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Scaling Inequalities for Oriented Percolation 
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We look at seven critical exponents associated with two-dimensional oriented 
percolation. Scaling theory implies that these quantities satisfy four equalities. 
We prove five related inequalitites. 
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1. I N T R O D U C T I O N  

We begin by describing the model. Al though it can be defined for any 
dimension, we will restrict ourselves to the two-dimensional  case. Let 50 = 
{ ( m , n ) e g 2 ;  m + n  is even, n~>O}. F r o m  each z e 5 0  there is an oriented 
arc to z + (1, l)  and to z + ( - 1 ,  1). Each arc, also called a bond, is inde- 
pendently open with probabil i ty p and closed with probabil i ty 1 -  p. We 
think of an open bond  as allowing us to a long it in the direction of orienta- 
tion. With this in mind we define the following: 

x --+ y (y  can be reached from x) if there is an open path from x to y, 
that  is, there is a sequence x = Xo, X l  ..... Xm = y of points in 5 ~ such that for 
e a c h k ~ m t h e a r c f r o m x  k 1 to x~ is open. 

Co = (the cluster containing the origin (0, 0)) = {x: 0 --, x} 

s = {IC01 = ao } = "percolat ion occurs" 

Here JAp denotes the cardinality of A. 
The event f2~ has zero probabil i ty when p is small and positive 

probabil i ty when p is close to 1. As the value of p increases, the system 
undergoes a "phase transit ion" at p c = i n f { p :  Pp(Q~c)>O}. ~2) Here, we 
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study the critical exponents associated with the phase transition. To define 
these quantities, we start with/~, the exponent associated with the percola- 
tion probability. Intuitively fi measures the rate at which Pp( f 'd~)  decreases 
to zero as p approaches Pc. We expect that 

where ~ means 

lim Pp(f2~) 1 
p.[p~, C ( p  - -  pc) ~ - 

But following common practice, we use the weaker definition 

P ~ ( ~ )  ~ ( p  - p,.)~ 

where ~ means 

lira log Pp(Ooc)  _ 1 
p~pc~log(p- pc) 

The second critical exponent 7 cornerns the means cluster size Ep [Co[: 

EphCot~(pc-p) "/ as pTpc 

To extend the definition to the supercritical case, we restrict to the event 
that the cluster is finite and then define 7' by 

Ep{lCol, ICol<Oo}~(p-pc) ~' as P,LPc 

The definitions above are analogous to the ones in the theory of 
ordinary (unorieted) percolation. The next quantity has no analogue in 
that theory. Let 

( n = { x :  there is a y~<Oso tha t  (y,O)~(x,n)} 

In words, ~, is the state at time n starting from Co = {0, - 2 ,  -4,.. .}. Let 

rn = sup (n 

It is known (see ref. 2, pp. 1005-1006) that 

rn 
- -  ~ e(p)  almost surely as n ~ oo 
n 

and that 

pc =inf{p:  ~(p) >0}  
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We define the critical exponent ~ associated with the "'edge speed" ~(p) by 

c~(p)~(p-p~)  ~ as P{Pc 

The quantities we have defined so far concern the behavior of the 
system as p approaches the critical probabili ty p~.. The next two concern 
the behavior at the critical value p~. Let 

~o= {x: (0, O ) ~  (x, n)} 

We define the critical exponent for the survival probability by 

where the subscript cr indicates we are considering p = p~. The r here is for 
radius (of the cluster) and is included to make our definition match the one 
for ordinary percolation. (9] 

The second quantity at criticality is related to the mean cluster size as 
a function of the time n: 

Ecrl~~ ", o~<~<1 

While the definition of 6 r is analogous to the one for ordinary percolation, 
the definition of q is different from its counterpart:  

Pcr(O---*x)~ Ix[ z - d - " '  as Ix] ~ 

where Ix[ =max( fx l ] ,  [x2i) if X~-(XI,X2). TO relate the two definitions, 
observe that 

Pcr(O--* X)'~n t-~' 
x :  i x ]  = n 

Hence our q is like 1 -  r/'. 
Last but not least we come to the correlation lengths. We use the 

definitions introduced and explained in the companion paper. (5~ If we let 
zA =inf{n: ~2 = ~ }  and write zo when A = {0}, then the parallel correla- 
tion length Ljl(p ) can be defined in the subcritical case by 

[Lrl(p)] -~= lim [- (1 /n) logPp(r~ 
n ~ o o  

The associated critical exponent v u is defined by 

Lli(P) ~ (p~ _ p ) -  ~'ll 
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Let r,~ denote the rightmost site in ?o~,, i.e., 

0 = s u p  ~o 
r n  g n ( = - -  o O  

and let 

i f  ~o = ~ )  

0 R ~ = sup r .  
n 

The perpendicular correlation length L• for the subcritical case is 
defined by 

[ L •  1 = lira [ ( - 1 / n ) l o g  Pp(R ~ 
n ~ o  

and v• by 

L a ( p ) ~ ( p c _ p )  v• 

For the supercritical case there are also two correlation lengths. First, 
the parallel one. Lit(p) is defined by 

[LLI(p)] - l =  lim [(-1/n)iogPp(n<r~ oo)] 
n ~  cx_, 

t and v qi by 

LII(P) ~ ( P -  Pc) ,','l 

(The prime on vii is to indicate that we are now looking at the limit as 

PSPc.) 
Extrapolating from the first three definitions, the reader might expect 

the last one to be 

[ L •  = lim [(-1/n) logPp(R~ r ~  oo)] 
n ~ t 2  

For the results we will prove below it is convenient to use 

[L~_(p)] -1 = lim [ ( - l / n )  log Pp(z ~ --2n, o) < ~ )] 
n ~ 9 o  

instead. This is supported by (1.9) in ref. 5, which, together with Lemma 3 
in ref. 4, gives us La(p)~< L~(p)~2La(p).  The associated critical expo- 
nent v~ is defined by 
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Having introduced the critical exponents, we turn now to the results. 
Scaling theory predicts that 

=vll + v ~ - 2 f l  (1.1) 

a =  v li - v' z (1.2) 

fl ~- Yil/(~r (1.3) 

7 = (r/ + 1)Vii (1 .4 )  

The first three equalities can be found in ref. 7, while the last one is in ref. I. 
Those papers use the notation of Reggeon field theory, so to get the results 
above one has to change variables: 

r r = 1/6, vii = v, v• = (z /2)v ,  cr = v 

The main purpose of this work is to prove some inequalities related to 
(1.1)-(l.4). In Section 2 we show that 

EplCol ~ 10Lll(p) L •  

or in terms of critical exponents, 

when L l l ( p ) , L •  (1.5) 

7 <<. vlf + v z (1.6) 

Comparing this with (1.1) shows that - 2 f l  is missing from the right-hand 
side. 

In Section 3 we show that 

which implies 

L ~ (p )  <~ a ( p )  L l l (p  ) (1.7) 

c~< v l l - v k  (1.8) 

If Section 4 we will introduce yet another definition of the parallel 
correlation length in the supercritical case: L ~ j ( p ) =  the smallest length for 
which the renormalized bond construction of ref. 3 works. This definition is 
analogous to the definition in terms of sponge crossings for ordinary per- 
colation. (9~ We would like to show that this definition is (up to constants) 
the same as Li4(p ), but all we can show is 

L~i(p)/> 2 log 2 Lll(p ) (1.9) 

In Section 5 we use this definition to prove that if L = L~d(p), 

Pp(~cc~) ~ (1/2) pp(~O • ~fi) (1.10) 

822/55/5-6-9 
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The last inequality says that percolation is almost the same as surviving up 
to the correlation length. The proof of Lemma 4.1 in ref. 11 also works in 
this case to show (1.10) when we take L=4dLIb(p)Llog Lll(p) I. In fact, the 
result in ref. 11 is more general in the sense that it is true for any finite 
dimension d. In terms of critical exponents, (1.10) says 

fl <~ v~l/6 r (1.11) 

An extension of the proof of (1.10) gives 

P p ( X ~ ~  2 for Ixl<~l.5~(p)Z (1.12) 

where ~ means the ratio of these quantities is bounded above and away 
from 0 by constants independent of p, and again we have written L for 
L~l(p). If we define q' by 

Ept~~ " '~(p-pc)Vl ,  ~' 

(trusting here that quantities at the correlation length are, up to constants, 
the same as at Pc), then (1.12) leads to 

vil~/' ~> v l L -  a - 2fl (1 .13)  

The last result is one-half of 

vilr/' = v l l -  t r -  2fl (1.14) 

a relationship which follows from (1.1), (1.2), and (1.4). 
Finally, we have 

7 ~< (q + 1 )VII (1.15) 

If one remembers ~/= 1-~/ ' ,  then one will recognize this as Fisher's 
inequality. (6) If one defines the connectivity radius as the random variable 
Rll whose distribution is given by 

Ex Pp((O, O) ~ (x, n)) 
Pp(RLI = n ) - -  

EplCol 

and defines exponents vk by 

{Ep(R~)k } ljk ~ ( P c -  P) -~  

then one can use ideas of ref. 10 to show 

lim Vk---- Vii 
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and 

~ ( t / +  1)v H 

No new ideas are needed, so the proof is omitted. 

2. S C A L I N G  I N E Q U A L I T Y  FOR T H E  S U B C R I T I C A L  P R O C E S S  

In this section we will prove that, for p < Pc~ and L~_(p) ~ 1, 

EplCo] <~ 10L~(p) LH(p) (2.1) 

This relationship is natural if we notice that Lir(p ) and L• give the 
height and width of a typical cluster, while ]Coj gives its volume. To see 
where the missing 2// in the associated exponent inequality (1.6) should 
come from, look at (1.12). 

Proof. From the definitions of the correlation lengths we have that 

Pp((O, 0) ~ (x, n )) ~< min{exp[ --n/Lij(p)], exp[ - - jx j /L•  } 

Set c =L• ). Let A = {(x, n): Jx[ <~cn}, where exp[-n/Lrl(p)] <<. 
exp[- lwl /L•  and B=AC~{(x ,n ) :  n~>0}, where the opposite 
inequality holds. Then 

E~ ICol = ~ Y~ Pp((O, O)---, (x, n)) 
n x 

= ~. Pp((O, O) --* (x, n)) + ~ Pp((O, O) -,  (x, n)) 
A B 

~ < 2 ( 2 [ c n ] + i ) e x p { - n / L r l ( P ) } + ~ [ c  l l x t ] e x p { - l x l / L ~ ( p ) }  
n x 

where [a]  is the largest integer ~<a. Using the trivial inequality 

ke-ak<~ ( x +  1)e aXdx=a-2+a-1 
k ~ l  

we see that the expression above is 

~< 1 + 2c( {Lij(p)} 2 + Lll(p)) + Lrl(p ) + 2c - ' (  {L~(p)} 2 + L• 

<<.IOL{I(p)L• when L• I 

Coro l l a ry .  The following relation holds: 

7 ~< vii + v• (2.2) 
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3. O N E  S C A L I N G  I N E Q U A L I T Y  FOR T H E  EDGE S P E E D  

We begin with some definitions. Set 

l~ = in f  ~~ i n f . =  + ~  

o sup 4 ~ sup ~Z~ = - o o  F n --~- 

o G,= {l ~ - ( 1  +6)cr r,,<~ (1 +6)cr  

where 3 > 0. Let 

~A.m~= {y: for some x~A,  ( x , m ) ~ ( y , n ) }  

H n  = {72 [ - ( l  + 6)~ +cs)o:(p)n] < 0 0 }  

From the definitions above it should be clear that 

P(n < "c o < oo) >~ p( ~O # ~ ,  G,,, ~ I,~ ~ dies out) 

p(~o # ~ ,  an) P(H.) 

In ref. 2 it was shown that 

P(G.  14~ ~ ) - ~  1 as n - , c ~  

so we have 

p(~O # .~, Gn) ~ p(g2o~) > 0 

On the other hand, 

(1/,7) log P(H.) ~ -c~(p)(1 + 6)/L~(p) 

and since 6 is arbitrary, if follows that 

- 1/Lil(p ) >~ -cz(p)/L~(p) 

L~, (p) <~ e(p) Ltr(P) 

or, rearranging, 

In terms of critical exponents, we have obtained 

! t 

O-~ VII--v• 

. 

Durrett and Tanaka 

(3.l) 

(3.2) 

RENORMALIZED BOND CONSTRUCTION 

The first thing to do is to describe a construction due to Durrett  and 
Griffeath. ~ We follow the version in ref. 2. Let G be the graph with vertices 
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in S0 = {(m, n): m + n is even, n >~ 0} and with oriented bonds connecting 
each ( m , n ) ~ o  to ( m + l ,  n + l )  and to ( m - l ,  n + l ) .  Consider the 
"renormalized lattice" 5~ to be mapped into the upper half plane 

x [0, oo) by ~b(m, n ) =  (aLm, Ln), where a is a special constant and L is 
a large number, both to be chosen below. 

To each z e 5~ we associate a random variable q(z) such that q(z) = 1 
if a certain "good event" happens near ~b(z) in our original percolation 
process and t / ( z )=0  otherwise. This procedure generates a 1-dependent, 
oriented site percolation process with t t (z)= l, meaning that the site z is 
open, and ~/(z)=0, meaning that the site z is closed. We call this new 
process the rescaled process. 

The choices of the constants and of the "good events" are made in a 
such a way that: 

(i) The random variables t/(z), z ~ 5~, are 1-dependent, i.e., if we let 
rl(m,n)rl~=(lm[+lnl)/2 and zl ..... zm are points with I tzi-zj l[ .~> 1 for 
i r  then r/(zl),..., q(Zm) are independent. 

(ii) If L is large, then the probability that ~l(x) = 1 is close to 1. 

(iii) If percolation occurs in the r/-process starting from the origin, 
then the same thing happens in the original process starting from some 
point near the origin. 

To introduce the "good event," let A be the parallelogram with 
vertices 

Uo = ( -  0.lolL, 0), 

ul = ((1 - 0 . 05 )  ~L, (1 + 0.05)L), 

v 0 = (0.1c~L, 0) 

v I = ((1 + 0.15) c~L, (1 + 0.05)L) 

We associate the sites in 5P0 with translations of A in the original percola- 
tion structure: If we let v .... = ((c~ - 46)m, n) for (m, n) e L~o, then we define 
the translations of A by 

Am,,,= (t~m,n + (--46~, 0 ) ) . L + A  

B .... = (Vm." + (46~, 0) ) '  L -- A 

where x -  A = { x -  y: y e A }. For  a picture see Fig. 1. 
The "good event" for the site (m, n) happens if there are open paths 

from top to bottom lying entirely in Am,  n and in Bin, n. If we denote the 
good event by SC(L) (for sponge crossing), then it is known (see ref. 2, 
Section 9) that, for p > Pc, 

Pp(SC(L))~I  as L --, oo (4.1) 
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0 . laL . 3~L 

Fig.  1. 

Again by ref. 2, now in Section 10, if 

Pp(SC(L)) > / 1  - 6 36 

then the probability that the q-system percolates is greater than 1/2. 
Let eo = 6-36 and define 

L~l(p ) = inf{n: Pp(SC(n)) >~ 1 - e0} 

Let 

(4.2) 

~m = {X: (X, m) e 5r and there is an y ~< 0 such that (y,  O) e ~o and 

(y,O)-*(x,m)} 

where (y, 0) --* (x, m) means there is an open path from (y, 0) to (x, m) on 
the renormalized lattice. Finally, let 

Sm = sup ~m 

Relation (2) in Section 11 of ref. 2 applied to our process {t/} gives us 
that, if p > Pc, then 

P(g~ ~< 0) ~< (1/2) k- 1 (4.3) 
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Write L for L~j(p) and consider the mapping/~,~ from ~o into ~ given by 

Re.k = s . C~ . L 

If f, is the right edge of the original process starting with the configuration 
{0, - 2 ,  -4,.. .}, then it follows from the construction that 

_R~.k(~o)<~f(k+llc(co) for every co (4.4) 

In ref. 4 it was shown that, for any p ~ [0, 1 ], 

nlim~{~ --nll~ ~<0)} = [2L,,(p) ] -I (4.5) 

With these results in hard, we can get that, for p > Pc, 

L~l(p ) >~ 2 log 2 Ljl(p ) (4.6) 

ProoL By using (4.3) and (4.4), it is not difficult to see that 

Pp(?(k+ *)L <~ O) <~ Pp(R,.k <~ O) ~ P~(s <~ O) <<. (i/2) k-* 

so that 

1 (k+l)LlOgpp(f(k+~)L<~o)>log2k 1 
L k + l  

By letting k T oo and recalling (4.5), we get that 

> log 2 
[2Lll(P)]- '~'L~l(p) | 

5. P R O O F S  OF (1 .7 )  A N D  (1 .10 )  

Throughout this section we will write L for L~l(p ). 
If p > Pc, then 

(1/2) pp(~O # ~ )  ~ Pp(f2~) <, pp(~o # ~j) (5.1) 

Proof. The right-hand inequality is obvious. To prove the other one, 
we note two things: First, that the event W - { t h e  rescaled process per- 
colates} has probability~> 1/2 by (4.2). Second, in order to have a path 
from zero to infinity on the event W it suffices that the process starting 
with configuration {0} survives until time L, since if d ~ survives until time 
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L, then it crosses 
Aoo r Boo (see Fig. 2). Using Harr is -FKG inequality, C8) now gives 

Pp(g2~) >i pp({~o r ~ }  n W) >~ p~(~o r ~)(1/2)  

and the proof is complete. | 

Coro l l a ry .  The following relation holds: 

Proof. We have that 

o o ~/~ ~ _ p.)~ft/~, 

and from the previous proposition it follows that 

that 

Durrett  and Tanaka 

out at least one of the paths involved in the event 

(5.1) 

(5.2) 

Pp(~~ S,~) ~ Pp(f2oo)~ ( P -  pc)~ | 

For P > P c  and Ix[ ~< 1.5cr there are constants c and Ce(0 ,  oo) so 

))- ~ Pp(x e {~ <~ C(Pp(f2o~) ) 2 c(Pp(~m " (5.3) 

%1 1.05L 

i% r / 

Z 
Fig. 2. 
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Proof. Note that if for convenience we choose t to be even, then 

(s t /2 )  X - -  Pp(x ~ ~o) = pp(~o/2 v~ 5~5, ~ ,  " ( ) - 1) 

= &(r176 # 11 # 

<<. Pp(~t~ # ~3) Pp(~52(x) = 1) 

Since the probability of a path from Zx{0} to (x, t/2) is the same as that 
of a path from (x, 0) to Zx{ t }  (see ref. 2, Section 8), 

pp(~Z/z(x)= l )= Pp,[~{x}t/2 g= 5~5) = Pp(~~ r 

Combining the last two equations gives 

By choosing t =  2L and recalling (5.1), one can get 

P p( x ~ ~OL) ~ { P p( ff2m )/2 } 2 

This proves the right-hand inequality. For the other half, let 

F =  {the sites (0, 0), (1, 1), ( - 1 ,  1) are open in the rescaled process} 

, ~ ( Z , L )  14 = {x  } 

We claim that if Ixj ~< 1.5~L, then on Fc~ G c~ H, x e ~~ L. To see this, look 
at Fig. 3 and notice that (i) when F occurs, there are paths inside each one 
of the six parallelograms; (ii) when G occurs, the origin is connected to at 
least one of the open paths in Aoo and Boo; (iii) when H occurs, one can 
get from one of parallelograms to the point (x, 2L). 

Combining the observations above, we obtain 

Pp(x ~ ~~ >>- Pp(FC~ G c~ H) >7 Pp(F) Pp(G) Pp(H) 

by the Harr is -FKG inequality, since all three events are increasing. Since 
each rescaled site is closed with probability Co, 

Pp(F) > 1 - 3~o 

By definition, 

Pp(G) = pp( ~O _~ 1~5) 

Finally, as we observed in the first half of the proof, 
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2L 

--4 
-2~L -cd~= 0 x ~L 

Fig.  3. 

Putting the last four observations together, it follows that 

o {pp(r r ~)}2(1 _ 3eo) Pp(x e ~2L) >~ 

and the desired result folows from (5.1). | 

Corol lary .  The following relation holds: 

vll ~/' ~> vl / -  a - 2/~ 

ProoL Recall that by definition 

E~ Ir176 ~ (Z ) " ~  ( p -  pc)-v: "' 

The last proposition implies that 

E,I~~ I> E Pp(xe~~ 2 
Ixl ~< 1.5~L 

which implies the result stated in the corollary. | 

! 
2c~L 

(5.4) 
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