z = [-XT, 2k]‘. Now let Q(z) 
be the “minimal” open circuit around z, where “minimal” means if K(Z) = k then 
d(z) is the first open circuit in our ordering. 

Having defined A(z), let b(z) be the union of A(z) and all open b.mds inside 
A(z), and let f(x, y) be the minimum passage time from a site of d(x) to a site of 
d(y). Finally, let u(z) be the sum of the passage times of all the open bonds of 
d”(z). Observe that 

If t(x, y) < q then !‘(x,y)~ t(x,y)s f(x,y)+w(x)+u(y). (3.1) 

f Tb9~)=i(x,yP-~(y), then ~(x,z)~~(x,~)+~(Y,z). (3.2) 

g the development in Section 2 of C , here are SOme facts needed to 

+-4. (3.3) 
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This is an immediate consequence of (2.12). 

(z))“)CCQ for m=ll,2,... . (3.4) 

This is an immediate consequence of (3.3) and the crude estimate 

(z))=+2k(2k+l))~P(K(Z)> k). 

E(u(z)“)<~ for m=l,2,... . (3.5) 

This fact uses (3.4) ano the observation that if T(X, y) 
by an exponential random vat-r jre with mean 4f CY (i 
was used). 

E(t^(x,y)“)<a for m=l,2 ,... . (3.6) 

If z(),z1, . l . 9 zk is a path from z(-)= x to zk = y then there is a path from 
8(y) contained in UfzO b(zJ. (This tedious detail can be proved by following the 
proof of Lemma 4.2. To see that the orientation poses no problem notice that if 
X, y E A(z), then we can get from x to y, and the algorithm in Lemma 4.1 guarantees 
that the A’s intersect.) Consequently, !‘(x, y) s cf=0 U(Zi). Now apply (3.5) to obtain 

(3.6). 

Proof 

(39% 
proof 

of Theorem 3. For fixed 0 E Z* let trn,” = e( me, no), 0~ m c n < a~. ‘I’hen, by 

(3.9, and (3-h), 5m.n is subadditive in the sense of ingman, and as in the 
of Theorem 1 of CD, the limit 

y(e):= h.tl n-‘&n a.s. and in L, 

exists and is constant. To finish the proof, oh:- aI :: 3 3t 

I $0, no) t(0, nt?) 
I 

Since 
imply 

I n n I 

Eu*(n0) = Eu*(O) C 00 
that u(ne)/n + 0 a.s. 

by (3.5), Chebyshev and Borel-Cantelli arguments 

es 

In this section we will prove t shape theorem for the epidemic mod 
is to prove a shape result for = {z: s^(O, z) s t}, and use this to get 
for the epidemic model. We will follow Sections 3 and as closeiy as possible. 
Recall CY > a:. 

Let g(x) = E([(O, 3~)) for XE Z”, and extend the 

making it linear on triangles of the form (x, y), (x, 
d (x-t-1, y+i). of of 

to prove 
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Next we let $0, X) = t^(O, z) for x E z + (-i, ;I’, z E Z* and prove 

lim i(O, kx)l k = Q(X) a.s., x E Q*. 
k-oo , 

(4.2) 

The argument on p. 592 of CD applies but some modifications are needed; here are 
the details. Fix x E Q* and let n = min{ n 2 1: nx E k*}. Then a,,, = e( mNx, nN..j 
defines a subadditive process in the sense of Kingman, and so a.s. as n + 00, 

a,JnN+ &N-$/n = q(X). 

In view of (3.5) we also have 

$0, nNx)lnN + Q(X) a.s. 

To obtain the limit along the full sequence of integers note that if 0 ~j s n - 1, 

lf(O, (j+ nN)x) - f(0, nNx)l G u(nNx)+[(nNx, (j+ Nnjx). 

This follows from the subadditivity of 5(x, y). Consequently, for any E > 0, and 
OSjSiV,i, 

i P((i(O,(j+nN)x)-f(O,nNx)(>mjs i ~((u(0)+t(0,jx)j>nd<*9 
n=l n=l 

and (4.2) must hold. 
As in CD, we introduce new circuits c(z) which do not depend on being connected 

to infinity. Let c(z) be the “minimal” circuit as in the definition of A(z), except 
drop requirement (i). Let c’(z) be the union of c(z) and all open bonds inside c(z), 
clearly c’(z) c A (2). 

(4.3) If 20, 21, . . . ) z, is a path from z. = 0 to z, = z, then there is a path from 
a’(O) to d”(z) contained in UL, c’(zi). 

This fact is proved exactly as is Lemma 4.1 of CD. 

(4.4) For any positive q < 00, and x 

Cov(lc'(x jl, Ic'(y)l) s 21-9E(ic’;o>19+3~~~x-yll_4 

is fact is proved exactly as is Lemma 4.2 of CD. 
Let c = EIC’(O)I and a* =C XEz2 cov(lc’(~)l, lc(x)l) which must be finite by (4.4). 

Chebyshev’s inequality gives us: 

z,,, is any path from z. = 0 to z, = z, then 

f I~(zijJ>c(k+l)(m+lj 
i=O 

stimate is that it I plies, when combined with (4.3), that 
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This prepares us for the main probability estimate: 

(4.7) There is a K < 00 such that 

P( 6^(0,2) 1+ KIzI) = S(lzl-‘) as lzl+ 00, 

so that Cz P( r^(O, z) > KIzI) C 00. 
The proof of (4.7) pees ( nd the construction of 3 (almost) disjoint paths 

with independent travel times. ? proof of pp. 598-599 of C applies if we replace 
M there with 4/a. 

With the main estimate one easily derives , exactly as in CD, that A, contains (at 
least) a small ball with radius growing linearly in t. .ollore precisely, from the 
Borel-Cantelli lemma it follows that, with S = 1/2K, 

P(C,n {x: 1x1s at} c A, for all sufficiently large t) = I. (4.8) 

With (4.8) and the existence of limits for r^(O, nx) established the proof of the 
shape theorem can be completed using arguments which are now standard. By 
picking a finite set of x’s so that balls of radii &,/2 cover {x: q(x) 6 1 - E} we prove 
that t-IA, 2 (1 - E)D. To deal with the outside, reasoni which led to (4.8) also 

implies that if q(x) > 1 then there is a 8 > 0 so that K’A, n (x) = 0 for all sufficiently 
large t. See CD page 595 for more details. We have now established that for any 
fixed E>O 

P((~-E)QC~-‘~~,C(~+E)D for sufficiently large t)=l. (4.9) 

Proof of the &a e theorem. In addition to (4.9) we need 

If E>O then P(u(z)>E~z~ i.o.)=P(T,>E(zI i.o.)=O. (4.10) 

This is a consequence of j%(z)*< 00 and ET: coo. We now wish to prove that the 
infected region does not sit far inside D. Mart precisely, we will prove 

if E>O then P(&n(l-e)tD=O for all sufficiently large t)=l. 

By (4.9) we know that a.s. for all large t, if x E (1 - &)fD then 

Add u(O)+ u(z)+ T, to both sides, of this inequality and use (3.1) to obtain 

With d =supXcD( I, h f x we ave rom ( .lO) that a.s., for all large I, 

u(O)+u(r)-i- Tz”-r $(z/c;(l--E)I 
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(since z E (1 - &)tD). Combining this with the previous inequality gives us 

t(O,z)+p= 1-i f, t > 
and so z belongs to c,, not 5,. This proves (4.11) and 

P(t(1 - E)D n Cot & for all sufficiently large t) = 1. 

0n the other hand, if z E 6, or z E &, then t(0, z) s t so certainly i(O, z) s t, and 
by (4.9) z E (1 + E)@. That is, 

P( 6, c (1 + E) tD for all sufficiently large t) = 1 
and 

P(& c (1 + E) tD for all sufficiently large t) = 1. 
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