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In this paper we consider a process in which each site x E Z” can be occupied by grass, bushes or trees 

and ask the question: Are there equilibria in which bushes and trees are both present? The answer is 

sometimes yes and sometimes no. 

contact process * equilibria * coexistence * Markov process 

1. Introduction 

In this paper we consider Markov processes in which the state at time t is & : Zd + 

(0, 1,2}. We think of 0 = grass, 1 = bushes, and 2 = trees, and formulate the evolution 

as follows: (i) l’s and 2’s each die (i.e. become 0) at rate 1. (ii) l’s (resp. 2’s) give 

birth at rate A, (resp. A,). (iii) If the birth occurs at x the offspring is sent to a site 

chosen at random from {y: y -x E X}, K = the set of neighbors of 0. (iv) If l,(y) 2 

t,(x) then the birth is suppressed. The last rule reflects the fact that grass, bushes, 

trees is a successional sequence, i.e. each plant can displace its predecessor. Since 

2’s can replace l’s or O’s, it should be clear that 5, = {y: t,(y) = 2) is a Markov 

process. In the terminology of Liggett (1985) or Durrett (1988), it is the contact 

process with neighborhood set N. 

Let A,=inf{A,: P(l:#@ for all r~0)>0}, where ly={y:[:“(y)=2} when 

&o(O) = 2 and [y(x) = 0 for x f 0. Here the superscript 20 on 5 suggests a 2 in a 

sea of O’s, and the superscript 0 on t indicates that this set valued process has 

Si = (0). If A, < A, then the 2’s die out and the process reduces to a one type contact 

process, so we will only be interested in what happens when A2 > A,. Our first result 

shows that the one dimensional nearest neighbor case is not interesting. 
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Theorem 1.1. Suppose d = 1 and N= (-1, 1). IfhI> A, then the ‘l’s die out’, that 

is, if l&l = Ky: 5,(y) =211 = ~0, then 5, *puz the limit starting from all sites = 2. 

Here + denotes weak convergence, which in this setting is just convergence of 

finite dimensional distributions. The last result is easy to prove. Generalizing Lemma 

3.1 of Durrett (1980) we conclude that if [: is the process starting from {i(x) = 2, 

then [f”(x) = &f(x) for x E [I,, r,] where I, = inf cv, and r, = sup l:. Well known results 

for the contact process (see the paper cited; Liggett, 1985, Chapter VI; Durrett, 

1988, Chapter 4; for this and other well known results cited below) imply that on 

0, = {cv # 0 for all t}, 1, + -00, and r, + cc a.s. When there are infinitely many 2’s 

in the initial configuration one of them must start a process that lives forever and 

the result follows. 

If d = 1 and K = {y: 0 < I yI s M} then breaking Z into blocks of length M, calling 

a block occupied if all the sites have state 2, and comparing with oriented percolation, 

it is easy to see that there is a constant C~ <cc so that if A2 > cM then the l’s die 

out. It is harder to show that the other alternative can occur. 

Theorem 1.2. SupposeK={ysZd: Ijyll ,cM} where IIyj(,=sup(y,). IfA,>A:>l 

then ‘coexistence’ occurs for large M, that is, there is a translation invariant stationary 

distribution pIz with p,>(Ak,n As) = 1 where A&= (7: T,-(X) = ifor infinitely many x}. 

Note. To simplify a calculation in the proof we have 0 E N, even though births 

from x to x can have no effect. The model with OE X is equivalent to the one with 

0 removed and the A, reduced by a factor of 1 - (2M + l)-d. 

To explain the condition in Theorem 1.2, let Y = Z”/ M, X = {y E Y: II yllm< 1). 

Results of Bramson, Durrett and Swindle (1989) imply that if A2 > 1 then as M + ~0, 

pz approaches a product measure with density (A* - 1)/A,. Setting M = ~0, we define 

a mean field version of the set of sites occupied by l’s, 2, in which: 

(i) Each particle (i.e. point of 2,) dies at rate 1 and gives birth at rate A,. 

(ii) The offspring of a particle at x is sent to a point y chosen at random from 

{y: ]I y -x llui 4 1). We flip a coin with probability (A, - 1)/A2 of heads to see if y is 

occupied by a 2. If it is, the birth is suppressed. 

(iii) To simulate births from sites occupied by 2’s, each x in 2: is at rate A2 

‘attacked’ by a randomly chosen y with )I y -XII 3o s 1. We flip another coin to see 

if y is occupied by a 2. If it is, we remove x from 2:. 

2: is just a branching random walk in which l’s die at rate 1-t A2 . (A*-- l)/Az = AZ, 

and births occur at rate A, . l/A*, so in order for the l’s to survive we must have 

A,IAz)Az. 
To prove Theorem 1.2 we use an idea of Bramson and Durrett (1989). We first 

show that when viewed on suitable length and time scales, the mean field process 

2, dominates oriented site percolation with p = 1 - 8. In the construction the site 
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(rrz, n) is declared to be open if a certain good event happens in the space-time box: 

B m,n = (2mL, 0,. . . , 0, nT)+{(-2L, 2L)d x [O, 7-I). 

Since the event in the construction depends on what happens in a finite space time 

box, it follows from ‘continuity’ that when M is large, the set of l’s in the real 

system dominates the percolation process with p = 1-2~. If 2~ c&, known results 

for percolation give a positive lower bound on the deensity of l’s and standard 

techniques take over (take Cesaro averages and extract a convergent subsequence) 

to produce the desired stationary distribution. 

Theorem 1.2 suggests a number of questions. The first, and easiest to answer, is 

what happens if l’s die at rate 6, and 2’s die at rate &. Repeating the heuristic 

proof we see that in the limit M + ~0: (a) l’s die at rate 6, and are replaced by 2’s 

at rate A2 * (A2 - &)/A, and (b) l’s give birth onto sites not occupied by 2’s at rate 

A, . &/AZ, so for survival we need 

A, . 62>AZ(6,+Az-62). 

The proof of Theorem 1.2 that we give works for this case as well, but for simplicity 

we will restrict our attention to the case 6, = a2 = 1. 

A second natural question is to describe the set of stationary distributions. There 

are three trivial ones: let p, be the limit starting from lb(x) = i. Durrett and Moller 

(1991) have recently shown that: 

Theorem. If A, > A: > 1 and M is large then P,~ is the limit starting from any initial 

77 in ALn A$. Therefore all stationary distributions are convex combinations of 

P~,I~,P~ andpI,. 0 

The proof of this theorem provides the following quantitative information about 

P1z. 

Theorem. As M + CO, p,z approaches a product measure in which 2‘s, l’s, and O’s 

appear with densities (A,-1)/A,, (A, -A:)/(h,AJ and A5/(AlA2) respectively. 0 

Notice that the density of l’s in the limit approaches 0 as A, J A:. This supports 

our conjecture that the condition in Theorem 1.2 is sharp. 

Conjecture 1.1. If A, <A: then the l’s die out for large M. 

Ironically, this seems much more difficult to prove than Theorem 1.2. The problem 

is that if A is the set of sites occupied by l’s at 0 at time 0, we can as a worst case 

suppose that all sites outside A are occupied by 2’s and prove survivial. This type 

of reasoning cannot be used to prove Conjecture 1.1. In the best case there would 

be no 2’s but then the l’s would survive for A, > A,. 
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Having seen that in one dimension coexistence can happen for X= 

{y: O<lyl~M} h w en M is large but not when M is 1, it is natural to ask where 

the changeover occurs. Our guess is: 

Conjecture 1.2. Coexistence is possible when d = 1 and X = (-2, -1, 1,2}. 

This result is difficult to prove because coexistence can occur only for A2 near 

the critical value. Computer simulations indicate that the critical value is about 2.6 

and coexistence is no longer possible when A2 > 3.2. 

One method for proving the last conjecture would be to find a way of characterizing 

the values of AZ for which coexistence is possible for some value of A [. One approach 

to this problem is to consider the system with A, = cc starting from &(x) = 2 for 

x G 0 and t,,(x) = 1 for x > 0. By A, = ~0, we mean that if there is a 0 within range 

of a site occupied by a 1, it immediately becomes a 1. Let r, = sup{x: t,(x) = 2). It 

is known that r,/t+a(AJ a.s., A,=inf{A: (Y(A)>O} and a(A,)=O. 

Conjecture 1.3. Let I, = inf{x: tr(x) = 1). 1,/t +P(A2) a.s. Ones die out for all A, if 

P(A2) > 0, and can coexist for large A, if P(A,) < 0. Furthermore, a(A,) > P(A2) for 

M 2 2, so coexistence is possible for A2 near A,. 

One can also ask if coexistence is possible when d = 2 and X = {y: 11 y 11, = l} 

where (( y (( 1 = ( y,( +. . . + 1 yd /. We conjecture that the answer is yes, and we can prove 

that it is if the dimension is large enough. For simplicity (and variety) consider a 

discrete time model in which there can be a ‘1 bond’ with probability p, and a ‘2 

bond’ with probability pZ from (x, n) + (x + y, n + 1) for x, y E Zd with /( y 11, = 1, and 

the existence of these bonds is determined by independent coin flips. (In particular, 

the probability bonds of both types are present is p, pZ .) As the reader can probably 

guess: (a) If there is a 2 at x at time rr and a 2 bond from (x, n) + (x +y, n + 1) then 

there will be a 2 at x + y at time n + 1. (b) If there is a 1 at x at time n, a 1 bond 

from (x, n) + (x +y, n + l), and no site occupied by a 2 at time n gives birth onto 

(x + y, n + 1) then there will be a 1 at x + y at time n + 1. By using results of Cox 

and Durrett (1983) we can show: 

Theorem 1.3. If d 2 4 and X = { y: I[ y 11, = l} then coexistence is possible in the discrete 

time model. 

To prove this result we consider a percolation model in which sites are called 

open if there are no 2 bonds that end at that site, and all the 1 bonds out of the 

site are open. Estimates on critical values in Cox and Durrett (1983) (supplemented 

by a numerical computation of the return probability for four dimensional simple 

random walk from Kondo and Hara, 1987) imply that there is a p2> the critical 

value for oriented bond percolation and a p, < 1, so that the open sites percolate. 

It follows easily that the two species can coexist in equilibrium. 
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Theorem 1.n is proved in Section n + 1. We construct the process in Section 2. 

Once this is done the remainder of the paper can be read in any order. We would 

like to thank Simon Levin for discussions that led to these investigations. We are 

indebted to Gordon Slade for the reference to Kondo and Hara. 

2. Proof of Theorem 1.1 

We begin by constructing the process from a collection of Poisson processes. For 

iE{1,2}andx,yEZd withy-xEN,let{TF”: n>l}and{U~‘: n>l}bethearrival 

times of Poisson processes with rates A,/lXl and 1. As the reader can probably guess 

from the rates: at times Uix we kill the particle at x if it is of type i, and at times 

TF” there is a birth from x to y is in state i and y is in state j < i. Generalizing the 

usual practice in the graphical representation of the contact process we write a 6, 

at (x, U:‘) and draw an arrow of type i from (x, Th',?‘) to (y, Ti",'). If, for example 

i = 2, we will call the last object a 2-arrow. To distinguish the two ends of the arrow 

we will say that it attacks y and that its source is x. 

Even though there are infinitely many Poisson processes, and hence no first arrival, 

it is easy to show that the recipe above allows us to construct the process starting 

from any &E (0, 1,2}““. To prove this we use an idea of Harris (1972). Consider a 

random graph in which x and y are connected if 

min( T1.‘,?‘T:.“,‘T1.?” Tf,.~,“) ~ 7. 

If r is chosen small enough so that the probability of connection is <l/l&” then a 

simple argument (compare with a branching process) shows that all the components 

of our random graph are finite. The evolution of each component is unaffected by 

the others and can be computed separately. In this way we can construct the process 

up to time 7 and iterating we can construct the process for all time. 

Lemma 2.1. Suppose (“(0) = 2. Let &, [:” and 6: be three copies of the process on Z 

with X = {-l, l} and initial conjigurations that have .$,“(O) = 2, t:(x) = 0 for x # 2, 

and .$J y) = 2 for all y. Let 6: = {y: [f”(y) = 2}, I, = inf <r and r, = sup cp. Then 

5,(x) = 5:‘(x) = 53x) for x E 14, r,l. 

Proof. We check that each transition preserves the desired equalities. Here one 

picture is worth a hundred words. 

0 2 2 0 2 0 2 2 2 0 0 2 2 2 0 0 %$ 

0 2 1 0 2 0 2 2 2 0 0 2 1 2 1 0 5, 

0 0 0 0 2 0 2 2 2 0 0 2 0 0 0 0 6;” 

1, 5 

At the sites x E (I,, I;), the three processes have the same state at x - 1, x, and x+ 1, 

so arrivals LJY and Th”,” will have the same effect. At x = r,, the state is 2 in all 



three processes so a T$“~“+’ arrival causes &xi-1)=5:“(x+l)=&(x+1)=2, r, 

increases by 1 and the inequality is preserved. The remaining cases for x = r, 
(u?, T2n‘-GP1 and T;‘+k”) are easier to check and the proof is complete. q 

Proof of Theorem 1.1. Let 6, = {x: &(x) = 2) and suppose without loss of generality 

that OE i,. Let S:“, c$, I, and u, be as in Lemma 2.1. Results in Durrett (1980) show 

that 

I,+--~0 and r,+o~ as. on &={gf#0 for all t}. (2.1) 

On f2$, let ~=inf(t: c:=0). At time 7 we pick another particle in 5, (which is #0 

since we have supposed I&,/ =oo) and try again. Eventually, we find a particle that 

lives forever and the desired result follows from Lemma 2.1 and (2.1). For more 

details see Durrett (1980, pp. 902-904) where a similar ‘restart argument’ is used 

to prove the analogous conclusion for the contact process. q 

3. Proof of Theorem 1.2 

We consider & :Z*/M+{O, 1,2} so that we can more easily let M+a3. Let cY= 

{(m, n) E Z2: m + n is even, n 3 O}. Let T = L2, e, = (1, 0, . . . , 0), and define 

p(m,n)=(2mLe,,nT) for(m,n)EZ, 

B=(-2L,2L)&x[O, T], B,,,=rp(m,n)+B, 

I = [-L, L]d, I, = ZmLe, f I. 

Our approach will be to show: 

(*) Let .E > 0. IfL and N are chosen appropriafely and we have A c Z, with IAl a N 

occupied by l’s then, even if there are 2’s at all the sites in A’ at time nT and at all 

sites in B”,,, at times t E [nT, (n + 1) T], we will with probability a 1 - R have at least 

N sites occupied by I’s in I,,,+, and I,,_, . 

Notice that B,,,, n BC,+z,,, = 0. We assume “there are 2’s at all the sites in A’ at 

time nT and at all sites in B’,,, at times t E [ nT, (n + 1) T]” to get enough indepen- 

dence to conclude that our system dominates oriented site percolation. Before 

embarking on the proof of (*) we would like to observe that by translation invariance 

it suffices to prove the result when m = 0 and n = 0. 

3.1. Preliminaries 

To get the real system from the mean field system defined in the introduction, we 

will have to replace the coin flips by ‘2-dualprocesses’, so our next step is to describe 

that notion. Suppose M < 00 and let 5, %J) = the set of points at time t - s that can 

be reached by a ‘dual 2 path’ starting from (x, t). These paths can go down the 
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graphical representation (but not through &‘s) and across 2-arrows in the direction 

opposite to their orientation. It is easy to check (see Durrett, 1988, Chapter 4) that 

{x E c;} = {$‘) n A # 0}, 

{~S”+OSsst}~{(5::O~s~t}. 

We will decide that x is occupied by a 2 at time t if f:Y,‘) survives until time K or 

reaches (x+[-K, Kid)‘. In Subsection 3.3 we will show: 

Proposition 3.1. As M + ~0, 25x3r’ approaches a branching random walk Y: in which: 

(i) Particles die at rate 1 and give birth at rate AZ. (ii) The ofipring of a particle at 

x is sent to a point y chosen at random from x+[-1, lid. 

Pick p>(Az-1)/h, so that l+hZ.p<Al/h2. The survival probability P( Y: > 0 

for all s 3 0) = (A* - 1)/A, so: 

Proposition 3.2. If we pick K large then the probability Y< survives until time K or 

reaches apoint in (x+[-K+l, K-lld)’ is <p. 0 

The +l and -1 are to leave room for the limit M + ~0. The last observation will 

imply that after time K or for sites in [ -2L + K, 2 L - Kid the collection of 2’s that 

we see is, for large M, not too much thicker than a product measure with density 

p. We can avoid the sites near the boundary of [ -2L, 2Lld by not using them. We 

take a rather drastic approach to cope with the first K units of time. We ignore 

births and observe that each 1 dies at rate GA,+ 1, so: 

Proposition 3.3. Let F > 0. If N is large then with probability 2 1 - f& the number of 

surviving ones at time K is at least N’- [;N. exp(-(A*+ l)K)]+ 1. 0 

The first phase of the construction decimates the set of l’s, but after that phase 

the set of l’s will almost be a supercritical branching random walk, so we can 

recover our losses. We begin by considering what happens when M = W. Let 2: be 

a modification of the mean field process starting from a single 1 at x, in which 

particles die at rate 1+ A,p and those that land outside [-2L+ K + 1,2L- K - lid 

are killed. It is easy to check that 

EjT: n Al = e*‘P(ST E A) (3.1) 

where K = (Al/AZ) - (1 + Azp) > 0 and $ is a random walk that starts at x, takes 

steps at rate (Al/AZ), and is killed when it lands outside [-2L+ K + 1,2L- K -lid. 

(Observe that both sides of (3.1) satisfy the same differential equation.) 

Let 1; = 2Le, + [-L-t 1, L- lid, i.e. I, shrunk by a little bit. Donsker’s theorem 

implies that if T’= L2- K and x/L+ 0~ [-1, lid then 

P( S;. E I: ) + l+q t?), (3.2) 
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where $( 0) = PO( B, E [ -2, 21d for t s 1, B, E 2e, +[-1, lid), B, is a constant multiple 

of the standard d-dimensional Brownian motion, and P, is the distribution of the 

process starting from B, = 0. (cI( 0) > 0 and continuous, so a simple argument (suppose 

not and extract a convergent subsequence) shows 

lim inf 
( 

inf 
L-CC Xi[~L,Lld 

P(S;,EZi) 2 inf $(0)>0. 
> HE[~l,ll“ 

(3.3) 

It follows from (3.1) and (3.3) that we can pick L large enough so that 

inf E]Z”,,n Z;] 
xt[-L,Ly 

24 exp((h,+ l)K), (3.4) 

E@;m I+ EIZ+ C <co. (3.5) 

Now if IA’1 = N’ (defined in Proposition 3.3), and we let Y = lz”,:n Z;I where 2;” 

is the modified branching process with 2,“’ = A’, then EY 2 2 N, and it follows from 

Chebyshev’s inequality that 

N2P( Y < N) < var( Y) < CN’. (3.6) 

Combining Proposition 3.3 and (3.6) we see that (*) holds forthe system with M = ~0. 

3.2. Block construction 

Given a subset A of Z,,,, we will define a process ijyn,A that is a subset of the sites 

occupied by l’s at time t when we start with A occupied by l’s at time nT. ijFg:jn,A = A 

and evolves as follows. 

(i) For nT d t 4 nT+ K if a 6, lands at X, or x is attacked by a 2-arrow, it is 

removed from the set. In this phase births of l’s are ignored. 

(ii) FornT+K~t~(n+l)T,ifthereisal-arrowfrom~~jj~~~~toy,welook 

at buys’) to see if y is added to fT.“,*. If there is a 2-arrow from y to x E ii?“,* then 

we look at l(Fy,‘) to see if the 1 at x will be replaced by a 2. In either case if the dual 

process f6y,r’ survives until time K or reaches ( y + [ -K, Kid)’ we decide that y is 

occupied by a 2. 

Let A’ = +j y+‘$ . If IAl 3 N then with high probability IA’1 3 iN* exp(-(AZ+ l)K). 

In Subsection 3.3 we will show: 

Proposition 3.4. As M + ~0 the behavior of ijr+>%+, approaches that of 2:‘) so (*) 
holds. 

As we will now explain, this will allow us to conclude that if H = 

I(I/M)e,, . . . , (N/We,], and 77: = {y: Sy( y) = l}, where 67 is the system starting 

with l’s on H and 2’s on H’, then 777 dominates oriented site percolation on 9 

with p = 1 - E. First we recall the definition of the percolation process. Given random 

variables w(m, n) E (0, l} that indicate whether (m, n) is open (1) or closed (0), we 

say (y, n) can be reached from (x, m) and write (x, m) + ( y, n) if there is a sequence 
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of points x, =x, . . . , x,=y so that for m~l<n, Ix,-x,+,1=1 and w(x,,I)=l. 

(Notice that w(x,, n) is allowed to be 0.) Let % = {z: (O,O)+ z} be the cluster 

containing 0 and let fl, = {I Gel = CO} be the event that ‘percolation occurs’. In determin- 

ing whether or not 0, occurs we only need to look at w( m, n) for (m, n) E 2 with 

-n s m s n, so we will only defined those variables. 

Let &,, = H. Assuming the A,,, - n . < m s n have been defined, we will now define 

the w(m, n). There are two cases to consider: 

Case 1. A,,, #0. We set w(m, n)= 1 if 

Iii ;!$y,n’ n I,+,1 B N for i = fl, -1 

and let Ak,n c f~!$~““n Im+i have cardinality N. Otherwise set w( m, n) = 0 and 

A;,, = 0. 
Case 2. A,,, =@I. We let H(m)=2mLe,+H and set w(m, n)= 1 if 

Iii ~~~$“‘)n Imtil 3 N for i = +l, -1 

and w(m, n) = 0 otherwise. In either case we set A&,, =0 for i = +l, -1. 

To make the next generation of A’s we set 

A’L_,,n = A,:,,, =0 and A,,,+, = ALL,,, u A,:,,, 

To see the reason for these definitions observe that it follows by induction that 

A m,n = 77s and %T={(m,n):A,,,#8}. (3.7) 

The definitions of the blocks imply that if we let 9, be the a-field generated by 

the graphical representation up to time t then for (m, n) E 2, 

P(w(m,n)=lISn,)>l-q 

and given S,,,w(m, n)mE{-n, -n+2,. . . , n} are independent. Known results (see 

Durrett, 1988, Chapter 6) now imply that if E < & then P(&) > 0. 

3.3. Continuity argument 

In this section we will prove Propositions 3.1 and 3.4. 

Proof of Proposition 3.1. The number of points in 

is dominated by a branching process W, in which births occur at rate A2 and deaths 

at rate 0. E W, = exp(h, t) < 03, so P( W, > M”3) + 0. If there are s M”3 points in 

V, then the probability of having a birth land on an occupied site is smaller than 

M”3(M1’3/(2M+l)d)+0. (3.8) 

To deal with the spatial location of the particles, we observe that given a realization 

of the branching random walk Y:, s 3 0, defined in the proposition, we can construct 
a realization of the 2-dual by replacing the displacements Ui, which are uniform 
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on r-1, lid by rr((M+$)x)/M where r(v) is the closest point in Zd to x (with 

some convention for breaking ties). We will not worry about what to do after a 

collision (a birth onto an occupied site) occurs because (3.8) implies that the 

probability of a collision before time K approaches 0 when M + CD. When there 

are d M”3 points in V, and no collision occurs, then all the particles in &“I end 

up within M’l’/M (in L” norm) of their counterparts in YL _ This proves the 

proposition. 0 

The last observation in the above proof in combination with Proposition 3.2 proves: 

Proposition 3.5. If M is large theprobability that t(rx.‘) survives until time K or reaches 

(x+[-K, Kid)’ is <p. 0 

Proof of Proposition 3.4. The last argument contains all the ideas for showing that 

the behavior of nr+:‘$+, approaches that of 2:” as M + ~0. In the event of interest 

we start with <2N particles, so comparing with a branching process W, in which 

particles are born at rate A, and die at rate 0, we conclude that the probability of 

a newborn 1 landing on a site in r]y&+, approaches 0 as M + 00. When W,, s M”’ 

new 2-duals which we have to follow backwards are generated at rate s A1 M”‘, so 

with high probability s~A,TM”~ duals are generated. By computing second 

moments and using Chebyshev’s inequality we see that if M is large then 

for all these duals. The total number of sites we have to look at is SCM2’S so 

repeating the proof of (3.8) shows that the probability of a collision is small when 

M is large. By considering the locations of the particles involved as before, one 

concludes that the proposition holds and (*) follows. 0 

3.4. Denouement 

The last detail is to explain how “known results for percolation give a positive lower 

bound on the density of l’s and standard techniques take over to produce the desired 

stationary distribution.” The first part of the sentence refers to: 

Proposition 3.6. Zf E < {i and W, = {m: (m, n) E %?} then P(OE W,,) 2 P(flw) > 0 

for all n. 0 

(See Durrett, 1988, Chapter 5.) The second half of the sentence takes longer to 

explain. The first step is to take Cesaro averages of the distributions of nr, 

OssS2nT, where H={l/Me,,..., N/Me,}, let n + 00 and extract a convergent 

subsequence. This is possible since the set of probability measures on (0, 1,2}“” is 

compact (in the obvious topology). Let p be a subsequential limit. Since our process 

has the Feller property, p is stationary distribution. (See Liggett, 1985). Let 
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A,,, Af, A, be the set of configurations in (0, 1,2}@ with 0, finitely many, and 03 

many ones respectively. Since I_L is a stationary distribution k(A,) = 0, and so it 

follows from Proposition 3.6 that p (A,) > 0. Let p,*(B) = Al. (B n A,,,)/p (A,). Since 

A,, and A, are invariant for the process, pi2 is a stationary distribution. By definition 

p&Am) = 1. To see that p,2 concentrates on configurations with infinitely many 2’s 

we observe that an easy argument shows that 5, = {y: [r(y) =2)-p,,. (Use the 

self-duality of the contact process and observe that the probability the number of 

particles in the dual E[ 1, N] goes to 0.) 0 

4. Proof of Theorem 1.3 

Let Z={zEZd+‘: z,+* . . + zd+, is even} and make ZZZ into a graph by drawing 

bonds from (x, n) + (x + y, n + 1) for x, y E Zd with 11 yl], = 1. Bond (resp. site) perco- 

lation on 2 is defined by flipping independent coins to determine the state (open 

or closed) of the bonds (resp. sites). We write (x, 0) + ( y, n) (and say (y, n) can be 

reached from (x, 0)) if there is a sequence x0 = x, x, , . . . , x, = y so that for 0 G i < n, 

IIXi+l -xJ = 1 and the bond from (x,, i) to (xi+, , i+ 1) (resp. the site (Xi, i)) is open. 

We let %,= {( y, n): (0,O) + (y, n)}, 0, = {]%?,I = ax} be the event that ‘percolation 

occurs’, and let pc = inf{ p: P(R,) > 0). 

Let S,, be a random walk in which P(S,+, -S, =y) = 1/(2d) when j/y]], = 1. Let 

S,, and SL be two independent copies of the random walk starting at 0. Let 

rr = P(S, = SL for some n 3 l), 

v = P(S, = Sk and S,_, = SL-, for some n 2 1). 

r and (T are respectively the probability that the two random walks have a site or 

bond in common. Cox and Durrett (1983) proved 

pJbond) s V. (4.1) 

The same argument shows 

pJsite) s n. (4.2) 

In view of the discussion in the introduction, Theorem 1.3 follows once we can 

show it is possible to pick pz so that 

p2> pJbond) and (1 -p2)2d > pJsite), (4.3) 

for then it follows that (1 -p2)2dpfd >pJsite) for p, close to 1. As d + 00, u, r - 

1/(2d) so (1-a)2d+e-1 and the two inequalities can both be satisfied when d is 

large. To see that d =4 is large enough requires more work. 

Form a random walk R, = Y, +. . . + Y, with Y2,_, = Xi and Yzi = -Xi where Xi 

(resp. Xl) are the increments of S, (resp. SL). It should be clear that 

rr=R(h,) where &={R,=Oforsome nal}. (4.4) 
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To get a formula for (T in terms of r let 

T/=P(H,,,R,#O)=P(Z-&-P(R,=O) 

and observe that either RZ=O or R,# 0, so 

(4.5) 

w = 1/(2d) + r’ff or (+ = 1/(2d( 1 - rr’)). (4.6) 

In three dimensions the value rr= 0.340 537 33 can be found in Spitzer (1976, 
p. 103). Plugging into (4.5) and (4.6) gives Z-’ < 0.1740 and (+ < 0.2018. Unfortunately 

(0.7982)6 = 0.2587 < 0.3405 so the inequalities in (4.3) are inconsistent. To compute 

the value of n in four dimensions we turn to Kondo and Hara (1987). It is well 

known that 

&= ; P(R,=O), 
PI=0 

and 

P(R,=O)= (2~r-~cp(B)" de, 

where cp( 0) = E exp(i0. Yr) = d-’ Cp=, cos Bi. Summing gives 

f P(R,=O)= (2+d(l-cp(8)))1de. 
II=0 

Since 

i-p(e)=d-’ i (i-cOsei), 
,=I 

the last quantity is d times Kondo and Hara’s (1987, (17) on p. 1208) I(d; 1). They 

compute 1(4; 1) = 0.309 866 780 4621 which corresponds to r < 0.1934. Plugging into 

(4.5) and (4.6) gives ~‘<0.0684, and u CO.1342. This time (0.8658)8>0.3157> 

0.1934 so the inequalities in (4.3) are consistent and we have shown that coexistence 

is possible in d = 4. 0 
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