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Abstract. We describe a family of random walks in random environments which 
have exponentially decaying correlations, nearest neighbor transition probabili- 
ties which are bounded away from 0, and yet are subdiffusive in any dimension 
d < o e .  

1. Introduction 

Random walks in random environments have been the subject of much attention 
in recent years in connection with l / f  noise [ 11 and as disordered systems of interest 
in their own right. They have been studied by various nonrigorous methods: Monte 
Carlo studies [21 series expansions [3, 4], and the renormalization group [5-7];  
some special models have been analyzed rigorously [8, 9]. Here we have cited only 
papers about the model in dimensions d > 1; the literature concerning the one 
dimensional problem is too large to catalogue. 

At this point a consensus has developed [2, 3, 5--7] that for a model with short 
range correlations, two is the upper critical dimension for the problem: for d > 2 
the mean square displacement will be asymptotically linear in time (i.e., normal 
diffusive behavior), while for d < 2 the behavior is subdiffusive. The point of this 
paper is to describe an example which casts some doubt on the universality of the 
last conclusion. Specifically, we describe a family of models with spatially 
homogeneous random environments which have exponentially decaying correla- 
tions and nearest neighbor transition probabilities bounded away from 0 so that 
a random walk in any of these random environments is subdiffusive in any 
dimension d < ~ .  

The models we will consider are a special case of what we have called [9] 
random walk on a random hillside. In these systems one starts with a random 
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function V: Nd ~ N (the hillside or potential), defines 

a(x, y) = exp [ -  flV((x + y)/2)] (1) 

for x, y e Z  d with I x - Y t  = 1, and for convenience sets e(x,y)= 0 otherwise. The 
a(x, y) are nonnegative, so if we let 

= y) 
Y 

and 

then 

p(x,y)=e(x,y)/e(x), 

p(x,y)>O and ~ p ( x , y ) =  l, 
Y 

i.e., p is a transition probability. From p we construct our random walk in random 
environment X(n) in the usual way: if X(n) = x (in words, the particle is at x at 
time n), then the probability it will jump to y at time n + 1 is p(x, y) independent 
of what happened before time n. To prepare for later developments the reader 
should note that the definition of p is unchanged if we replace c~ by 

~(x, y) = exp [ -  fl{ V((x + y)/2) - V(x) } ], 

since the extra factor will cancel when we normalize. The value of p(x, y) therefore 
only depends on the value of the increments V((x + "))-V(x). In our model V has 
slope =< 1 so for neighboring points, p(x, y) > e-P/2/2de ~/2. 

In an earlier paper [9] the second author, following a suggestion of Marinari 
et al. [1] studied the special case of this model in which "V belongs to an ensemble 
which is invariant (at least for its long distance behavior) under the transformation 
V ~ V*, where 

- v * ( o )  = 2 ( V ( x )  - v ( 0 ) ) . "  

He found, as they predicted, that in such a random environment the position of 
the random walk at time t is asymptotically (log t) 1/°. (See [9] for a precise statement 
and proof.) This result is not, however, inconsistent with the "consensus" referred 
to above, because, as several people have pointed out to us [10], the correlations 
in the above model decay like a small power of 1/Ixl. The last objection does not 
apply to our new example because its correlations in p(x, y) decay exponentially fast. 

To construct the random hillside V which defines the model, we let k(z), z s Z  d, 
be independent random variables with 

P[k(z) = O] = 1 - 6, 

P[k(z) = k] = he(1 - e) k- 1, k = 1, 2 . . . .  , (2) 

where e is a small number which will be chosen later and 0 < 6 < 1 is arbitrary. 
We think of V as being the surface of a (random) moon, with k(z) giving the 

radius of the crater centered at z. If we let Ixf = IxtI+ "" + fXdI, then the function 

CPk(X ) = min {I x [ -- k, 0} (3) 
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describes what we mean by a (square) crater of radius k centered at 0, and we 
define the surface of our moon by 

V(x) -- min ~ok(~)(x - z), (4) 
Z 

where the minimum is taken over z in Z a. 
From the above definition it is clear that the increments in V have exponentially 

decaying correlations. We have already observed that { p ( x , y ) : l x - y [ = l }  is 
bounded away from zero. The next result shows the third property claimed in the 
introduction: random walks in these random environments are subdiffusive. 

Theorem 1. Suppose that e < 1/2, 0 < 6 < 1, and N > O. I f  fl > 2(N + d + 1), then 

P[max lX(m) l>nlm]-*O as n ~ o o .  
m ~ n  

If one takes, for example, e = 1/2, d = 3 and N = 4, the last theorem implies that 
when/~ > 16 the RWRE is subdiffusive for all values of 6 > 0. The reason for the 
bound n lm is in spirit as follows: The largest hole that the particle falls into before 
leaving the ball of radius r will be of order c log r, where c = - 2 log r/log (1 - e) 
for d > 2. The time it takes to climb out of this hole will be for order e¢al°gr=rca; 
the time it takes to leave the ball will be at least as large. Inverting, one obtains 
the above bound, but under the somewhat stronger assumption 13 > 2(N + d + 1). 

The reader (especially one familiar with an earlier version of this paper) may 
at this point expect a diatribe about the failure of nonrigorous methods. We do 
think that this example should make the reader think twice before asserting that 
renormalization drives all models to the weak disorder fixed point. However, the 
simple fact is that it does not contradict any claims in the physics literature. As a 
referee has pointed out, the models in the references have random forces rather 
than the random potentials we consider here. (See ref. 7 for more on this point.) 
We think that if the random variables p(x, .) are i.i.d., then it is probably correct 
that the corresponding RWRE is diffusive in d > 2. Hence the last character of the 
title. 

Returning to the mathematical aspects of the result above, we note that a result 
of DeMasi, Ferrari, Goldstein, and Wick [11, 12] implies 

Theorem 2. I f  
E[exp (-/~V(0))] < oo, 

then the random walk in the random environment is diffusive. 
Combining this result with Theorem 1 shows that for any e _-< 1/2 and 6 > 0 

there is phase transition from diffusive to subdiffusive behavior as 1~ increases. A 
conjecture which implies the existence of a critical value and gives its location is 
that in the models considered here, E[exp (-]?V(0))] = oo implies that the RWRE 
is subdiffusive. 

2. Demonstration of Theorem 1 

We continue to use the notation employed in Sect. 1. We define ~0 k, V, c~, p and 
X as before. Denote by ~ the a-algebra generated by V. Note that conditioned 
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on V, X(n) is a reversible Markov chain with (infinite) equilibrium measure c~(x). 
Except when specified otherwise, X(0) = 0 is assumed. As usual, g2 will denote the 
probability space and co its elements. 

Set B(r) = {X~y_d: tXl < r}. As r increases, B(r) will with high probability contain 
deeper and more numerous craters. A particle executing the motion X(n) should 
on occasion fall into such deep craters. Owing to (1), it should take a long time 
before returning to the surface (where V = 0), or for that matter, to any fixed level 
9(5, d). Craters deeper than 9(5, d), for appropriate g(a, d), compose a comparatively 
small portion of 7/d, and so the particle should typically not be able to move far 
until it returns to this level. The last three statements can in fact be justified and 
will form the basis for our proof of Theorem 1. 

To be more explicit, introduce a i and bi with 

al = [logi], bl = a3 +--- + a~, (5) 

for i > 3, with [w] denoting the integer part of wzZ. From b~, define the sets 

Bi = {xeZd: Ix[ < bi} (6) 

and A/=  B~-  B~_ 1. Since we are unable to say much about the motion of X(n), 
crude arguments regarding the placement of deep craters are required. In 
Proposition 1, we give a lower bound on the probability that before leaving B i, 
X(n) falls at least to depth ai in a prescribed manner. Although this probability is 
small, it is not too much smaller than Pa,, and the event will occur with probability 
close to one for some B i satisfying B(r/4) ~ B~ < B(r/2), if r is large. In Proposition 
2, a lower bound is given for the time it takes for a particle to climb up to level 
9 from a prescribed depth h. The time will typically be exponential in/~(h + g). For  
h = a~ and given N, reference to (5) shows that this will be of greater magnitude 
than r N for/~ chosen large enough. The last step is provided by Proposition 3. 
There it is shown that, except for a very small probability, no sites in B(r/2) are 
connected to Be(r) except through paths which reach level g; if 6 is small enough, 
one can set g = 0. Combining Propositions 1-3, we therefore see that with a 
probability close to one, a particle will fall at least to depth a~, and then take at 
least r N units of time before exiting B(r), if r is large. Inverting, we obtain Theorem 1. 

We will find it useful to define 

A(x) = {z:  - z )  = V ( x ) }  

if V(x) < 0. We will then say that "x is influenced by A(x)". Note that for l Y - x I = 1, 
V(y) = V(x) - 1 iff ]y - zl = Ix - zl - 1 for some zeA(x).  In this case, A(y) c A(x). 

Lemma 1. Fix V,h, xo, and y, and suppose that x o is influenced by A with 
dist (A, Xo) >= h. For//=> 2 log 6d and X(O) = xo, 

P[V(X(j))  = V(X(O)) - j ,  j = 1,... ,h-t > (3/4) h. (7) 

Proof. Let ~, ,  denote the set of paths (Xo . . . . .  x,,) (i.e., Ix j - x  j - l ]  = 1) with 
V(xj) = V ( x o ) - j  f o r j  = 1 . . . . .  rn. For given (xo , . . . ,xm-1)e~m-l ,  m =< h, let 

B = {xm: (x o . . . .  ,Xm)~m}.  



Random Walk in Random Environment: A Counterexample? 203 

Since x o is influenced by A and dist (A, Xo) > h, B is not empty. Note that  

V(x,,) > V(xm_ ~) if x,,~B. 

Therefore if fl > 2 tog 6d, 

p(xm- 1, x,,) ~ ]B]eP/2/(2d + [B ]e p/2) > 3/4. 
Xm~B 

Inequality (7) follows by induction. 
We will find it convenient to introduce two variants of V(x). Let 

V~(x) = min cpk(~)(x -- z), 
Z~Bi 

Vt(x) = Vi(x) A (dist (0B t, x) - ai). (8) 

Equations (8) will be used in Proposit ion 1 in the context of a i (defined below). 
Also, for Proposit ion 1 and later results, let 

T A = m i n { n : X ( n ) E A  }, A ~ Z  d, 

T~ = min {n # O: X(n) = x}, x~Y- a, 

T ~ ' = m i n { n >  m 2, (9) 
rt = min {n: IX(n)[ -- bt}, 

and 

ai = Ti/x min {miX(n)[ > bl-1, Vt(X(n)) ~ Vt(X(n))}, 

zi = min {n: V(X(n)) ~ - ai}. (10) 

(Ifa set is empty, assign the value ~ . )  Note that under fixed V, these are all stopping 
times. Lastly, define 

G~ = {~o: z, __< T,} (11) 

and 

(#t = 6(G1 . . . . .  Gt), "%'t = a(V, {X(n): n <= ai} ). (12) 

The idea behind the proof of Proposit ion 1 is that  at  least with the probability 
given in (13), there is some z with Iz[ = bt and k(z) = ai, and which satisfies (14). If 
V(X(a3)  > - a t ,  then X(at) is influenced by z or some other point not  in Bt, and 
one can apply Lemma 1. 

Proposition 1. For Gi, ~i-i as defined in (11)-(12) and fl ~ 21og6d, 

P[Gt]CSi- 1] > 6e(3(1 - 0/4)% (13) 

Proof  Choose Zi so that  [Zil = b~ and 

[Zi - X(o-3] = b, - [ X(at)[. (14) 

Since V(X(n)) can decrease by at most  1 in each unit  of time, on 

= k(Z,) = at),  
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T~ > a i + a t - V(X(ai)). (15) 

F i = Kic~ {V(X(a~ + j ) ) =  V ( X ( a i ) ) - j ,  j = 1 . . . . .  a i -  V(X(a~))}, 

F i c G,. (16) 

Fi(xo) = Ki(xo)C~ {co: V(X'( j ) )= V ( x o ) - j ,  j = 1 . . . . .  a l -  V(xo)}, 

where X'(j) is a copy of X(j) with X'(0) = Xo and Ki(xo) is a copy o fK i corresponding 
to X' with Xo substituted for X(al) in (14). (At Xo = X(ai), Ki(xo) = Ki.) Conditioned 
on ~ ,  X(n) is strong Markov, and so 

P[Fi I~J = P[Fi(X(ai))l "I/'] (17) 

(= ~2xo P[Fi(xo)lC/']P[X(ai)= x0]). Since ~i-1 c ~Ui, (16) and (17) imply that 

PIG, left,- 1] >= E[ P[Fi(X(ai) )] y/'] [adi- a]. (18) 

Owing to the definition of a,, X(a,) is, on K~, influenced by some A with 
A ~ Bi = ~b or V(X(ai)) < - ai. Since 

dist (A, X(a,)) > [Zi - X(ch) t, 

one can in the first case apply Lemma 1 with h = ]Z~ - X(a~)l, where 0 < h < a,. It 
follows that on K~, 

at--1 

PEF,(X(a~))IV] > ~ (3/4)"PEtZ~ - X(o',)l = hi ~ ]  > (3/4) a'. (19) 
h = 0  

(Off K~, the left-hand side of (t9) of course equals zero.) One can check that N,_ 1 
and Ki are independent. One therefore obtains from (18) and (19) that 

PEG, I Ni- 1] ->- (3/4)"' PEKJ = 6e[3(1 - e)/41% // 

The proof of Proposition 2 makes use of the following lemma, which was 
suggested to us by J. Baxter. (One may also use the Dirichlet Principle.) Here, 
Y(n) is a positive recurrent Markov chain with transition probabilities q(x,y), 
x, y e Z  d, and equilibrium probability measure re(x). We introduce 

fxy = Px[T~ > Ty] = P l Y  visits y before returning to xl Y(0) = x]. 

Lemma 2. Assume Y(n) is positive recurrent with a single recurrence class. Then for 
all x, y, 

7r(x)fx, = ~(Y)L~" (20) 

Proof Equation (20) is well known (cf. Chung [13], page 50, Theorem 5). Perhaps 
the most intuitive proof runs as follows. Fix x, y, and set 

u(z) = P [ Y  visits y before x] Y(0) = z] 
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for arbitrary state z. Then u(x) = 0, u(y) = 1, and u is harmonic off {x, y}, i.e., 

u(z) = ~ q(z, w)u(w) for z ¢ x, y. 
w 

Also, 

(21) 

and 

p(x,y) = Y.(x,y)/~(x) for x,y~lq. 

The Markov chain thus defined is positive recurrent and reversible with equilibrium 
measure 8(x). It is easy to see that on {n: n <= Toil}, X may be obtained from X by 
collapsing the sites in OH(w) to d.  Consequently, 

1 = P~,[T~ > Pw[Tw > Ton] ~~ 7"a], (24) 

u(x) = ~ q(x, w)u(w) --f~r, u(y) = Z q(Y, w)u(w) +fy~. (22) 
w w 

Summing over (21) and (22) with weights re(z), one obtains 

~(z)u(z) = ~ ~(z)[ ~ q(z, w)u(w) ] - ~(x)fxy + ~(Y)f,x 
z z L w A 

= ~ (w)u(w)  - ~(x)f~, + ~(y)f,~. 
"go 

The assertion follows immediately. // 
Below, we let H°(x) denote "the hole below 9" containing x, that is, the set of 

sites y connected to x by some path (Xo,... ,Xr~) with x o -- x, xm = y and V(xj) < g 
for 0 < j  <__ m. Also, let 

OH°(x) = {y~Hg(x): 3zsH°(x) with [Y-  z[ = 1}. 

(For such z, V(z) = g - 1.) 9 = 9(e, d) < 0 and will be chosen later. When convenient, 
we write H, OH. 

The proof of Proposition 2 consists of fixing V, and applying Lemma 2 to the 
Markov chain induced by restricting Z a to H u OH. 

Proposition 2. Fix V. For w~Z d with V(w) < - h < 9, 

Pw[Tono(w ) <= n] < n IOH°(w)[e ~(1 h-a) (23) 

Proof Construct the Markov chain J~(n) with state space/~°(w) = H°(w) ~ {A } and 
transition probabilities/5(x, y) as follows. Set 

~(x ,y )=e(x ,y )  for x, ysH,  

~(x ,A)=~(A,x)= ~ .(x,y) for x~H, 
y ~ O H  

~(A, ~)= y~ ~(x,y), 
x , y ~ H  

8(x) = ~ 5 ( x , y )  for xE/~, 
y~/-4 
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where T and 7" are the stopping times corresponding to X and .17. 
We now apply Lemma 2 with Y = )~. The stat ionary distribution ~ is a constant  

multiple of ~ and so 

$(x)/~(y) = ~(x)/Tc(y) for x, ye/~.  

It follows from (20) that  

P , [7"~ > Ta] -- Pa[~'~a > ~F,]~(A)/~(w) <= ~(A )/~(w). (25) 

One can check from the definition of ~(x) that  

~(w) >= 2de-t~/2"e ~h, ~(A ) < 2det~/2"e-PO'lOHI, 

and so the left-hand side of (25) is at mos t  

[aHte~(1 -h-o). (26) 

Together  with (24), this shows that  

Pw[T~ > Tan] < lOHle p(1-h-°) 

Iterating, one obtains 

Since T~ ~ 2n, 

Pw[Tw > Ton] < nlOHle tJ(1 -h-g) 

Pw[T~n < 2n] _-< nlOnl ca(1 -h-a) // 

The next two lemmas will be used in proving Proposi t ion 3. 

Lemma 3. For 7 > 0, 

P[max(k(z) - p) > r~: zeB(r + p), p e Z  +] < C~ exp { -r~/Z}, (27) 

where C1 depends on 7, ~, and d. 

Proof The left-hand side of (27) is at most  

(2(r + p))a6e(1 - e) R+° ~ (40%(1 - e) R ~ (1 - e) o + 4de(1 -e )  R ~, pa( l -e)  o, 
p=O p=O p=O 

with R = [r~]. The  first term on the right-hand side equals 

( 4 r ) d ( 1  _ 

The second term is at most  

4as(1 - e) R ~ p(p + 1)...(p + d - 1)(1 - 0 °-1 = d!(4/e)a(1 - e)R. 
p = l  

Their  sum is at most  

C 1 exp { - r ~/z} 

for appropriate  C 1 (which depends on 7, e, and d). // 
In order  to obtain bounds on the size of the hole H°(x), we let Ho(x ) = {x}, 
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and inductively define Hi(x ) as the set of y~Z a such that for some w~H i_ 1(x) and 
ZEZ a, 

~Ok(~)(y - -  Z) < O a n d  ~Ok(~)(W --  Z) < 0. 

Since y is connected to w through a path which never reaches the level g, Hj(x) 
consists of those sites in H°(x) which are at most '7 craters removed" from x. Also, 
set 

h~(x) = Hi(x ) - H i_ l(x) 
and 

J(x) = max {j: hi(x ) ¢ ~b}. (28) 

L e m m a  4. Suppose that 

Then for x e Z  a, 

g(e, d) < -llog ((e/2) 2a+ 1/5(2d)!). (29) 

P[J(x) >=j] <= 1/2L (30) 

Proof Two points y and x which are connected to each other by a crater centered 
at z must each be within distance k(z) + g - 1 of z. For  specified x, the possible 
number of craters of depth k centered at such z and the number of such y located 
in each such crater are each at most (2(k + g ) - 1 )  d. One therefore has the bound 

E[lhl(x)l] <= ~ ( 2 / -  1)2aSe(1 -- e) t - ° -  1 
/=1 

< 22abe(1 - e) -g ~ 1(I + 1)...(I + 2d - 1)(1 - e) ~- 1, 
/=1 

which equals (2d)! 5(2/e)2a(1 - e)-g. So, 

E[lhl(x)l] < 1/2 (31) 

for #(e, d) satisfying (29). Now, 

E[lhj{x)llhi-l(x)]_-< ~ E[lhx(z)]]. 
zehj. 1(~) 

By (31), this is at most 

½1hi- l(x)l. 

Consequently, 

P[J(x) >=j] <= E[lhj(x)[] <= ½ E[thj_ ~(x)l] ~ 1/2 j 

for all j. 
For  Proposition 3, we introduce # 

E, = {co: BC(r)c~H°(x)= ~b for all x~B(r/2)}. (32) 

That  is, E, is the event that no hole (below g) which is partially contained inside 
B(r/2) extends outside B(r). From now on, we assume that O is chosen so that (29) 
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holds. If 6 is chosen small enough relative to e and d, one can in fact set 9 = 0. 
The inequality (33) below follows from Lemmas 3 and 4, which place bounds on 
the size of individual craters and on the number of consecutive craters in a particular 
hole. 

Proposition 3. For E r as defined above, 

P[E~] < C2 exp { -rl/4}, (33) 

where C2 depends on e and d. 

Proof Denote by Lr(x) the event that the hole (below 9) containing x has radius 
at least r/2, that is, 

L~(x) = {co: Ix - y] > r/2 for some y~H°(x)}, 

and set 

Clearly, 

One has 

where 

By Lemma 3, 

Lr= U Lr(x). 
xEB(r/2) 

E, ~ c Lr. (34) 

P[Lr] <= P[L, n M,] + PIMP], 

M, = {co: max (k(z)- p) <= x/r, z~B(r + p), p ~Y + }. 

(35) 

Formulas (34)-(38) show that 

P[E~] < ra/2 "#/` + C 1 exp { - r  1/4} < C2 exp { - - r  1/4} 

for appropriate C 2 (which depends on e and d). // 
We now prove Theorem 1 by using Propositions 1-3 as sketched at the 

beginning of the section. 

ra/2 ~/~/4. (38) 

p [ M C r ]  <__ C 1 exp { --rl/4}. (36) 

To bound the first term on the right-hand side of (35), note that for x~B(r/2), 

L,(x) A Mr = {co: J(x) > x/~-/4}, 

where J is defined in (28). Therefore, 

P[LrC~M,]< ~ P[Lr(x)nMr]<= ~, P[J(x)>_>_x/~/4 ]. (37) 
x~B(r / 2 ) x~ B(r / 2 ) 

By Lemma 4, this is at most 
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Theorem 1. Suppose that e < 1/2, 0 < 6 < 1, and N > O. I f  fl > 2(N + d + 1), then 

P[maxlX(m)It_,~s,, >=nl/Nl"*O as n ~ o o .  (39) 

Proof Fix r and set 

1 = rain {i: bi ~ r/4}, 

L = max {i: b i < r/2}. 

It is easy to check that  for i __< L, 

ai < log r, (40) 

and consequently 

r r 
l > - -  L - l >  - 1 .  (41) 

- 4 log r '  = 41ogr 

Now, repeated application of Proposit ion 1 shows that 

P G~ __< [1 - 6e(3(1 - e)/4)"'] _<_ exp - - e)/4)"' . (42) 
i = l  

Plug in (40) and (41), and note that  l o g ( 3 ( 1 -  e)/4)> - 1  for e =< 1/2. This shows 
that  (42) is at most  

[ ( 4 o g  1)rl°gt3(~-~)/4Jl<exp{--&r"} (43) exp --fie 1 r = 

for large enough r and appropriate t />  0. Let 

G =  Gi c~E,. 

Application of Proposit ion 3 allows one to replace (42)-(43) by 

1 PIG c] = P G~ w E~ <= exp { - 6er"} (44) 

for large enough r (depending on e and d) and a new choice of q. 
We restrict our attention to X(n) on G. On this set, 

z i < T  i for some l < i < L .  (45) 

Denote by I the first such i, and set Y1 = X(zl). F rom the definition of -c and a, 

V(Y,) < -- a x < - [tog l]. (46) 

Also, 

H~(Yx) c B(r), (47) 

and so 

I OHo(Y,)I N (2r) a. (48) 
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We will denote by #v the subprobability measure on B(r) induced by I7i (restricted 
to G) for fixed V and by X'(m) a copy of X(m) with initial distribution given by #v- 

One can apply Proposition 2 together with (46) and (48) to obtain 

P,v[Toi~x,(o)~ < n[ V] < n(2r) d exp {fl(1 - [ log l] - g)}. 

(Here  the superscr ip t  g is suppressed.)  The  r i g h t - h a n d  side does  n o t  d e p e n d  o n  V. 
Set t ing  n = r n, N fixed, a n d  p lugg ing  in  (41), one  gets 

P~[ToH(x,~o~) < rnl V] <= (2r) N+a-p/2 _-< 1/r 

for large e n o u g h  r if fi > 2(N + d + 1). Let  T'~n(rx) d e n o t e  the  first t ime  grea te r  
t h a n  % at  which  X hits  c~H(Yt). By (45) a n d  (47), 

u n d e r  X(0) = 0. Also,  for  fixed V, X is s t rong  M a r k o v .  Therefore ,  

P[ { To~,) <= r N} c~ G ] ~  e[  { T'on(y,l < r N} c~ G] 5 1/r. (49) 

Inequa l i t i e s  (44) a n d  (49) toge ther  show tha t  

P[ToB(r) <=rn]<__r-1 +exp{--ber"}--*O as r ~ o e .  

Inverting, one obtains 
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