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We consider Markov processes n$ c Z d in which (i) particles die at rate S 2 0, (ii) births from x to a 

neighboring y occur at rate 1, and (iii) when a new particle lands on an occupied site the particles 

annihilate each other and a vacant site results. When S = 0 product measure with density f is a stationary 
distribution; we show it is the limit whenever P(l),+ k4) = 1. We also show that if 6 is small there is a 
nontrivial stationary distribution, and that for any 6 there are most two extremal translation invariant 

stationary distributions. 

1. Introduction 

In this paper we will study annihilating branching processes, or ABP for short. 

These systems are Markov processes whose state at time t is r), c Zd. Sites x E 7, are 

considered to be occupied by particles and the system evolves according to the 

following rules: 

(i) Particles die at rate 6 2 0. 

(ii) If x is occupied and (x -yj = 1 then births occur from x to y at rate 1. 

(iii) If y is occupied the two particles annihilate each other and an empty site 

results. 

If (iii) were changed so that instead of annihilating, the two particles coalesced 

to one, we would have the contact process. Usually, in the contact process births 

occur at rate A and deaths at rate 1. We have changed the time scale because we 

will be particularly interested in the case 6 = 0. 
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If we let [: denote the contact process with &! = {0}, then it is known that 

P([~#Bforall t) 
1 

=0 for large 6, 

>O for small 6. 

The first result extends immediately to the ABP for if 7: is 

then the two systems can be constructed on the same space 

result shows that the second conclusion is true as well: 

Theorem 1.1. If 6 is small then P( 7: # (d for all t) > 0. 

the ABP with 7: = (0) 

with .$:I my. Our first 

Theorem 1.1 is proved using a general method that the first and third authors 

have developed and that is surveyed in Durrett (1989). The key to the proof is 

proving that if E > 0 and 6 is small then the ABP dominates oriented percolation 

with parameter 1 -e. The first step in explaining the last sentence is to introduce 

the oriented percolation process. Let =Y={(m, n) E Z2: m + n is even}, and for 

(m, n) E 3, let w,,, be i.i.d. with P(w,,, = 1) = 1 -a and P(w, n = 0) = E. We say 

there is an open path from (x, 0) to (y, n) if there is a sequence of points m, = x, 

ml,..., m,=ysothatIm,+,-m,I=landw(mk,k)=lforO<k<n.Let 

W”, = {y: there is an open path from (0,O) to ( y, n)} 

and think of W”, as the set of wet points at time n when the origin is wet at time 0. 

To compare 7: with the percolation process W”, , we map 3 into Rd x [0, ~0) 

using p(m, n) = (2mLe,, nT), where e, = (l,O, . . . , 0), T = K~L, and K~ is a constant 

that depends on the dimension and has to be chosen appropriately. Let I = [-L, Lid, 

I,,, = 2mLe, + Z and 

Xjl={m: 7j0,TnI,#0,(m,n)E3}. 

With all this notation introduced we can now make a precise statement: 

(*) Let F > 0. If we pick L large enough and then 6 small, the two processes 

can be defined on the same space with x: 3 W”, for all n 2 0. 

If E is small enough (e.g., E < &) then it follows from known results about oriented 

percolation (see Durrett, 1984, Section 10) that P( W”, # 0 for all n) > 0 and we have 

proved Theorem 1.1. 

To prove (*) we let B = [-2L+ 1,2L- 11” x [0, T), define disjoint boxes B,,, = 

cp(m, n)+B, (m, n)E3, and prove: 

(**) Given ntT = A with An Z, # 0 there is a ‘good’ event Gm,+ determined by 

the values of the ABP in the space time box B,,, so that: 

(i) On GmnA, ~I)n+l~TnL-lfO and ~&+ljTnL+l#O. 
(ii) If L is ‘large then P( G m,n,A jvfT = A) 2 1 - E for all A with An I,,, f 0. 

Once (**) is established (*) follows easily by induction. Details are given at the 

end of Section 4. To prove (**) it suffices to consider the case 6 = 0. For if we can 

pick L and T so that the process with 6 = 0 dominates oriented percolation with 
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parameter p = l-c, then we can pick 6,, so that the probability of a death in the 

space time box B is <s and it follows that for 6 G &, the process with deaths at 

rate 6 dominates oriented site percolation with parameter 1-2~. 

Two pleasant features of the above approach are (a) the hard work is done for 

6 = 0 and (b) the proof immediately generalizes to cover perturbation by any 

mechanism that is translation invariant and has bounded rates. For example, suppose 

that instead of adding spontaneous deaths at rate 6 we change the rule (i) to: 

(i’) Particles jump from x to y at rate Sp(x, y) where p(x, y) is the transition 

probability of a random walk, i.e., p(x, y) =f( y -x). 

A trivial modification of the argument just sketched shows that for small 6, the 

new system has P(ntf B for all t 2 0) > 0. Bramson and Gray (1985) used the 

‘contour method’ to prove the last result for the special case in which f(z) = 1/(2d) 

for z E Z* with IzI = 1 (and only gave the details for the case d = 1). To fully appreciate 

the advantages of our new approach, the reader should try to use the contour method 

to prove Theorem 1.1 or even to extend their result to a general random walk. 

Theorem 1.1 demonstrates that the process has positive probability of not dying 

out when 6 is small. Our next goal is to describe the set of stationary distributions. 

One is trivial to find: 6,, the pointmass on the empty set. The key to identifying 

the other(s) is a duality equation: 

P(lnfn BI is odd) = P(IAn qpl is odd), (1.1) 

similar to the one for the contact process: 

P(~;2nBfld)=P(An~f#8). (1.2) 

Here we assume that B is finite and the superscript indicates the initial set, e.g., 

7: = A. To analyze the contact process one starts with the observation that if we 

let A = Zd in (1.2) then 

P(~~“nB#(21)=~(~;B#~)~~(~~#0foralls) as t?CO, (1.3) 

since 9, is an absorbing state. The analogue for the ABP is to let A be a random set 

with distribution vIl, = product measure with density f, i.e., the events {x E A} are 

independent and have probability $. Writing n:‘* for ~ri\ in this case, 

P(lv:‘*n L? is odd) = P(1vA’2n ~:l is odd) 

=ffY77;BZ0) 

1 $P(vY # 0 for all t) as t t co, (1.4) 

since the probability of an odd number of heads in any positive number of flips of 

a fair coin is 4, and 0 is an absorbing state. 

The probabilities in (1.4) determine the distribution of 7:” (see Griffeath, 1979, 

p. 69), SO we have shown that n:” converges weakly to a limit ~2’. General results 

(see Liggett, 1985, part (d) of Proposition 1.8 on p. 10) imply that nz* is a stationary 

distribution. (Here and in what follows we will avoid linguistic contortions by using 

the same symbol 17:” for the random variable and its distribution.) The next result 

implies that all translation invariant stationary distributions are a convex combina- 
tion of S, and nz*. 
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Theorem 1.2. Suppose 6 > 0. For any translation invariant initial distribution TV with 

cL({b?l) =o, rl?*dxL2. 

Here n? denotes a version of the process with initial distribution p and + denotes 

weak convergence, which in this setting is just convergence of finite dimensional 

distributions. 

We have ignored the case 6 = 0 in Theorem 1.2 because we can prove a better 

result in that case. When 6 =O, an isolated particle cannot die, so if B #0 then 

P(np # 0) = 1 for all t 3 0. Using this observation in (1.4) it follows that 

P(Iv:‘2n I3 is odd) = f for all B # 0. (1.5) 

As remarked earlier, the probabilities in (1.5) determine the distribution of n :‘2, so 

we have shown that for 6 = 0, we have n :‘2 g v,,, for all t. Our final result shows 

that v,,~ is the only interesting stationary distribution in that case. 

Theorem 1.3. Suppose 6 = 0. Zf P( q0 # 0) = 1 then r],+ v,,* us t + ~0. 

Remark. Let r = inf{ t: r], = 0). When 6 = 0, nz2 g v,,~ and Theorem 1.3 generalizes 

immediately to 

Using the results of Section 3 and the proof of Theorem 1.3, it is not hard to show 

that the last conclusion holds for small 6. It should hold for all 6 but we have no 

idea how to show this. 

The key to the proof of Theorem 1.3 is an observation of Griffeath (1978): 

Proposition 1 .l. Let B be a finite set and 6: be an independent copy of the ABP with 

initial state B. Then 

P(l~s+,n BI is odd) = P(lv, n ;i;“l is odd). 0 

This generalization of (l.l), which is valid for 6 2 0, follows from the construction 

given in Section 2. To prove Theorem 1.3 it then suffices to show: 

Proposition 1.2. If P( v0 # 0) = 1 and B # 0 is jinite then 

P(/q,nG,81 is odd)+; US t+a. 0 

To prove this we use the fact that n, and ;i;” each dominate oriented percolation 

to conclude that (7, n ;ifl+ 00 in probability. Once we know that 17, n ?/ :I is large 

with high probability, it is easy to conclude that P(lq,+, n ;ip+,I is odd) = 1. 
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In Section 2 we construct the process, derive the duality equation (l.l), and prove 

Theorem 1.2. In Section 3 we introduce and study a tagged particle process that is 

the key to the proof of (**) given in Section 4. Finally, Theorem 1.3 is proved in 

Section 5. Theorem 1.3 has been discovered and proved independently by Sudbury 

(1990). 

2. Construction of the process, duality equation, proof of Theorem 1.2 

We will construct the process from a graphical representation, as in Section 1 of 

Chapter 3 of Griffeath’s (1979) book. For each x, y E Zd with Ix - yl = 1 let {T:“‘: n 2 

l} and { Uz: n > l} be the arrival times of independent Poisson processes with rates 

1 and 6 Z= 0 respectively. We draw an arrow from (x, T’,‘.“) to ( y, TF”) to indicate 

that if x is occupied at time Tj;C”), the particle at x will send an offspring to y. We 

write a 6 at (x, Ua) to indicate that the site x will become vacant at time LIZ. We 

say there is a path from (x, 0) to ( y, t) if there is a sequence of times s0 = 0 < s, < . . . < 

srl< %+I = t, and spatial locations x0 = x, x, , . . . , x, = y, so that: 

(i) For i = 1,2,. . . , n there is an arrow from (x,_, , si) to (x,, s,). 

(ii) The vertical segments {x,} x [si, s,,,], i = 0, 1,. . . , n, do not contain any 6’s. 

Let N:(y) be the number of paths from (x, 0) to (y, t), and let 

N:(Y) =,lA N:(Y), 

5?(Y) = N:(Y) A 1, 

T?(Y) = N:(Y) mod 2. 

Here and in what follows we take 0 and 1 to be our representatives of the two 

equivalence classes of integers mod 2. If we let 6:’ = {y: S:‘(y) = 1) then the result 

is the contact process. (For more details, see Durrett, 1988, Chapter 4; Liggett, 1985, 

Chapter VI.) We claim that 77: ={y: 7$(y) = l} is the ABP. To verify this, notice 

that if a 6 occurs at y at time t then Nf( y) = 0 so y is vacant. As for the arrows, 

checking the various cases: 

Y x before after 

1 1 00 00 

time *r 01 11 - 

10 10 

11 01 

shows that they have the desired effect. 

The reason for interest in the above construction is that it allows us to define a 

dual process by declaring that dual paths can go (i) downward in time (but not 
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through 6’s) and (ii) across arrows in a direction opposite to their orientation, and 

setting for 0 S s S t, 

&y”(x) = the number of dual paths from (y, t) to (x, t-s), 

;it”,“(x) = ki”,“(x) mod 2. 

It is easy to see that N:(y) = @“(x). So summing over x E A and y E B, 

1 N;(y) = 1 Ip)(X). 
?EB XGA 

If either A or B is finite, both sums are, and 

,,& T?(Y) = EA rilB.“(x) mod 2. 

A little thought reveals 

{;;“,“(x,: OSSS t}g{q.fyX): osss t}, 

and we have proved the duality equation 

P((~fn B( is odd) = P(IAn qpj is odd). 

The last proof generalizes easily to give Griffeath’s observation (Proposition 1.1). 

Just observe 

{1~!+, n BI is odd} = {[VP n rjjB,‘+‘)l is odd}. 

With the duality equation established we turn now to the proof of Theorem 1.2. 

By Griffeath’s observation (Proposition 1.1) with s = 2 and the definition of the limit 

in (1.4), it is enough to show that if B is finite and ;iF is an independent copy of 

the process with initial state B then as t + 00, 

P(l~~n7j~I is odd)++P(ijf#@ for all s). (2.1) 

We begin with a simple fact: 

Lemma 2.1. If S>O then on 0, = {v., # 0 for all s}, IT,] + 02 a.s. 

Proof. Let h( 77) = PT(&), i.e., the probability of 0, when the initial configuration 

is 17. If 9, = g(q,: ss t) then L&y’s O-l law (Chung, 1974, p. 341) implies 

h(rl,)=E,(ln,I~,)~lnu, a.s. as t-a, 

i.e., h(q)+ 1 as. on 0,. If 1~~1 s n, then the probability that all particles will die 

before they give birth is at least (6/(2d + S))“, so h(v,) s 1 - (6/(2d + 6))“, and the 

desired conclusion follows. 0 
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The last result implies that if t is large and rjf # 0 then Ii;“1 will be large. The 

next ingredient is Lemma 9.14 of Harris (1976). The assumptions of that result are 

lengthy so we will not state them here. It is easy to check that they are satisfied for 

the ABP. 

Lemma 2.2. Let p be translation invariant with ~((0)) = 0. Given E > 0, there is an 

integerK(E) sothat I[IsK(e) impliesP(rl~n5#0)~1-&. 0 

It is trivial to strengthen Lemma 2.2 to: 

Corollary 2.1. Let L be a positive integer. Zf (5) 2 L. K(F/ L) then P(17: n 61 z L) 3 

1 - E. 

Proof. Divide 5 into disjoint sets 5,) . . . , lL with [<,I 2 K(F/ L) and use Lemma 

2.2 to conclude 

P((n/;n&l~l)~l-E/L. 0 

Lemma 2.1 and Corollary 2.1 imply 

In: n ;irl+ ~1~3, in probability, (2.2) 

where d, = {{p # 0 for all t}, and the right-hand side is ~0 on fi,, and 0 on d&. 

To get from this to the desired result 

pc177: n ?BI is odd)+ $P(&) as t +a, (2.1) 

we will find a lot of independent events that can change the parity. Let U, = 77: n 6:. 
We say that x E U, is isolated if in the graphical representation of 7:) 

{T (nv.x): n>l,Jx-yl=l}n[1,2]=0, 

i.e., the outside world does not influence x. Let V, be the set of isolated XE U,. 

Since {x is isolated} are i.i.d. events that are independent of ~1; and { 6.:: s 2 0}, it 

follows easily that 

I VI + aln _ in probability. (2.3) 

To get from (2.3) to (2.1) we observe that the events {a death occurs at x during 

[l, 2]}, x E V,, are i.i.d. events that change the parity and are independent of what 

happens in the rest of the process. The first step in translating our intuition into a 
proof is: 

Lemma 2.3. Let X, , X,, . . . be independent r.v.‘s with P(X, = 1) = 1 - P(X, = 0) = 

8,whereO</3~~,~1-~<1,andletS,=X,+~~~+X,,. Then 

IP(S, is odd) - 41 s $(l-2/3)“. 
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Proof. Let pn = P(S, is odd), p0 = 0. For n 2 1, 

Pn=Pn-,(l-e,)+(l-P,~,)8,. 

Subtracting 4 = $( 1 - 0,) + $0, gives 

PA=(Pn-l -~)(l-e,)+(~-P,~1)8,. 

so 

IPn-~I=IPn~,-tl~l~,-(1-~,)l~(1-2P)lp,_1-~), 

and the result follows by induction. 0 

Let 9, be the u-field generated by $1”) 7;) V,, and all the Poisson points in the 

graphical representation of ~7 in Zd x [l, 21 except those concerning deaths at x E V,. 

It is easy to see that 

P(lT;n<yI isoddl%,)=P C g,=hmod2 9, a.s. 
I > 

(2.4) 
XC v, 

where 

and 

& = l(thereisnodeathatxin[l,ZI), 

Now V, and h are measurable with respect to %,, and conditional on Y$, g,, x E V,, 

are independent, so it follows from (2.3) and Lemma 2.3 that 

P 
( 

C g, = h mod 2 Y$ + $ * lfi, in probability. (2.5) 
xt v, 1 > 

Combining (2.4) and (2.5), taking expected values, and using the bounded conver- 

gence theorem we have proved 

P(]nT n ;if] is odd) + $P(&), (2.1) 

and the proof of Theorem 1.2 is complete. 0 

3. Motion of a tagged particle 

Throughout this section we will assume that S =O. In this section we will define 

and study the motion of a tagged particle r, E r], that is the key to the proof of (**) 

given in the next section. In defining r, we want the first coordinate to increase at 

a linear rate and to keep the other coordinates close to 0. In what follows, it is 

convenient to use function notation for the process, i.e., n,(x) = 1 if x E 7, and =0 

otherwise. Things will be arranged so that at all times: 
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(CO): q,(r,) = 1. 

(Cl): s,(r, + e,) = 0. 

(Ci) 2~i=~d: v,(r,-e,)=O if r~>O,~,(r,+ee,)=O if rj<O. 

Here ei is the ith unit vector and rf is the ith coordinate of r,. 

We do not move our particle until one of the conditions becomes violated. If it 

is one of the conditions (Cl)-(Cd) that fails we will use: 

Repositioning Algorithm. Repeatedly apply the following rules until (Cl)-(Cd) 

hold: 

(Rl): If q,(r, + e,) = 1 then move to r, + e,. 

(Ri) 2sisd: Let ai(x)=x-e, if x’>O and =x+ei if x’<O. 

If v,(Ly,(r,)) = 1 then we move to ai( 

If several rules (Rj) can be applied, use the one with the smallest number j. 

For the discussion below it is useful to note that if we define a,(x) = x + e, then 

the first rule is the same as the others. 

When (CO) fails, the particle at r, was killed by a particle 

Y E 6 Ai 
i=l 

where A,(x) = {x - e,} and for 2 s i G d, 

i 

ix+ eJ ifx’>O, 

A,(x) = {x-e,} ifx’<O, 

{x+e,,x-ei} ifx’=O. 

If this happens we move our tagged particle to y and apply the repositioning 

algorithm. To check your understanding of the rules try the following example in 

d =2: 

0 1 c 0 0 0 

l*OllO 

1 0 0 0 a 0 

1 1 b 0 0 1 

010010 

Here * indicates the position of the tagged particle r,, which for concreteness we 

imagine to be at (2,4). The sites a, b and c are occupied by l’s and are the possible 

new locations of the tagged particle. 

event 

birth occurs at r, + e, 

birth occurs at r, - e, 

r, killed by rr - e, 

r, killed by r, + e, 

new position 

a 

b 

b 

c 
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Intuitively r: has positive drift for the following reasons: 

(i) When r),(r, -e,) = 1, r: + r: - 1 at rate ~landr:+r:+kwithk~latrate~l. 

(ii) When n,(r, -e,) = 0, r: + r: - 1 at rate 0 and r: + r: + k with k 2 1 at rate 2 1. 

(iii) We move from case (i) to case (ii) at rate ~1 (i.e., when the particle at r, 

kills the one at r, -e,) and from case (ii) to case (i) at rate 52d( 1-t d) +2d - 1 = 

2d(d+2)-1. 

To explain the last conclusion, we observe that (a) r, -e, gets filled in at rate 

~2d but if the tagged particle moves because one of the conditions (CO)-(Cd) 

becomes violated we may also end up in case (i); (b) each of the sd points ai 

gets filled in at rate s2d; (c) while we are in case (ii), the particle at r, gets killed 

at rate s2d - 1, equality occurring when r: = 0 for i = 2, . . , d. 

To translate the intuition contained in (i)-(iii) into a proof, we will define point 

processes on {+} x [0, co) and {-} x [0, co). When there is a birth from rr to r, + e, 

we put a point at (+, t). Let 

and when the particle at r, is killed by one at r, - e, put a point at (-, cp( t)). It is 

easy to see that the processes just defined are rate one Poisson processes. The + 

and - are to indicate that at the corresponding times r: changes by 2 +l and 3 -1 

respectively. If we let N: and NY be the number of points in [0, s] in the two 

processes then 

r:-ry:zS,= NT-N,,,,. 

Remark. For the proof of Theorem 1.1, we will also need to control the behavior 

of r:, 2~ i < d. To prepare for that we would like the reader to observe that the 

arguments for r: generalize immediately to the behavior of r’; when it is to. Replacing 

e, by ei, the intuition in (i)-(iii) and the construction for making it rigorous give 

rizr6+N:-N,,,, as long as r: < 0. 

Our first step in getting a lower bound on S, is to get an upper bound on p(t). 

From (iii), we see that n,( r, -e,) stays 1 for an amount of time s an exponential 

with mean 1 and stays 0 for an amount of time 2 an exponential with mean 

1/{2d(d + 2) - l}. A routine argument shows: 

Proposition 3.1. If a > 1 - (1/(2d(d +2))), there are constants C, y that depend on 

a so that 

P(cp(t)>at)GCepY’ for all t. 

(We will give the proof of this and the next two results in a minute.) Combining 

the last result with large deviations results for the Poisson process gives: 

Proposition 3.2. If b < 1/(2d(d + 2)), there are constants C, y that depend on b so that 

P(S, < bt) G C e-“I. 
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Using the fact that S, 3 - NG,, for all t s $M, any M, and summing the estimate 

in Proposition 3.2 with 6 = 0 over integers t 2 $M leads easily to: 

Proposition 3.3. 

Here and in what follows C, y E (0, CO) but change from line to line. 

We will now prove Propositions 3.1-3.3. Readers who are willing to believe these 

results can skip their proofs. 

Proof of Proposition 3.1. Let U,=O and for kal let 

V,=inf{ta U,_,: q,(r,-e,)=O}, 

U,=inf{ts VL: q,(r,-e,)=l}. 

( V, will be 0 if q,,(r, - e,) = 0.) As explained in the discussion of (iii), V, - CJ,_, c the 

time we have to wait after lJ,_, until the first birth from r, to r, -e,, and U, - V, 3 the 

time we have to wait after V, until the first birth lands on r, -e,, or on one of the 

sites a;(~,), 1 G is d, or on r, (ignoring births from r, -e,). A little thought reveals 

that we can construct independent random variables v,, v2,. . . and u,, u2,. . . with 

P( vk > t) = em’ and P( uk > t) = e-“@ where p= 1/(2d(d +2) - 1) so that 

Vk-Uk_,~vvk and UL-Vk2uu,. 

Letc=1-a<1/(2d(d+2))=~/(~+1)andpicka<1/(~+1)sothat~~>~>0. 

Standard large deviations results (see e.g. Billingsley, 1979, Theorem 9.3 on p. 124) 

imply that if 6 > 0, 

P( v, +. . . + V[,,] > (1 + 8)at) s C em” 

P( u, + + . . + u,,,, < (1 - G)pucut) c C emy’, 

where [x] = the largest integer GX. Pick S so that ((1+8)(~+(1-8)+~)<1 and 

(1 - ~)PLY > c. This is possible by the choice of LY. To complete the proof of the 

proposition, we observe that when v, + * * * + ZI[,,~ s (1 + 6)(rt and u1 + * . . + u[,,] 3 

(1 - G)puar, we have 

]{s G t: T,(r, - e,) = O}lz ct, (3.1) 

and hence q(t) s ar. To prove (3.1), we let N, = sup{k: U, G t} and consider two 

cases: 

Case 1: N,>[at]. 

I{sSf: ~s(r,-e,)=O}~~uu,+~~~+ul,,,~(l-G)~Lat~ct. 

Case 2: N, <[at]. 

I{.sS t: 7),(r,y-e,) = l}lG v,+. . *+vv[,,l~(l+6)at 

~{1-(1-6)/XX}f~(l-C)t. 0 
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Proof of Proposition 3.2. Standard large deviations results imply that if 6 > 0, 

P(N:<(l-G)t)sCe-Y’ 

and 

P( N, > (1 + 8)at) c C eFy’. 

If b<1/(2d(d+2)) we can pick a>l-(1/(2d(d+2))) and 6>0 so that 

(l-8)-(l+s)a>b. 

The desired result then follows from Proposition 3.1. q 

Proof of Proposition 3.3. We begin by observing 

P 
(- 

ib& S, < -M 
> 

s P( Nj$,,z M) s C epYM. 

To handle times >$M we observe that by considering the first time 7> n - 1 at 

which S, s 0, 

P(S,sO)2em2P(S,s0 for some tE(n-l,n]) 

since the probability of no arrivals in NT or N, in one unit of time is em2. Using 

the last observation and Proposition 3.2 with b = 0 it follows that 

4. Comparison with oriented percolation, proof of Theorem 1.1 

To prove Theorem 1.1 we begin by showing the following for 6 = 0: 

(**) Given T,,~ = A with An I, # 0 there is an event Gm,n,A measurable with 

respect to the graphical representation in B,,, so that: 

(i) On Gmnn, ~(,+~)~n LPI f 0 and ~~~~~~~~ L+, + 0. 
(ii) If L is ‘large then P(G ,,,+ 1~0,~ = A) 2 1 - E for all A with A n I, # $3. 

Note. With the proof of Theorem 1.3 in mind, we ignore the fact that v0 = (0) in 

Theorem 1.1. 

The good event Gm,n,A is the success of a procedure designed to ‘move’ a particle 

from Z, to Z,,, and one from I,,, to Z,,_, in [nT, (n + l)T). Before entering into the 

somewhat unpleasant details, we would like to point out the sources of our troubles. 

The arguments in the last section gives us a lower bound on the drift of r: to the 

right but no upper bound, and the argument has to work when A is a single point 

or all of Zd. 
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By the Markov property and translation invariance in time and space it suffices 

to prove (**) when m = 0, n = 0, and no = A has An 1, f 0. The first step in the 

construction of our moving particle p, is to find a starting point p0 so that cui(p,) 

is vacant for 1 G is d. Let x0 E A and j 2 0. If all the points CX~(X,) are vacant then 

stop and set pO= xj. If at least one of the points ai is occupied let Xi+, be the 

one with the smallest value of i and try again. One of two things can happen: (a) 

the construction terminates at a point p,, with the desired properties without leaving 

[-+L, GLld or (b) not. In the second case let y, be the first xj not in (-L-4k, 

L+4k)d,let~,={~,(y~):1~i~d}nA,andletF~={fromtimeOto1thereisexactly 

one arrow from yk to each point in 19~ and no other arrows land on {yk}u 0,). The 

events F,, 1 c k s [BL], are independent and each has probability at least 

exp(-2d(d + l)), so with probability at least 

one of these events will occur and give us a place p. to start our construction. 

In case (a) our moving particle P, starts moving at time 0; in case (b) at time 1. 

In either case p, starts at the location found in the last paragraph and behaves like 

the tagged particle r, until time 

r, = inf{ t: p: 2 3L). 

To keep the particle from flying out ofthe box B,,, at time r, , we stop the repositioning 

step at time 7, when the first coordinate becomes $L. (We assume L is even.) 

If T, s T then at time T, we have achieved our first goal of moving the first 

coordinate into [L, 2 L] and the construction enters its second phase which will now 

be described. Let /3,(x)=x-e, if x1> ;L, P,(x)=x+e, if x’<$L. If 2<i<d let 

p,(x) = a;(x). During this part of the construction, things will be arranged so that 

at all times: 

(CO): 7/Q?.,) = 1. 

(ci) 1s isd: q,(pi(r,))=O. 

We do not move our particle until one of the conditions becomes violated. If it is 

one of the conditions (cl)-(Cd) that fails we will use: 

Repositioning Algorithm II. Repeatedly apply the following rules until (Cl)-(Cd) 

hold: 

(iii) lsicd: if v,(pi(r,)) = 1 then we move to P,(r,). 

If several rules can be applied, use the one with the smallest number. 

Since each such move brings the particle closer to ($L, 0,. . . , 0) the algorithm 

stops after a finite number of steps. Notice that now the first coordinate is treated 

like the others (except for the fact that we try to keep it near $L). 

To prove (**), we begin by observing that the first coordinate of our particle 

starts at pA> -$L, and our first goal is to get to $L, so if K~ = 2 . 3 . 2d(d +2) then 

Proposition 3.2 and Proposition 3.3 imply that with high probability (i.e., with a 
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probability + 1 as L -+ CO) 

T,<T=K~L and p:>-2L for tsT1. 

Turning now to the behavior of pi, 2 s is d, we begin by observing that p6 is in 

[- $L, $L], so the arguments for p: , 0 G t s T, (see the remark in Section 3) show 

that if 7: = inf{ t: pi = 0) then with high probability 

-ry<T and lp61<2L for SST:. 

For 2< i<d let 

a: = inf{ t > +’ : pi # 0}, 

rt=inf{t>&‘: pi=O} 

and K, = inf{k: a: > T}. Every time pi = 0, it stays there for at least an exponential 

amount of time with mean 4 (i.e., until p, is killed by a particle at p, + e, or p, - e,), 

so with high probability K, s 4T = ~K~L. An easy generalization of Proposition 3.3 

shows 

P(Jp:l S L for some t E [u:, 7:)) S C epyL. 

Combining the last two results we conclude that with high probability, lpfl E (-L, L) 

for all t E [~j), T]. For the case i = 1, replacing 0 by $L in the definition of (T; and 

7: for i = 1 and setting r(: = T,, the last argument also shows that with high probability 

p:g(L,2L) for tc[T,, T]. 

At this point we have done what we promised to do. We have given a procedure 

that moves a particle from I,, to I, with high probability. A little reflection (pun 

intended) shows we can also move a particle from I, to I-, . This shows that (**) 

is satisfied. To get from (**) to (*) we use induction. Since knowledge of the variables 

{q, : (i,j) E 3, Ii1 <j} is enough to compute { Wi, n 2 0}, we will only define those 

variables. We start with an A with An I, # 8, so (**) implies we can define wO,” E (0, 1) 

so that P(w,,, = 1) = 1 - F and {qO = 1) c GO,O,A. Let n 3 1. Suppose now that the 

qj have been defined for j < n and we have xt 2 Wz . Since the good events G,,,v,,rA 

for the boxes Bk,, with k E ,y”n have probability 3 1 - E and are conditionally indepen- 

dent given n tT, we can define independent w,,, l {O,l},(m,n)~~with~ml~nthat 

have P( w,,, = 1) = 1 - E, and {w~,~ = l} c Gk,,,?,,,A, and are independent of the wj,k 

with k < n. The last inclusion and the definition of the good event imply x:+, 2 W”,,, . 

The proof of (*) is complete, and as indicated in the introduction, Theorem 1.1 

follows. 0 

5. Proof of Theorem 1.3 

In this section 6 = 0. It suffices to prove the result when n,, = A # 0 is not random. 

Let B # 0 be a finite set and <r be an independent copy of the process with initial 

state B. By Griffeath’s observation (Proposition 1.1) it suffices to show that 

P(l~?n <;“I is odd)+ 4 as t+a. (5.1) 
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To do this, we begin by recalling some facts about the set of wet sites W”, in oriented 

percolation. Here and throughout the rest of the section, we will use notation 

introduced in the last section. It is well known (see Durrett, 1980, 1984,1988) that 

on a, = { W”, # P, for all n} we almost surely have 

ASUP w”,+cfY(p), iinf w”,+-(Y(P) 

where (Y(P) is a constant, and p(p) = P(&). It is 

and I W”,l/n + UP, 

also known that CT(P), p(p) t 1 

as p t 1. Pick p0 so that cr(p)p(p) 3 f for p 3 p,,. Let @IO, be an independent copy 

of WO,. Since 

WE, I@O,c{-n, -n+2 ,...) n-2,n}, 

it follows that 

IW”,n @~?+I for large n a.s. on fl,n d, (5.2) 

where, of course, d, = { 6’: # 0 for all n}. 

(5.2) shows that two independent oriented percolations have the property we 

desire. To get from this to a proof of Theorem 1.3, we note that (*) in the introduction 

implies we can pick L large enough so that B c I,, A n I,, # 0, and 77: and ;if 

dominate independent oriented site percolation processes, W”,, @:, with p zpo. 

Let T = K~L be the time scale for the block construction. If t > T we can write 

t=nT+r where nz0 is an integer and T<rs2T. Let 

J,=2mLe,+[-2L+1,2L-lid and D,,,=J,,,x[nT, t). 

Let U,, = W’l, n l@‘“, . We say that m is isolated at time t if no arrows touch the 

boundary of J, during [nT, t) in the graphical representation of either process. Let 

V, be the set of m E U, that are isolated at time t. If m is isolated, the evolution of 

the processes T* and ;i” in J, is unaffected by what happens outside. 

Since the events which determine the fate (isolated at time t or not) of different 

m in U,, are independent, it follows easily from (5.2) that we have: 

Lemma 5.1. There is a c > 0 so that 1 V,~Z ct for large t a.s. on R,n d,. 

Proof. Let b =iP(no arrows touch the boundary of J, during [0,2T] in the 

graphical representation of either process). Since the events {m is isolated are time 

(n + 2) T} are independent, conditioning on the value of U,, and computing fourth 

moments of VCn+ZjT shows 

: P(U n B an, VCntZjT~ bn) Q 
n=, 

f, +a. 

The desired result with c = b/(3 T) now follows from (5.2), the Borel-Cantelli lemma, 

and the fact that 

v, 2 Ynt2)T when tE((n+l)T,(n+2)T]. Cl 



16 M. Bramson et al. / Annihilating branching processes 

Let 9, be the a-field that is generated by ntTT, rl,BT, V,, and all the Poisson points 
in the graphical representation that are in Z“ x [n7’, t) but not in lJ {D,,,: m E V,}. 
It is easy to see that 

P(]nfn;iQI is oddIY,)=P 1 g,=hmod2 
mt v, 

(5.3) 

where 

g,,,=)qfn;jynJ,] mod2, 

h=l-{jn?n$FnHI mod2) 

and 

H=Zd- i_j J,,,. 
mt v, 

The intersection of 77: or 711” with a J,,,, m E V,, is a finite state Markov chain 

with transition probability independent of m, run for an amount of time E (T, 2T], 

so there is a p > 0 with 

P(gm=lI%,)E[&-P] for rnE V,. (5.4) 

Now V, and h are measurable w.r.t. %,,, and g,, m E If,, are conditionally independent 

given Y,, so it follows from Lemma 5.1 and Lemma 2.3 that 

P 1 g,=hmod2 97, +i as t+aoa.s.on&nfii,. 
I > 

(5.5) 
mt v, 

Taking expected values in (5.3) and using the bounded convergence theorem gives 

fit P(lvFn $‘:I is odd, f&n d,) = $P(fl,)‘. 

Recall 0, and 6, are independent. As L +a, the parameter in the percolation 

process p = 1 - s(L) + 1, so P(&), P(&,=) + 1. From this it follows easily that 

fim P(lvf n ;i(“l is odd) = $ (5.1) 

holds and Theorem 1.3 follows. 0 
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