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CONDITIONED LIMIT THEOREMS FOR SOME NULL
RECURRENT MARKOV PROCESSES!

By RICHARD DURRETT
University of California, Los Angeles

Let {vx, k = 0} be a discrete time Markov process with state space
E c (—o0, ) and let S be a proper subset of E. In several applications
it is of interest to know the behavior of the system after a large number
of steps, given that the process has not entered S. In this paper we show
that under some mild restrictions there is a functional limit theorem for
the conditioned sequence if there was one for the original sequence. As
applications we obtain results for branching processes, random walks, and
the M/G/1 queue which complete or extend the work of previous authors.
In addition we consider the convergence of conditioned birth and death
processes and obtain results which are complete except in the case that 0
is an absorbing boundary.

1. Introduction. Let {v,, k = 0} be a discrete time Markov process with state
space E C (—oo, o) and let S be a proper subset of E. In several applications
(see [8], [12] and [13]) it is of interest to know the behavior of the system after
a large number of steps given the process has not entered S. For example, if v,
is a branching process and § = {0} a limit theorem for (v,|v,, # 0,1 < m < n)
gives information about the size of v, on the set {v, > 0}.

In [2], Seneta and Vere-Jones have given conditions for the convergence of

(1) a;;(n) = P(v, = j|v, = i, Ny > n)

where Ny = inf{m > 1:v,eS}. In many cases, however, all the limits in
(1) are zero. Applying the results of [2] when v, is a branching process and
S = {0} gives that a;* = lim,_, a,;(n) is a probability distribution when
m = E(w,|v,=1)< 1 and «;* =0 when m = 1. To obtain an interesting
theorem in the second case we have to look at the limit of (v,/c, |v, = i, Ng > n)
where the ¢, are constants which 1 co.

In this instance the most desirable type of result is a functional limit theorem,
i.e., a result asserting the convergence of the sequence of stochastic processes
{V.*(t), 0 < t < 1} defined by

2) V() = (Vpaaf€n| Vo = i, Ng > 1)
where [x] is the largest integer < x.
In this paper we will show that under some mild restrictions {V,*(¢), 0 < ¢t < 1}
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converges if there is a corresponding functional limit theorem for the uncon-
ditioned sequence. As applications we will obtain results which complete the
work of Lamperti and Ney (1968), Iglehart (1974) and Kennedy (1974).

To describe our results in detail we have to state the basic assumptions. The
first and most natural are: (i) v,, kK > 0 is a Markov process with state space
E C (—o0, o0); (ii) there are constants ¢, T oo with c,,/c, — 1 so that if x, — x
and x,c, € E for all n then

Varn = (VaafCa| Vof€n = X,) = (V| V(0) = x) = V=,

where V' is a Markov process with /' nondegenerate for some y > 0; and (iii)
P{inf,_,., V*(s) > 0} > 0 for all 7, x > 0.

Here the symbol — means that the sequence V,*» converges weakly as a se-
quence of random elements of D—the space of right continuous functions on
[0, 1] which have left limits (see [20] for a description). Nondegenerate means
that P{V'= = f} < 1 for all fe D.

Let N= N_. 4. Itis under assumptions (i)—(iii) that we will derive condi-
tions for the convergence of (V,*»| N > n) (a) for all x, — x = 0 and (b) when

¢, =yekE.

We will obtain our conditions for the case x, — x > 0 by solving a more
general problem. In Section 2 we give sufficient conditions for the conver-
gence of P,(.|4,) = P,(. N A4,)/P,(A,) when the P, are probability measures
with inf, P,(4,) > 0. Applying these results to sets A4, = {f : infy,., f(s) > 0}
with ¢, — t€[0, 1] we find that if P,*» and P~ are the probability measures in-
duced on D by V,*» and V'*, then x,, — x > 0, (ii), and P,*»{N > nt,} — P*{T, > t}
are sufficient for (V,*»|N > nt,) = (V*| T, > t) when T, = inf{s > 0: V(s) or
V(s—) < 0}. (We will work with T, instead of the natural hitting time
T, = inf {t > 0: f(r) < 0} since

{f:00) >0, Ty(f) > 1} = {f + infos,z, f(5) = 0}

is open.

1111) Sec)tion 3 we consider the convergence of the conditioned processes when
x, — 0 and, in particular, when x, = y/c,. In either situation P *{N > n} — 0
(in most cases) so a special analysis is required. Our method for proving con-
vergence will be to show that if

Vot = (Vipa/Cal Vo = X, N > ) and T = inf{k: v,/c, = ¢

then
lim,_, V,* = lim,_,lim,_, (’U[Tn+,n /€l vy = X,¢,s N > )
= lim__, lim, ., (Vn.1/Ca |0 = V (T n), N >n—Tr™
= lim,_, lim,_, (Vp.9/€. |V = X, N > n) .

In Section 3 we will show that these three equalities hold if (in addition to
(i)—(iii)) we have
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(iv) P,*»{N > nt,} — P*(T, > t} whenever x, —» x >0, t, —»t > 0; and
(v) P,»{N > nt,} — 0 whenever x, —» 0 and 7, — ¢ > 0.

The key to our proof is the following fact (first observed by Lamperti in [25]):

THEOREM 3.2, If (ii) holds then there is a 6 =0 so that for all ¢ >0,
Ver =, cVe(ec™?).(x)

This scaling relationship identifies the processes which can occur as limits in
(ii) and can be used to deduce many properties of the limit process. In Section
3.1 we use (x) to compute relationships between the numbers P*{T, > ¢}. These
relationships are used to identify trivial cases and obtain sufficient conditions
for (iii), (iv), and (v) to hold.

In Sections 3.2 and 3.3 we use these preliminaries to prove our conditioned
limit theorems. To do this we reverse the usual procedure for proving weak
convergence. In Section 3.2 we develop sufficient conditions for V,* to be tight.
In Section 3.3 we find conditions for the convergence of finite dimensional dis-
tributions. The main results of these two sections are:

THEOREM 3.6. V,* is tight if and only if
(6a) lim,_ limsup, ., P{V,*(1) > K} =0 and
(6b) lim,_, lim sup, ., P{V,*(t) > h} =0 foreach h>0.

THEOREM 3.10. Suppose (i)—(v) hold and V ,* is tight. If V+ = lim, ,(V*|T,> 1)
exists and is % O then V,* = V'* if and only if

lim, |, lim inf,

n—oo

PV,"(t)>h =1  forall t>0.

From the first result we see that to prove the sequence is tight it is enough to
prove that V, *(r) = V*(¢) for all t > 0 and V*(t) =0 as t — 0. The second
result shows that if we do this and find that P{V'*(r) > 0} = 1 forall¢ > 0 then
V*(t) =, V*(r) (provided that V'* exists).

In Sections 4.1—4.4 we use the results of Section 3 to prove conditioned limit
theorems for random walks, branching processes, birth and death processes, and
the M/G/1 queue which contain the corresponding results of [6], [8], [12], and
[13] as special cases. It seems likely that the methods can be extended for the
non-Markovian examples studied by [7] and [11], but I have not tried this.

A more interesting unsolved problem is to generalize the results of Section 3
to other types of conditioning. There are three types of theorems in the litera-
ture to which it seems our methods can be applied. The first and most closely
related are the results of Belkin (1970, 1972) and Port and Stone (1971) on random
walks conditioned on {N; > n} when B is a bounded subset of the state space.
A second type of result concerns conditioning on {v, € 4} or {(v,_,, v,) € B}.
Several limit theorems of this type have been obtained for 4 = {x} or [a,, b,]
(see [15], [17], [18]) and B = (0, 0) X (—o0, 0) (see [19]). A third possibility
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can be constructed by taking the intersection of a condition of the second type
with {N > n — 1} or {N; > n — 1}. The condition {N,, = n} is an example of
this type which has been studied by Kaigh (1976).

2. Conditions for the convergence of P (.| 4,) when inf, P, (4,) > 0. In this
section we shall give several conditions under which the weak convergence of
a sequence of probability measures P, on a metric space (S, p) is sufficient for
the convergence of the conditional measures P,(+ | 4,) = P,(+ N 4,)/P,(A4,) when
inf, P,(A4,) > 0. The main result is:

THEOREM 1. Let P,, n = 0, be probability measures and A,, n = 0, be a sequence
of events. If(i) P, = P, (ii) there are sets G, 1 A, such that for each m, P,(0G,) = 0
and there is a positive integer k(m) so that A, D G, for all n = k(m), and (iii)
P(A4,) = limsup, P,(A4,) > O then P,(A,) — Py(A)) and P,(-| A,) = P+ ]| A4)-

Proor. ItsufficestocheckthatP,(Bn A4,)— P(Bn A)forall Bwith Pi(0B) =0.
From (ii)

lim inf, . P,(B N A4,) = lim inf, _ P,(B N G,).
Since Py(3(B N G,)) < P(dB) + Py3G,) = 0
P(BNG,) =P(BnG,).

P(B N A,) = P(Bn A). Since (B = 9B,

lim

n—00

Letting m — oo now gives lim inf,
P(d(B°)) = 0 and we have

lim inf,_, P,(B° N A,) = Py(B° N A,).

00

Using (iii) now gives
limsup,_., P (B N 4,) < limsup,_, P,(A4,) — liminf, _ P, (B N A4,)
< P(B N 4),

which completes the proof.

When applying this theorem we will typically be given P,, n > Oand 4,,n = 1,
and we will have to find an appropriate sequence G,. Condition (iii) suggests
that we would like to construct the largest 4, for which there is a sequence
G, T A4, which satisfies (ii). To do this observe that if G, and A, satisfy (ii) then

G,. C Nuzieim An and P(0G,) =0

s0 P[U5-1 (MNazm 44)°] = P(A,). Toshow that J_, (MN,zn 4.)° (hereafter called
LIMNF 4,) is the limit of a sequence G,, which satisfies (ii) we have to introduce
some notation.

If H is a subset of S and ¢ > 0 let H* = {y: {x: p(x, y) < ¢} c H}. The in-
terior of H, H° = |J,,, H* so P(H*) T P(H) as¢ | 0. Lete, | 0 and let

Gm = (nﬂgm An)em *

It is immediate from the definition that G,, ¢ A, forn = m and G,, } LIMNF 4,.
The sets G, may have P(0G,) >0 but this is no problem. If ¢ <
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O(H¥) C (H*)*so 0H* n 0H* = @. From this it follows that P(0H?) = 0O for all
but a countable number of ¢ so we can pick another decreasing ¢,’ < ¢,, for
which the associated G,’ have P(dG,’) = 0.

Using the observations above we can write the result of Theorem 1 in a simpler
form.

THEOREM 2. If P,=P and P(LIMNF 4,) = limsup, P,(4,) > 0 then
P, (A,) — P(LIMNF A,) and P(+| A,) = P(- | LIMNF 4,).

The reader should note that if P(LIMNF 4,) = 1 then P (.|4,)=P. To
apply Theorem 2 in nontrivial cases it is desirable to reformulate the condition
P(LIMNF A4,) = lim sup,, P,(A,) in terms of the sequence 4, and the limit meas-
ure P. One way of doing this is to observe that for alln = m

A'n C (ngm Ak)_ b

SO
lim sup, P,(4,) < limsup, P,(Uirzm 4x)7) < P(Uszm 4)7) »
and letting m — oo
lim sup, P,(4,) £ P(Np=1 (Urzm 4:)7) -

If we let LIMSP 4, = N2, (Uxan 4:)~ and note that LIMSP 4, > LIMNF 4,
we can write Theorem 2 as:

THEOREM 3. If P(LIMSP A, — LIMNF 4,) = 0, P(LIMNF 4,) >0 and
P(AALIMNF A4,) = O then P,(A,) — P(A) and P,( | A,) = P(+ | A).

A special case of Theorem 3 which we will need in Sections 3 and 4 is the
following:

ExaMmPLE. Let S = D and p be the Skorokhod metric on D (see [20], page
113). Let 4, = {f: inf,,, f(s) > 0} with 7, »¢>0. If g, = sup,,t, and
r, = inf, ., ¢, then

LIMSP 4, = (3, ({f : infle,, /(5) > 0))
= Nia{f+inf, f(s) = 0}
= {f: infic f(s) = 0}.
To compute LIMNF A, we observe
Ne-w A, = {f + inf,g, f(5) > 0} if t,=t forsome n=m
= Mo {f 1 inf,,_ f(5) > 0} if t,<t forall n=m
Since the interior of the second set is the first, we have
LIMNF 4, = Uz, {f ¢ infug,, /() > 0} = {f : infe, /(5) > 0}
and
LIMSP 4, — LIMNF 4, = {f: inf,, f(5) = 0} U {T, = 1}

where T, is the hitting time defined in the introduction.
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Using Theorem 2.3 now gives that we have convergence whenever P{T,>1} > 0
and the two sets in the last equality above have probability zero.

This result is sufficient for most, but not all, of our desired applications. If
P{f:f= 0} =1 then P{f: inf,, f(s) = 0} = P{T, < ¢} and from the compu-
tations above we see that Theorem 3 can only be applied in the trivial case
P{T, > 1} = 1. To obtain our results when P{f: f = 0} = land P{T, > t} € (0, 1)
we will use Theorem 2.

3. Conditioningon T __ ;; > n.

3.1. Preliminary results. In this section we will investigate consequences of
assumptions (i) and (ii). Our first result follows immediately from the type of
convergence assumed in (ii).

THEOREM 1. If there is a Markov chain v, so that v,.,/c, converges to V (in the
sense specified in (ii)) then V has the following weak continuity property:

(1) if x,—x, then Von = V=,
This implies, in particular, that V is a strong Markov process.

Proor. The second fact is a well-known consequence of the first. To prove
(1) we observe that if x, — x there is a sequence n, increasing to oo so that if
Yo = X, Wwhen n, < n < n,, then lim,__ V% = lim V,y» = V* (the lim here
means weak convergence).

The processes which can occur as limits in (ii) also have special properties
because they result from scaling and contracting time in a single Markov process.
The most basic of these is the scaling relationship given in the following theorem.

n—00

THEOREM 2. If assumptions (i) and (ii) hold, there is a 6 = 0 so that
(2) forall ¢>0, Ver =, eV*(sc7?),
3) and forall t >0, lim,_, ¢,p/c, = t°  (here, t= = lim,_, ™).
Note. To simplify notation in what follows we will drop the square bracket
from c,,; and write c,,.

Proor. Let 2¢(0,1]. Let m,=m, (2) =sup{m < n:c,/c, < 2}. Since
Cp_ifc, — 1 and ¢, — oo, Cp, /¢y — 4. If x, — x and a subsequence of m,/n con-
verges to p € [0, 1], it follows from (ii) that

(v[mn.]/cm,n I 'Uo = xncm") = Va:
and asubsequence of the left-hand side converges to 2-'V*(p«) so V* =, 271V**(p.).

Let x, be a state with P{V% = x,} < 1. If m,/n has two subsequential limits

01, P2 € [0, 1] with p, < p, then

2—11/:0(‘01.) =y Vo2 =y 2—1Vz0(p2.)
so if > 0 and n is a positive integer V*o(t) =, V=(t(p,/p,)"*). Letting n — oo and
using the right continuity of V= at 0 gives P{V*(t) = x,} = 1 for each ¢, a con-
tradiction, so lim,_, m,(2)/n exists and is positive.
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If we let p(4) = lim,_, m,(2)/n then p is a positive nondecreasing function
which satisfies p(s)o(t) = p(st). From this it is immediate that p(s) = s° for some
6 = 0 and (2) holds.

To prove (3) we will consider two cases. First, let d > 0. If 22 < r < 2
then for n sufficiently large m,(4,) < [nt] < m,(4,) so 2, < liminf, c,/c, <
lim sup, ¢,,/c, < 4,. Since this holds for all 2, and 2, with 2 < ¢t < ;% this
means lim,_ c,/c, = /°. If 6 = 0 a similar argument shows that if ¢+ < 1,
lim sup,_.., ¢,./¢c, < ¢ for all ¢ > 0 and this completes the proof.

REMARK. A function L isslowly varying if lim,_, L(xt)/L(¢) = 1forallx > 0.
Using this notation conclusion (3) can be written as ¢, = n"?L(n). Since we
will write many statements like this in what follows we will use the letter L to
denote slowly varying functions. The value of L(n) is rarely important for our
arguments and in general will change from line to line. Subscripts and other
ornaments will be attached when we want to emphasize that the slowly varying
function depends upon the indicated parameters.

If 6 > 0 we can let ¢ = n~"? and x = y/n="? in (2) to obtain

@) V=g ey

so (1) and (2) characterize the processes which can occur as limits in (ii). If
0 = 0, however, (2) becomes V¥ =, cV¥ and we can no longer guarantee that
there are ¢, — oo so that ¢,~'V*=*(n.) converges. We have not been able to
characterize the limits which can occur when ¢ = 0. The next few results shows
that these processes have some strange properties.

An immediate consequence of Theorem 2 is the fact that for all ¢ > 0

(5) PT, > t} = P*{T, > tc~°}.

If 6 = O this means that P¥{T, > t} has the same value for all y > 0 so using
the strong Markov property

PYTy, > s + t} = E¥Y[T, > s; P"{T, > t}]
= PY{T, > s}P¥{T, > t} .
Since ¢(t) = P¥{T, > t} is nonincreasing, nonnegative, and satisfies ¢(r + s) =
¢(s)¢(t) this means PY{T, > t} = e~* for some 2 > 0 (which is independent of y).
This shows that (iii) is always satisfied if = 0. If 6 > 0, however, we are
not so lucky. In this case taking ¢ > 1 in (5) gives only an inequality:
(6) PHT, > t} = P¥{T, > t} when x=y >0,

so we are forced to take a new approach.
Let S, = inf {¢: P*{T, > 1} = 0}. What we would like to show is that S, = o
for each x > 0. From (2), we have:

1) if ¢>0, §,6=cS,,

so either all the S, are infinite or none is.
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Suppose S, < oo. Forx > 0and fe DletT,(f) = inf{r > 0: f(r) = x}. Using
the strong Markov property

0= PT, > S} 2 BT, < Ty P'Ts+(T, > S, — T, }].

Since V¥(T,, )=y + cand S, — T,,, < S, it follows from (7) that the integrand
is positive so P¥{T,,, < T,} = O for each ¢ > 0.

Since V is strong Markov process this implies V¥(z A T,) is nonincreasing.
When we note that foreach s > 0,0 = PY{T, > S,} = P{V(t) = y, T, > t}P*{T, >
S, — t} we have shown:

(8) if S, <oo, V¥r) isstrictly decreasing for + < T, .

Having arrived at a strange conclusion under the assumption §, < co we
might hope to continue and derive a contradiction. The next example (due to
W. Vervaat) shows that assumptions (i) and (ii) do not imply (iii).

ExaMPLE. Let v, be a Markov chain with state space {0, 1,2 ---} which
makes transitions according to the following rules:

P{v,,, = 0|w. = 0} = P{v,,, = 0fv, = 1} =1
k=2 Plv,,=k—1|v,=k}=1—(1/k)
Plv, ., =0|v, =k} = 1/k.
From the definition of v, it is easy to check that v,.,/n converges (in the sense
specified in (ii)) to a process which has the following form:
Vet) =x—1t if t<R,
=0 if +t=R,
where R, has P{R, < x} = land for0 < s < x P{R, > x — s} = lim,_, T[\"]..; (1 —
1/m) = exp(log s — log x) = s/x .
Up to this point we have only used the scaling relationship for x > 0. If we

let x = 0 in (2) and (5) then we get two more formulas to help us analyze the
limit process.

(%) VO =, cV%ec™?)
(10) PAT, > t} = PYT, > tc~?}.

If 6 =0, (9) says V" =, ¢V for all ¢ > 0 so V* = 0. Combining this result
with the fact that P*{T, > 1} = e~* for x > 0 gives that for all # > 0

lim, o P(SUPoges; V¥(2) > | Ty > 1) < € lim, |, P(supyg,s, V(1) > h) = 0

so (V*|T, > 1)=0as e | 0. Taking a peek ahead into Section 3.3 we see that
this means the only possible limit of ¥,* is 0 so we will abandon this case and
label it trivial.

If 6 > 0, (10) shows that P{T, > ¢} has the same value for all + > 0. Since
PYT, > 0} = lim, , P°{T, > u} it follows from the Blumenthal 0-1 law ([22],
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Theorem 5.17) that

(11) PYT, >t} iseither =0 or =1.
Since {T, > t} is open, using (6) and (1) give

(12) P*{Ty > t} = lim, , PY{T, > t} = P{T, > t}

for all 1, x > 0.

From (12) we see that if P°{T, > ¢} = 1 then P*{T, > t} = 1 forall t,x > 0
and so we expect that the conditioning to stay positive will have no effect. For
positive levels this is a consequence of the results of Chapter 2: if x, - x > 0,
using Theorem 2.2 gives (V*|N > n) = (V=|T, > 1) = V=

If x, — O the situation becomes more complicated. If lim inf, P,*{N > n} < 1
then we cannot apply the results of Chapter 2 (each theorem has P (4,) — P(A)
as a conclusion) and if lim inf, P,*»{N > n} = 0, V,* may fail to be tight. Con-
ditions for convergence in this case will be given in Section 3.3. The results
given there will show that if the limit exists in the sense of (a) then V, * = V",
i.e., the conditioning has no effect.

For the rest of the paper we will be mainly concerned with what happens
when P*{T, > t} % 1 for some (and hence all) x > 0. Since P*{T, > t} is de-
creasing lim,_ ., P*{T, > t} exists for each x > 0. Using the scaling relationship
gives that this limit is independent of x. Call it 2. From the Markov property

PT, >t + s} = E*[T, > t; PP{Ty, > s}].
Letting s — co gives 4 = AP*{T, > t}so 4 = 0.
If 6 = 0, this agrees with our previous calculation. If 6 > 0, we can use (3)
to conclude
(13) lim, , P*{T, > t} = lim,,, P{T, > u} =0 iff PoTy,>t}=£1.
The reason for interest in this conclusion is the following result which is an
immediate consequence of Theorem 2 of Section 2:
Suppose lim, ,P*{T, >t} =0 forall 7> 0 and (iv) holds.
(14) If for each m, P{N> m|v,= x} is an increasing function
of x then
(v) P*»{N >nt}—0 whenever x,—0 and 1,—1¢>0.
There is a converse to this proved in [41]:
(15) if (v) holds then so does (iv).

Since it is usually more difficult to verify (v) than (iv), (15) is not a useful result
for checking that (iv) holds. To obtain the results which we will use to check
(iv) in Chapter 4, we will use the results of Chapter 2.

Let T, = inf{r > 0: f(r) < 0}. If P*{T, =t} = 0 and P’{T,~ = 0} = 1 then
from the strong Markov property P*{f : inf ., f(s) = 0} = 0; so using Theorem
2.3 gives (V,*»|N > nt,) = (V*| T, > t) whenever x, —x >0 and ¢, » ¢ > 0.
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From (9)
(16) PYT,” = 0} = lim,_, P{V°(r) < 0} = P{V%(1) < 0},
so if P°{V°(1) < 0} > O using the Blumenthal 0-1 law gives P{7,~ = 0} = 1and
the result above can be applied to conclude:
(17) if P[V(1)<0} >0 and P{T, =1t} =0 forall +>0
then (iv) holds.

On the other hand, if P{V%(1) < 0} =0
(18) Plinfogus, V(s) 2 0} 2 1 — X4 ravtonar P{V(q) < 0} = 1
so ¥* = 0 and Theorem 2.3 cannot be applied. In this case we will use Theorem

2.2 or another trick (see Section 4.4).

3.2. Conditions for tightness. According to Theorem 15.2 in [20], a sequence
of probability measures on D is tight if and only if the following two conditions
hold:

(a) lim,_, limsup,_ P, {f:sup,|f()) > M} =0
(b) lim,_,limsup, . P,{f: o/(d) > ¢} =0

where o/(d) = o/(d; 0, 1) is the modulus of continuity defined by

w/(d; a,b) = inf”i, [max, g, (Supti_]§8<t<ti 1/(s) — f(D))]
the infimum being taken over all sequences {t;} witha =1, <1, < --- <t, =5
and min, (1, — t;,_,) > d.

Because of the complexity of the definition of w, the second condition is
usually difficult to verify. In this section we will assume (i)—(iv) hold and
develop equivalent conditions, which are easier to check in our special case,
by examining the behavior of the path before and after hitting [e, co). Through-
out this section we will assume that J, the exponent in (2) of Section 3.1, is

positive.
If T(f) > d we can let , = T(f) in the definition of v, and obtain
(D) o/d)ZeVo/dT,]1).

When f = V,* = (V,.1/¢,| ¥ = X,€,, N > n) the last expression is the modulus
of continuity of a process which starts from a height V,*(7. A 1) and is con-
ditioned to stay positive for (1 — T,)* time units. Since we have assumed (iv),
the results of Section 2 show that (V,*s| N > n) = (V*|T, > 1) when x, - x > 0
and using the inequality above we can prove the following.

THEOREM 3. V,* is tight if and only if the following two conditions hold:
(3a) for some ¢ > 0, lim,_,, limsup,_., P{V,*(T.) > M} = 0;
(3b) forall e > 0, lim, ,limsup,_. P{T(V,*) < t} = 0.

That is, we have tightness if the conditioning does not make the process jump
too high or leave zero too fast.
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Proor. The conditions are necessary since they follow from (a)and (b) above.
To prove sufficiency define the post-T, process

X'n+(') = (v["(T5+‘)]/c"|TE é 1’ N > n) .
Since v, is a Markov chain,

Xn+(') =d (’U[n,]/C,nI’UO = Y", To > Ln)
where
Y, = (Vr,[¢,|T. = 1, N > n)
and
L=(1-T,]|T.Z1,N>n).

From Prohorov’s theorem ([20], Theorems 6.1 and 6.2) a sequence of prob-
ability measures on D is tight if and only if every subsequence has a further
subsequence which converges weakly, so it is enough to show that for any sub-
sequence (a) and (b) hold for some further subsequence.

Lete > 0. If P}{T, < 1} — 0 as k — oo then (a) and (b) hold so it suffices
to consider subsequences for which lim inf, P} {T, < 1} > 0. In this case the
tightness of Y, follows from (3a). Since 0 <L, <1, (Y,,, L,,) is tight and
so there is a sequence of integers m; = n, T co so that (Y, , L,,)=(Y,L).

Let # be a bounded continuous function from D to R. If g,(x,7) =
E(h(V,*)| T, > t) then E(h(X,*)) = E(9,(Y,, L,)). Using (iv) and the results of
Section 2 we have that as x, - x > 0and ¢, -t >0

Iu(Xns 12) = 9(x, 1) = E(R(V) | V(0) = x, Ty > 1)

so from the continuous mapping theorem (Theorem 5.5 in [20]) EA(X} ) —
Eg(Y, L). From this we conclude X} = (V|V(0) =Y, T, > L), a process we
will denote by V*.

Since X} — V* we have that limsup, Eh(X; ) < Eh(V*) whenever k is bounded
.and upper semicontinuous. Applying this result with A(f) = 1 A (sup, f(t) —
(M — 1))* and A(f) = w,/(d) A 1 and using the obvious inequalities

sup, f(f)y S e Vv supzzTgf(t)
PHo/(d) > < P,HT. < d} + P, Mo /(d; T, 1) > ¢|T, < 1}

completes the proof.

Condition (3a) may be difficult to check directly because it involves esti-
mating the value of V,* at a random time. Using the scaling relationship ((2)
in Section 3.1) and the Markov property we have for + < 1 that

P{V(1) > K| V(1) =.x} = P{V(1 — ) > K} = P{xV((1 — t)x~%) > K}.

Since we are assuming d > 0 it follows from the right continuity of V'* that as
x — oo the last expression above converges to 1 uniformly for 7€ [0, 1] so

lim,_. P{V(1) > K|(T,) > M} = 1.
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From the scaling relationship and the right continuity of V*
lim,,, P*{T, > 1} = lim, ( P{T, >t} =1,
so the same statement holds for the process V'*. This suggests:
THEOREM 4. A sufficient condition for (3a) is
limg_, limsup, . P{V,*(1) > K} =0.

REMARK. From (a) it is clear that this is necessary for tightness. An argu-
ment similar to that given in the proof below will show that this is necessary
for (3a).

Proor. Using the Markov property, if ¢ < K
PV, *(1) > K} = E[T, = 1; ¢V, *(T.), 1 — T.)]
where g *(x, ) = P(V,(1) > K|V, (1 — ) = x, T, > 1). From (iv) it follows
that, if x, - x >0ands, -t =0
liminf, .. gx"(¥Xa, 1) Z gx(%, 1)
where g (x, 1) = P(V(1) > K| V(1 — t) = x, T, > 1)so foru < 1
lim sup, ., P{V,*(1) > K}
> lim sup, .. E[V,*(T)) > 2Ku="%; gV, (T.), 1 — T)]
> [inf {gg(x, 8): x = 2Ku=°,0 < s < 1}]lim, _,, P{V,*(T,) > 2Ku="°}.
From scaling g.(x, ) = gg.(xc, tc?) so if 2K/x < 1, g.(x, 1) = 92K, t(2K/x)*)
and from above
lim sup,_., P{V,*(1) > K}
> [infy.,<. 9x(2K, )] lim sup,_, P{V,*(T.) > 2Ku="’}.
Now

| > g.(2K, 5) = PUa) > K| V.(0) = 2K) — K(T, < 5| Vy(0) = 2K)
P(T, > 5| V,(0) = 2K)
Letting u — 0 gives
limsup,_, P{V,*(1) = K} = lim,,_,, limsup, _, P{V,*(T.) > M}
and letting K — oo gives the desired result.
From Theorem 4 if we know that ¥, *(1) converges then (3a) is satisfied. The
next theorem gives a sufficient condition for (3b).

THEOREM 5. Let P,* be the probability measures induced on D[—1, 1] by
V,*(t v 0). If (3a) holds {P,*, n = 1} is tight. If, in addition, for every P* which
is the limit of a subsequence P}, we have P*{f : f(0) # f(0—)} = O then {P,*, n = 1}
is tight.

Proor. For all fe D[—1, 1] which are constant on [—1, 0) if d < 1 we have

o/d; -1, )L eVo/dT,1).
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From this
PXo/(d; —1,1) > ¢} < P *o/(d; T, 1) > ¢},

so using the proof of Theorem 3 we see that (3a) is sufficient for tightness in
D[—1, 1}.

To prove the other result we note that by Prohorov’s theorem it is sufficient
to show that if P} — P* then P} — P* = P*z~! where r is the natural projec-
tionfrom D[—1, 1] to D[0, 1]. If A: D[0, 1] — R has P*(A,) = 0 where A,
is the set of discontinuities of # then P*{f: f(0) # f(0—)} = O implies that
P*(A,..) = 0. Using the continuous mapping theorem ([20], Theorem 5.2) now
gives P¥ n~'h~' — P*z~'h=* for all bounded continuous functions #, which com-
pletes the proof.

Combining the conclusions of Theorems 3, 4, and § gives the following result.

THEOREM 6. V,* is tight if and only if

(6a) limg_, limsup, . P{V,*(1) > K} =0,
(6b) lim,_ limsup, ., P{V,*(r) > h} = O for each h > 0.

From Theorem 6 if we know that the finite dimensional distributions of V_+
converge to those of a process V* with P{}'*(0) = 0} = 1, then the sequence is
tight.

In Theorem 10 below we will give conditions which imply that if V,* is tight
then the limit is lim, ,(V*| T, > 1) (assuming this exists), so in cases when the
convergence of finite dimensional distributions is not known we would like to
check that the sequence is tight without computing the limit of the distributions.

One way of doing this (Which we will use in Section 4.3) is to use

THEOREM 7. If for each ¢ > 0 (V, *(T,) — ¢)* = 0 then V,* is tight.

Proor. Observe that if V7 (¢ v 0) conveys (as a sequence of random ele-
ments of D[ —1, 1]) to a process V* with P{V*(0) > 2k} = p > 0 for some & > 0
then lim inf, P{V}(T,) — k > k} = p which contradicts the assumption that
(Va*(h) — h)* = 0. This shows that the hypotheses of Theorem 5 are satisfied
and proves the desired conclusion.

3.3. Convergence of finite dimensional distributions. 1In this section we will
assume V,* is tight and derive conditions for ¥,* to converge. Our method of
proof is not the usual one suggested by the title of this section, however. We
will prove convergence by showing that all convergent subsequences have the
same limit.

The first step is to consider what processes can occur as limits of the V,*.
From (i)—(iv) and the results of Section 2, if x, >x >0 (V,*s|N > n) =
(V*|T, > 1). Letting x, go to zero very slowly we see that if V,* converges
for all x, — 0 then lim, ,(¥*| T, > 1) exists and is the limit process for any
x, — 0.
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Assuming lim, |, (V*| T, > 1) exists and writing (V°| T, > ¢) for lim,  ,(V*| T, > 1)
we can give a simple formula for the processes which can occur as limits of
subsequences of V,*.

THEOREM 8. If V! = V* then there are random variables t* € [0, 1] and x* = 0
with P{t* = 0, x* > 0} = 0 so that

(1) V*(+) =a Linsy(V(c = )| Ty > 1 — %)

Proor. From the proof of Theorem 3.3 V*(T,(V*) 4 t) behaves like V' starting
from V*(T,) and conditioned to stay positive for 1 — 7,(V*) units of time. As
¢ decreases, T,(V*) does not increase so as ¢ | 0, T,(V*) converges to a limit r*.
Since V* is right continuous this means V*(T,) converges to a limit x*.

Under the hypothesis of Theorem 8, (x,t) — (V*|T, > t) is a continuous
function from [0, o0) X (0, 00) to D[0, 1]; so using the continuous mapping
theorem we see that V*¥(T,(V*) + 1) = (V*"|T, > 1 — t*). Since 0 < V* < ¢
on [0, T(V*)) this shows V'* has the representation given by (1).

To see that P{t* = 0, x* > 0} = O observe that since V; = V* in D, x, =
Vi (0) = V*(0) so V*(0) = 0.

Having identified the possible limits of subsequences of (V,*»|T, > 1) the
next step in solving problem (a) is to determine for which V'* there is a Markov
chain v, so that (V,*»|T, > 1) = V* for all x, — 0.

If lim sup, P,*»{N > n} > 0 for some x, — O then it is easy to show that a
subsequence of ¥}, converges to V. In this case if the convergence takes place
in the sense of (a) the conditioning will have no effect. So in what follows we
will assume that (v) holds.

To characterize the limits which can occur when (v) holds we will investigate
the convergence in the case x,c, = a. In this instance the limit process results
from conditioning and scaling a single sequence of random variables so there
is a scaling relationship which allows us to compute the distribution of V'* from
that of V*(1).

THEOREM 9. Let x,c, =a, Q%) = P(+|v,=a). If V,*(1)=0 then V,*
converges to a process which is = 0. If V,*(1) = v* with P{v* = 0} < 1 and (V)
holds then Q*{N > n} = n~?L,(n). In the second case the finite dimensional distri-
butions of {V,*, 0 < s < 1} converge to those of a nonhomogeneous Markov process

V* which has

(2) P(V*(1) € dy) = tPP(t*v* e dy)P¥{T, > 1 — 1t}
and

(3) P(V+(f) e dy| V+(s) = x) = P(Ve(t — s)edy, Ty >t — )P Ty, > 1 — 1}

PHTy > 1 — s}
for s<t, x>0.

If V¥(t)y=0as t — 0 then V" is tight and V,* = V*.



812 RICHARD DURRETT

Proor. The first result is obvious: observe that if ¥* is given by (1) and
x > 0 then P(V*(t + s) > 0| V*(t) = x) = P(V*(s) > 0|Ty, > 1 —1)=1so V*
does not hit zero after it hits a positive level.

To prove the second statement, note that if 2 > 0

@ < {]Zfzv( 1>:}2)n} = i Q(Vo(1) € dx [N > n)P(N > In|v, = xc,),
and from the hypothesis as x, —» x = 0, ¢,%(x,) = P(N > an|v, = x,c,) con-
verges to P*{T, > 4} = ¢*(x).

o*(x) > 0for x > 0soif V,*(1) = V* with P{v* = 0} < 1 then from Theorem
5.5 in [20] Q*N > (1 4 A)n}/Q*{N > n} converges to a positive limit. If we let
p(1 + 2) denote the value of this limit then since p(st) = p(s)o(f), p is measur-
able, and p(s) < 1 for s = 1 we can conclude p(s) = s—# for some g > 0.

This shows that Q*{N > n} has the indicated form. To prove that the finite
dimensional distributions of V,,* converge we will use this fact and the following
formula:

Ifk=21,0<t, < -~ <t,<landy, ...,y are positive,

(5) PV H(0) = - V' (1) = il

— Qa{N > ntl} a c"ﬁ
~ QN > n} Youn @ (c”

V(1) € dx [N > nt) ¢,05(x)
where
Paa(x) = P(Vo(t) £ Yo -+ Vilti) = Yoo i 05, Vi(5) > 0] V(1) = x) -
From (iv) and Theorem 2.2 if x, — x > 0 then
$ui(x,) = $1(x) = P(V(8) = )y - -+ V() = Yoo infy i, V(%) > O V(1) = x)

whenever the y, are all continuity points of the distributions of the V(r,), so if
we can show P{v* = 0} = 0 we can use Theorem 5.5 in [20] to conclude

PV () =y Vot () S ) —07f S(O,yll P(tv* ¢ dx)ﬁbzl(x) ,

which shows the limit process has the indicated form.

Let G, (x) = P{V,*(1) < x}, G(x) = P{v* < x}. From (iv), (v), and Theorem
5.5 in [20]

$ 0,000 Gnk(dx)‘Pik(x) = 10, G(dx)@?(x) .
Since Q%N > (1 + )n}/Q*{N > n} — (1 4 2)7#, using (4) gives
(I + 47 = (10,0 G(dx)e*() .

Now (v) implies ¢*(0) = 0 and we always have ¢*(x) < 1; so this means that
G0)< 1 — (14 2)*forall 2> 0or GO)=0.

To complete the proof of Theorem 9, we observe that the last statement

follows from the remark after Theorem 3.6.
Combining the results of Theorems 8 and 9 we observe that if (i)—(v) hold
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and V,* converges in the sense specified by problem (a) then the limit is either
=0 or >0 at each ¢+ > 0 so there are only two possible limits (assuming
lim,_, (V*| T, > 1) exists).

At this point we are ready to consider conditions for convergence to each of
these limits but there is not really much to say. The next result, which sum-
marizes our main conclusions, is an easy consequence of Theorems 8 and 9.

THEOREM 10. Let v, be a Markov chain for which (i)—(iv) hold. Let x, — 0
and suppose V,* is tight. V,* = 0 if and only if

(6) PV, *(t) >¢e}—0  forall ¢>0, t=0.
If V¥ = lim,_,(V*| T, > 1) exists and is # O then V,* = V* if and only if
@) lim, ,liminf,_, P{V,*(1) > ¢} =1 forall t>0.

If we assume in addition that x,c, = a and (V) holds then V,* — V* if and only if
QN > n} = n~fL(n).

Proor. The first result is trivial. The second follows from Theorem 8 since
the condition given is equivalent to assuming that for all subsequential limits
V*, P{V*(t) > 0} = 1forallz > 0. To prove the third statement we observe that
from the proof of Theorem 9 if V} = V'* then V} (1) = v* with P{v* > 0} = 1.
Since this holds for all convergent subsequences it follows that P{F'*(¢) > 0} = 1

for all + > 0 and the desired conclusion follows from Theorem 8.
4. Examples.

4.1. Branching processes. Letz,, n = 0 denote the number of particles in the
nth generation of a Galton-Watson process with z, = 1 and particle production
governed by the probability distribution {p,,i =0, 1,2, ...}. (For a detailed
definition consult the first few pages of [34] or [35].) Let f(s) = >, p.s" be
‘the generating function of z, and for each n = 2 let f,(s) = f(f.-.(s)) be the
generating function of z,. Kesten, Ney, and Spitzer ([34], page 19) have shown
that

THEOREM 1. If Ez, = 1 and E(z, — 1)* = 24 € (0, o) then

M “m’“”%[l _ljfn(s) 1 = J =4

uniformly for 0 < s < 1.

Setting s = 0 in (1) and noting that P{z, > 0} = 1 — f,(0) we obtain the fol-
lowing formula for P{z, > O}.

THEOREM 2. As n— oo,
(2) P{z, > 0} ~ (nA)™*.

Another immediate consequence of Theorem 1 is the following conditioned
limit theorem.
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THEOREM 3.
3) lim,_, P{z,/nd > x|z, > 0} = e~*.
PROOF.
E(e=2=/mt |z, > 0) = E(e~*=/*%; z, > 0)/E(1; z, > 0)
= (fulem™) = fO))/(1 — £.(0))
=11 = fule)N/ - f0)) -
From (1), lim,_,, [n(1 — f,(e-***))]"* = 4 4 lim,_,, [n(1 — e-***)]"* and from
(2), lim,_, n(1 — f,(0)) = 1/2 s0
lim, ., E(e=*"|z, > 0)=1— 1/(1 4 (1/a)) = 1)(a + 1),
which completes the proof.
Using the last two results we can compute the limit of (z,/ni|z, = y,4n).
Since the y,4n ancestors act independently, we have from Theorem 2 that if
Y. — ¥ = 0 then the number of ancestors which have offspring alive at time n

tends to have a Poisson distribution with mean y. Using Theorem 3 now gives
thatify, -y =0

lim, ... E(e-w/3|z, = y,in) = e~ z;;;oi_f. (1 + a)* = exp(—ya/(1 + a)).

Using the Markov property it is easy to compute that the finite dimensional
distributions of Z,*» = (z,.,/n|z, = y, 4n) converge (a result due to Lamperti
[36], Theorem 2.5). In [37], Lindvaal has shown that the sequence is tight so
we have the following.

THEOREM 4. If y, — y = 0 then Z ¥» — (Z| Z(0) = y) where Z is a nonnegative

diffusion with transition probabilities satisfying
§ e~VP(Z(t + s)edy| Z(s) = x) = exp(—xa/(1 + at))

for all nonnegative x, s, and t.

Observe that 0 is an absorbing state so
(4) P{Ty > t} = P{Z(t) >0} =1—e* >0
and we have that (iii) holds. From the remarks after Theorem 3, P,*»{N > nt,} —
I — e ** when x, »x = 0and ¢, - ¢t > 0o (iv) and (v) hold.

At this point we have completed our preparation and can apply Theorem 3.9
to conclude:

TTHEOREM 5. Z, % = (z;,4/An|z, = 1, z, > 0) = (Z+| Z*(0) = 0) where Z+ is
a Markov process with
P(Z*(t) e dx) = t7%~*/[1 — e~*/1-V]
and
P(Z*(t) e dy| Z*(s) = x)

= x(t — 5) e~ FHV/t-9 e (epf(r — s))F 1 — emwi0m®
TRk — 1 1 — ewa=o’
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Proor. From Theorem 3.9 we have that the finite dimensional distributions
of Z,* converge. To obtain the formulas given above from those in Section 3.3
observe that from the discussion following Theorem 3,

P(Z(t + s)edy, Z(t + 5) > 0| Z(s) = x) = T, e " (x;ff)k (t_;;(y_/t)lkfl err).

To prove that the sequence is tight we have to check that for the distribu-
tions given above Z*(f) = 0 as t — 0. To do this we observe that if y > 0 and
t — 0 then

P(ZH(t) > y) S (o t%etdx = t7%e vt — 0.

4.2. Random walks. If X, X,, - - . is asequence of independent and identically
distributed random variables, S, = S,_, + X,, n = 1 defines a random walk.
Necessary and sufficient conditions for the convergence of (S, — 4,)/a, are known
(cf. [29], Chapter 7). In thissection we will use some of these results to show
that if S,/a, converges in distribution to G then (i)—(iv) hold and the results of
Chapter 3 can be applied to prove the appropriate conditioned limit theorems.

THEOREM 1. For the nondegenerate distribution G to be the limit of some sequence
of normalized sums (S, — b,)/a, it is necessary and sufficient that it be stable, that
is, if X, X, - - -, X, are independent and have distribution G then there are constants
a,’ > 0 and b,’ such that

X+ -+ X, =4a/X+ b .

THEOREM 2. ¢(0) = Ee'* is the characteristic function of a stable law if and
only if
(1 log ¢(0) = i20 — c|0]*[1 + bw,(0)/|0]]  for 6 +0
where 0 < a <2, -1 <b<1,¢c=0and

,(0) = tan (ra/2) if a+1
= (2/x) log |6] if a=1.
a is called the index of the stable law, b is a shape parameter, A gives the drift, and
¢ is a scaling constant.

DEerINITION. A distribution F is in the domain of attraction of a (nonde-
generate) distribution G if there are constants a, > 0, b, so that F**(a,x + b,) =
G(x). (Here F** is the n-fold convolution of F.)

THEOREM 3. The distribution F belongs to the domain of attraction of a normal
law (a« = 2) if and only if as n — co

1 § 15 F(AX)[§ 5 1< X*F(dx) — 0 .
F belongs to the domain of attraction of a stable law of index 0 < a < 2 if and
only if
[1 — FUIL — F(x) + F(=x)] »pel0,1]  as x— oo

and
1 — F(x) + F(—x) = x™*L(x) .
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From the proof of this result in [29], pages 175-180 we can conclude the
scaling constants a,, are of the form n#L(n) and satisfy
n[l — Fla,x) + F(—a,x)] — éx~= if a<?2
—0 if a=2.

The centering constants can be chosen to be

nEX, if l<ag?2
nE(—a, Vv X, A a,) if a=1 (see[24], page 315)
0 if 0<a<l.

From discussion above we have that if S, = 0 and (S, — 4,)/a, = Y then the
finite dimensional distributions of V(1) = (S.,;; — b(.:)/a, converge. Skorokhod
has shown (Theorem 2.7 in [32]) that there is also weak convergence.

THEOREM 4. If S, is a random walk and (S, — b,)/a, = Y (nondegenerate) then
V, =V, a process with stationary independent increments which has V° (1) =, Y.

If lim,_ b,/a, = p (finite), the centering is unnecessary and S, /a, satisfies
(i)—(ii). Observe that in this case the scaling exponent § = a.

The next step is to check that (iii) holds. To do this we observe that if
PY{T, > t} = 0 for some positive y then from (8) of Section 3.1, {F¥(1), r < T,}
is decreasing. Since V has independent increments this means {V'¥(r), t = 0} is
decreasing.

Conditions for stable processes to have this property are well known. Using
results from [28] we see that if PY{T) >t} =0 then 0 < a < 1, b= —1, and
A< 0 in (1). To complete the proof we will use the scaling relationship to
show that none of these processes can occur as limits in (ii).

Let ¢,(0) = E exp(ifV°(z)). Since V° has stationary independent increments
©(0) = ¢(0). From scaling V(t) =, t/*V(1) so ¢,(0) = ¢(t¥*6). Using
tlog ¢(0) = log ¢ (tV*0) in (1) gives:

(2) For limits of S, /a A=0 if a1 and 6=0 if a=1.

n

Since these conditions are incompatible with the ones given above we have
shown that (iii) holds.

To prove that (iv) holds we start by observing that stable laws have
continuous distributions ([29], page 183) so P*T, =1} < P{V*(t) = 0} = 0.
If P{V°(1) < 0} > O then result (17) of Section 3.1 can be applied to give (iv).
If P{(1°(1) = 0} = 1 then P*{T, > 1} = 1 for all x < 0 and (iv) follows from (ii)
since {T, > t} is open.

Using (14) of Section 3.1 we see that (v) is satisfied if P{}"%(1) < 0} > 0 but
not otherwise. Having established that (i)—(v) hold when V is not increasing,
the next step is to give conditions for the sequence V/,* to be tight.

THEOREM 5. If X, has a distribution F so that F"*(c,+) = G, a stable law with
G(0) < 1, then V * is tight for x, = 0.
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ReMARK. If G(0) = 1, V isdecreasingso (V*|T, > 1) = 0ase | 0. From the
remark after Theorem 3.9, we see that 0 is the only possible limit in this case.

Proor. The proof will be given in three lemmas, each of which assumes the
hypotheses of Theorem 5 and uses the notation of Theorem 3.9.
LemMa 1. If G(0) = B < 1 then Q°{N > n} = n~#L(n).

PrOOF. Since stable laws have continuous distributions lim,_,, Q%S, > 0} =
1 — 3. By a formula due to Spitzer ([33], page 330)if S, is a random walk then

oo 0 n oo i .
3120 QN > n}t* = exp (z = P(s, > 0})

Writing 6(r) for the generating function of Q%N > n} and factoring the right-
hand side gives

(1) = (1 — 1y exp (T & (PISy > 0) — (1 = )

Now L(1/(1—1)) = exp(— X, (t*/k)a,) is slowly varying whenever lim,_,, @, =0
(for a proof see [15], page 1159) so applying a Tauberian theorem ([24], page
447) gives

L= PN > m} = n'=?L(n) .
Since P{N > m} is a decreasing function of m, applying a generalization of
Landau’s theorem ([24], page 446) gives

lim, .. PIN > n} [ T2, PIN > K} = 1 — §

so if 8 < 1, P{N > n} = n~fL(n).

LemMA 2. Condition (3a) of Theorem 3.3 is satisfied whenever the limit process
has P{V°(1) > 0} > 0. If a = 2, we have in addition that (V,*(T,) — ¢)* =0 so
tightness follows from Theorem 3.7.

Proor. Let X, =S, — S, ;. Let IV = inf{i < n: X,/c, > y}, with I,¥ = oo
if the set is empty.

PIN>n I}y < oo} v PIN>i— 1|1y =ilP{lY =i}.

Given Y = i, X}, ---, X,_, are independent and have common distribution func-
tion H (x) = (F(x)/F(yc,)) A 1. Now H (x) = F(x)forallx,soif U, U,, - -+, U,_,
are independent random variables each with a uniform distribution on (0, 1) then
(X, - X)L = 1) = (H,7(UY), - -+, H,7Y(Uiy)
= (FHU), - FP(UL)) =a(Xy -0, Xiy) s
where the equalities are between distributions and the inequality holds almost
surely. From this it is clear that PN > i — 1|I,Y =i} < P{N > i — 1}. Using
this in the first inequality we get

Py < ooV > = o P02 =l a — g
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Now P{N > n} = n~*L(n) and P{I,¥ = i} < P{X; > yc,} so

Py < o|N>n = U +n(§ ﬁL(’n)ﬁ)L( ) (1 — Fye,)).

u(x) = [x]~#L([x]) is regularly varying with exponent > — 1, so from Karamata’s
theorem

2t iTPLG) _ STu(x)dx (1 — B).
n(n‘ﬁL(n)) nu(n)
From Theorem 3 if0 < a < 2
1 — F(x)
1 — F(x) + F(—x)
and lim,_, n[1 — F(c,y) + F(—c,y)] = ¢y~* so in this case limsup,_, P{1,’ <
oo |N > n} < péy=*/(1 — B). From this we get

lim =pel0, 1]

z—00

lim,__ limsup, . P{V,*(T,) > y + ¢}
< lim limsup, ., P{I,} < o |N > n} = 0

Y0

so (3a) is satisfied for 0 < a < 2.
To prove the result for a = 2 we observe that from above

limsup,_,, P{/,Y < oo |N > n} < 2limsup,_, n(1 — F(yc,))

so using Theorem 3 gives (V,*(T,) — ¢)* = 0 and applying Theorem 3.7 gives
that the sequence is tight when a = 2.

To complete the tightness proof when 0 < a < 2 we use Theorem 3.5 and
the following.

Lemma 3. lim, ,limsup, . P{V,*(u) > y} = 0.
Proor. If k, = n — [nst] then
P{V,(st) > y, N > n}

= Sy P <CC— Vs (;:;}) edx, N> sm) P(N > k| v, = xc,) .

If m, = nt — [nst] we have

P<€1‘ V., (Sm>edx N> snt) P(N > m,|v, = xc,)
P(%} c ([S: t]) e dx > e P(N > ni} )

n

Using the last two equations gives

PV sty > yy = N >mt ¢ < w s, <snz> edx) P(N > k,|v, = xc,)

P{N > n} C, [nt] P(N > m,|v, = xc,)
< T2 p ey (o).

P{N > n}
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From Lemma 2 and Theorem 3.5, V,* is tight in D[—1, 1] so for any sub-
sequence there is a further subsequence with V} — V* in D[—1, 1]. Now if
u, is a sequence of numbers which | 0 we can pick s,, > u,, so that P{V*(s,,) +
V*(s,—)} = O for all m and u,,/s,, — t. From this it follows that

lim,,_, lim sup,_,, P{V,*(#,) > y} < t#lim,,_, P{t"*V*(s,) > y}
= 7FP{V*(0) > yt~V2}.

Since P{V*(0) > z} < limsup,_,, P{I,* < oo |N > n}, using an inequality from
the proof of Lemma 2 gives

=PP{V*(0) > yre} < peymer=f

and we can complete the proof by letting 7 | 0.

At this point we have given conditions for ¥,* to be tight and Q%N > n} to
be regularly varying so from Theorem 3.10 to prove the conditional limit
theorem in the case G(0)e (0, 1) it only remains to show lim, ,(V*|T, > 1)
exists.

THEOREM 6. If V is a stable process which can occur as a limit in (ii) then
lim, ,(V*| T, > 1) exists.

Proor. If V is decreasing or if P*{T, > 1} = 1 then the result is trivial, so for
what follows we will assume P*{T, > 1} # 1 and hence P*{T, > 1} [ O as x | 0.
Let Rf = Oand for k >0

Ri,, =inf{t > R : V(t) — V(R,S) £ —¢}.

Since V° has independent increments R;,, — R,*. k = 0 are independent and
identically distributed. Since P{Rf <t} = P{T, <t} —> 1 as t— oo, each
R, < oo P® almost surely.

LetK, = inf{k = 1: R, — R;_, > 1}. From(iii), P{Rs > 1} = P{T, > 1} >0
so K,and S, = Ry, _, are finite P’ almost surely. Let Us(t) = e+ [V(S*+1)—V(5°)].
Since V° has independent increments it follows from the construction that
Us =, (V¢| T, > 1) (see Lemma 2 of Section 4.3 for a detailed proof of a similar
result). To show that (V¢|T, > 1) converges weakly as ¢ | 0 we will show $°
and Ut converge P° almost surely.

Let m(t) = inf,g,., V(s). Let S = inf{t: m(t) = m(¢t + 1)}. Since we have
assumed F° is not decreasing P{V(t) = m(t)} < 1 for some ¢ > 0. From the
scaling relationship it follows that P{V%(t) = m(t)} < 1 is independent of ¢ and
Vo(t)—m(t) =, t/°[V°(1) — m(1)]. From this it follows easily that P’{S < oo} = 1.

LemMma 1. liminf, ;S = S, P° almost surely.

PRrROOF. Suppose S$‘» — t < co. By choosing a subsequence we can guarantee
that either S*» > ¢ for all m or S*= < ¢ for all m. If Se= | ¢, it follows that
m(t) =m(t + 1)so S < v
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To prove S < ¢ in the second case observe that if # > 0 and ¢t — S» < h
—em = infoquq, VAS™ + 5) — VAS™) < [infoguqan V(1 + 9)] = VAS™)
— [infg,<,, VAt + 5)] — V(t—)
so m(t) = m(t + 1 — h) for all A > 0.
To conclude m(t) = m(¢t + 1) it suffices to show V(¢ + 1) = V°((t + 1)—).
To do this we observe max,_,., (S + 1) is an increasing sequence of stopping

times which are less than ¢t 4+ 1 so the desired conclusion follows from the
“quasi left continuity” of ¥ (see [22], page 45 and Exercise 1.9.14).

LemMA 2. limsup,,,S* < S, P° almost surely.

Proor. Let X = V°(S). The first step is to show V%(S) = V%(S—) P° almost
surely. To do this we observe:

(a) ifQisastoppingtimeand P’{T,” = 0} = 1 then P{inf_, .., f(s)=f(Q)} =0
so P{S = Q} = 0.

(b) If we let Q,,=inf{t>0:V(t) — V(t—)e(a,b)} we will have
P(S = Q,,) = 0 for all rational a, b so P(V(S) + V%(S—)) = 0.

Now R;,, is the first time m(t) — m(R,?) < —e¢; so we have for all ¢ there is
a K. so that VY(Ry.)e[X — ¢, X]. Since K, < K, this shows limsup, ,S* < S
P° almost surely. ‘

Having shown $¢*— S, to show U*— U = V%S + ¢), it suffices to show
VoYS) = VY(S—)and V(S + 1) = V(S + 1)—) hold a.s. The first equality fol-
lows from the proof above, the second from the independence of increments.

REMARK. Although this completes the proof of the conditioned limit theorem
in the case G(0) € (0, 1), our solution is still somewhat incomplete because we
have not given the distribution of the limit. If " is Brownian motion the for-
_ mulas can be found in [26]. If V' is a stable process, however, the distribution
of the limit is known only in one special case (see Section 4.5).

4.3. Birth and death processes. We will call an integer valued Markov process
{U(t), t = 0} a birth and death process if starting from state j, U remains there
for a random length of time having an exponential distribution with mean
(2; + u;)™%; and upon leaving j, U moves to states j — 1 and j 4 1 with proba-
bilities u,(4; + u;)~* and 2;(4; + u;)~" respectively.

It is easy to see that if a birth and death process satisfies (ii) then the limit is
a strong Markov process with continuous paths, or a diffusion. In [41], Stone
has identified which diffusions can occur as limits in (ii) and given necessary
and sufficient conditions for the convergence of birth and death processes to
these limits.

As the reader can imagine these conditions are different when the state space
of the limit process is (— oo, oo) and [0, oo) and in the latter case also depend
upon the nature of the boundary at 0. To keep things simple we will give the
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results first in the case where the state space is (—oo0, o0) and the diffusion is
regular, and then consider the other possibilities.

DEFINITION. Let r, = inf{t > 0: V(t) = x}. A diffusion V with state space
(— o0, o) is regular if P*{r, < co} > 0 for all x, y.

THEOREM 1 ([41], pages 51-58). A necessary and sufficient condition that there
exists a strictly increasing sequence c,, such that as n — oo U(n+)/c, converges (in
the sense of (ii)) to a regular diffusion on (— oo, o), is that the sequence defined
by 7y = Ty_yAu_yfty, 7w =1 satisfy (A,m,)" = n21'L(n) and x, = n®r'Ly(n)
where the a; > 0 and the L, have lim __ L(xy)/L(y) =1 for all x > 0 and
lim,_, L(—x)/L{(x) = d;e (0, ).

In this case ¢, = n¥'*1**2 L(n) and the limit process is a diffusion with scale J and
speed measure m given by

J(x) = Axa xz0
= —d Alx|r x<0
m(x) = Bx* x=0
= —d,B|x|]2 x <0

where A and B are positive constants.

Note. To work with this theorem we will have to use some facts about the
speed and scale measures of diffusions. A complete discussion of this topic is
given in [38], but very little of the information given there is needed to prove
our conditioned limit theorems.

To show that (iii) holds we observe that if P¥{T, > t} = 0 then from (8) of
Section 3.1, V¥(t A T,) is decreasing for each ¢ > 0. Since V' has continuous
paths and the strong Markov property this implies P¥{r, < oo} = 0 for z > y,
which contradicts the assumed regularity.

To prove (iv) we will use (17) of Section 3.1. Since V is regular, V° 0
‘and it follows from the scaling relationship that P{V'%(1) < 0} > 0. To establish
that P*{T, = t} = 0 we recall that It6 and McKean (see Section 4.11 of [38])
have shown that the transition functions of a diffusion have densities with re-
spect to the speed measure so

PHT, =t} < P{V*(t) =0} = 0.

Since Visregular P*{T,>t} # 1and from(13)it follows thatlim, ,P*{T,> t} =0
for all t > 0. Since P{N > m|v, = x} is an increasing function of x and (iv)
holds using (14) gives that (v) holds.

Having established (i)—(v) we will now prove the conditioned limit theorem
by checking the hypothesis of Theorem 3.10. The first two steps are easy.
Since (V,*(T.) — ¢)* < 1/c, — 0 it is immediate from Theorem 3.7 that V,* is
tight for x, — 0. To get the asymptotic formula for Q°(N > n} we observe that
from [40], page 253 we have QN > n} = n~fL(n) where 8 = a)/(a, + a,).

To complete the proof we have to show:
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THEOREM 2. If V is a diffusion which can occur as a limit in Theorem 1 then
lim, ,(V*|T, > 1) exists.

ProoOF. Suppose V is defined on a probability space with o-fields &, =
a{V(s): s < t} and shift operators {6,;¢7 = 0}. Let S, = inf{s > 0: V(s) =¢,
V(u) > 0for s < u < s+ 1} and let Z (1) = V(S, + 1).

LEmMMA 1. Fore > O and all x S¢ < co P almost surely. Ase |0, S, ]| S, and
Z,— Z, P° almost surely.

ProOF. Fore > Olet R°= —1and R** =inf{t = R* + 1: V(t) =¢}. If
y # ¢ then from [39], page 53:

. e ) = d(y— M) _
PY{R, oo} = limy,_, P¥r, < 7,5} = lim,_, =1
(RS < 00} = MM PHE < Fmand = Wi G5 =00

so using the strong Markov property and induction gives that P#{R}* < oo} =1
for all x and k. Now if V has no zero in [R/)*, R,* + 1] then S, < R/* s0

PHS, < R}[S, > R}'} 2 P{T, > 1} > 0
and hence
P“{Se < OO} =1.

For0=0<e §; Zsup{t<S,: V(t)=0}s0S,| ase|. Toseethats§,|S,
note that
p=inf{t — (S, + 1): t > S, V(t) =0} >0

$O Sy (sy+10 — So = 4pfor all 0 < 2 < I and the result follows by letting 2 | 0.
Since V has continuous paths and Z (1) = V(S, + 1), S. | S, implies Z, — Z,.
Having proven Lemma 1 to complete the proof of Theorem 2 it suffices to show:

LEMMA 2. Fore >0, Z, and (V¢|T, > 1) have the same distribution.
Proor. Let F be a Borel subset of D. Clearly,
(1 P{Z,eF) = P(Z,cF,S, =t} + P(Z,e F,S, > 7).

(Note: when P is written without a superscript the indicated probability is in-
dependent of the initial distribution.) Since r, is a stopping time and V a strong
Markov process,

(2) P(Z,eF,S,=t)=E[PZcF,S, =r,| )] =PVeFT,>1}.

If S, > r, then V(s) =0 for some se(r, 7, + 1]. Letting 7/ = inf{s: s¢
(te> 7 + 1], V(s) = O} where 7,/ = oo if the last set is empty, we have

(3)  PlZeF.S.>t)=PZeF,t/ < oo)=E[r, < 0 E(l 5|5

On the set {r/ < oo}, 1, .5 can be written as ¢(6.,) so from (3) and the strong
Markov property we get

4) P{Z. e F, S, >t} = (E%)P{r) < o} = P{Z, e F}(1 — P{T, > 1}).



CONDITIONED LIMIT THEOREMS 823

Combining (1), (2), and (4) gives

P{Z, e F} = P(V:e F, T, > 1} + P{Z, e F)(1 — P{T, > 1})
SO
P{Z,e F} = P(V:e F|T, > 1),

which proves Lemma 2.

This completes our development for the “regular” case. The next step is
to determine in what other cases we can get a nontrivial conditioned limit
theorem.

To do this we observe that from (16) and (18) or Section 3.1 either
PT,~ = 0} = lor V° = Oso if P{T," = 0} < I there is no loss of generality
in assuming the state space is [0, co). In Section 3.1 we argued that if 0 was
inaccessible from positive levels then the limit theorem is trivial so we will
assume P*{T, > t} # 1. In this case (13) of 3.1 implies lim,,, P*{T, > t} = 0
so (12) of 3.1 gives P{T, = 0} = 1. Since PT,* = 0} = 1 if and only if
P{V9(1) > 0} > 0 there are only boundary possibilities to consider:

(a) reflecting: PT,;* = 0} = PYT, =0} = 1;
(b) absorbing: V° = 0.

Conditions for convergence in these cases can be obtained from [41]:

THEOREM 3. Ler {U(t), t = O} be a birth and death process with state space
{0,1,2, .-.}.

If O is a reflecting boundary for V then U(n.)/c, = V and (iv) holds if and only if
the sequence n defined in Theorem 1 has (4,7,)™" = n*17'L\(n) and x, = n“s='L(n)
where a, and a, + a, are positive and the L, have lim,_., L(0x)/L(0) = 1 for all
x > 0.

If O is an absorbing boundary for V and A, = 0 in U then U(n+)/c, = V and (iv)
holds if and only if in addition to the conditions stated above we have

lim,_, limsup,_, {% M v,(dz) = 0
u(cy)
where v,(x) = (0(x¢,) = 0(€,))(1(26,) = 0(€,)), v(i) = iy, and (i) = T35, (A,7,)"

In each case c, = n‘“1**?L(n) and there are positive constants A and B so that
the limit process is a diffusion with scale J(x) = Ax™1 x = 0 and a speed measure m
concentrated on (0, oo) given by

m(x) = Bx* if a,#0
= Blog x if a,=0.
If oy > 0, 0 is a reflecting boundary. In the other cases 0 is absorbing.

Since Theorem 3 gives conditions for (ii) and (iv) to hold and the arguments
above for (iii) and (v) still apply, we have that (i)—(v) hold. From Theorem
3.7, V,* is tight for x, — 0.
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If 0 is a reflecting boundary it is easy to use Theorem 3.10 to show V,*
converges: a similar argument works to show lim, , (V*| T, > 1) exists (we only
have to change the proof that P*{S, < oo} = 1) and it follows from [40], page
253 that QN > n} = n~*v*1+*2 L(n).

If 0 is an absorbing boundary, however, both of these arguments fail. We
leave it to the interested reader to decide whether the conditioned limit theorem
will hold in general in this case.

4.4. The M/G/1 queue. In the M/G/1 queue customers arrive at the jump
times of a Poisson process A(¢), t = 0 with rate 4 and have service times which
are independent positive random variables with the same distribution.

If &, denotes the amount of service required by the ith customer to arrive
after time 0 then S(z) = Y /47 &, is the amount of work that has arrived at the
facility at time . If the initial backlog of work is x and the server is not idle
at any moment before ¢ then L(f) = x + S(#) — ¢ is the amount of work not
completed at time t. If the server has been idle then we have to add to this
number the amount of time he has been idle, so the amount of work that
remains in general is given by V() = L(r) 4 (min,,, L(s))".

It is easy to use Donsker’s theorem to obtain conditions for V to satisfy (ii).

THEOREM 1. Suppose AES, = 1 and E(§, — 1/2)* = ¢*€ (0, ). If x, > x =0
then (V(n+)[ont| V(0) = x,0,}) converges to (B| B(0) = x) where B is the reflecting
Brownian motion.

Proor. S(t) is the sum of a Poisson number of independent random
variables with mean E¢,, so from [20] Theorem 17.2 (S(n.) — A(E&))nt)/on}
converges to a Brownian motion B. From this it follows thatif x, - x >0
(L(n+)/on?| L(0) = x,on*) converges to (B| B(0) = x), and the desired conclusion
now follows from the continuous mapping theorem.

Since the limit in Theorem 1 is reflecting Brownian motion (iii) holds. To
see that (iv) and (v) are satisfied we observe that if x, - x > 0and 7, >t >0

P(infyg,s,, V(ns) > 0 (0) = x,ont) = P(infyg,g, L(ns) > 0| L(0) = x,on?)
— P(inf,_,, B(s) > 0| B(0) = x)
= P(inf,_,_, B(s) > 0| B(0) = x).
Having verified (i)—(v) the next step is to compute the asymptotic formula

for the probability of the conditioning event. To do this we will study the
Laplace transform of

T, = inf{r > 0: U(f) = 0} .

Let ¢ (a) = E(e=*"0| U(0) = x) for x = 0. Since the arrivals form a Poisson
process we have

(1) Por (@) = @ (@)e,(a)
and also that

(2 Pa) = €7 §10,00) 9y (@) P(S(x) € dY) -



CONDITIONED LIMIT THEOREMS 825

From (1) it follows that there is a number 7(a) so that ¢, (a) = e=*7®. Using
this fact in (2) gives
(3) e~ — e—azE(e—-ry(a')S(z)) .
Now if §(8) = E(e~#1) then E(e=#5®) = e~#*1-06) 50 (3) may be written as
—xp(a) = —ax — Ax(1 — 6(y(a)))

or
(4) n(a) = a + 2 — 26(5(a)) -

If H is the distribution of §,, Takacs ([46], pages 47-49) has shown that equa-
tion (4) has a unique positive solution given by
5) pe) = a4 2| 1= N5, Al e ronim i) |

J!

where H’* denotes the j-fold convolution of H.

Writing y(a) for the sum in (5) we have

pu(a) = e~ = exp[—x(a + (1 — 7(a)))] .
Brody ([43], page 78) has shown that if E£? = u, < oo then
I — (@) ~ m)at  as alo,

SO
1 — g @) ~ xA(2/p)tat  as a|O.

Using a result of Dynkin ([44], page 179) now shows that
P(Ty, > t|L(0) = x) ~ xA(2)mp,)te~t as tfoo.

At this point we are ready to use Theorem 3.10 to prove the conditioned
limit theorem. From results in 4.1 or 4.3 we have that lim, ,(V*|T, > 1)
exists so it remains to show that the sequence V,* is tight. To do this we will
imitate the proof given in Section 4.2.

Let J,» =inf{j = 1: §; > hont}.

7 a n oo 1 a / [ — A_l(k)
(T, > m Jy» < 00} S Tt 10 (To > ns gy = b, 2% e ds)

n
= N5, BOXT, > ns| A (k) = ns, J,» = k)
X P(J,» = k| A“Y(k) = ns)p<A“(k) c ds)
n

= 2 0 QT > ns| A7Y(k) = ns)

_ (ns)k—le—na/i
X P{§, < hont}e'P{&, > hont} ESETETE
Since Q%(T, > ns| A~ (k) = ns) £ Q%T, > ns| A(ns) = k — 1)the last expression
above is

< 2P(E, > hond) g, S1Q%(Te > ns| A(ns) = k — 1)e=3 L}’ii/ﬁkl}l ds

= A7'P{§, > hont} {3 Q4T, > ns}ds.
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Dividing by Q*(T, > n} gives
Q(Jy* < 0o | Ty > n) < =P, > hant) 0. QATo > nspds.
(Jn oo |Ty>n) < {§, > hont} A

Since £, has finite variance nP{¢, > hont} — 0 as n— co. Now Q%T, > n} =
n~tL(n) so using Karamata’s theorem gives

$6 Q¥ T, > ns}ds D
nQ*(T, > n}
and Q*{J" < oo | T, > n} — 0. Since h was arbitrary it follows from this that

(Va*(T.) — €)* = 0 for all ¢ > 0 and so Theorem 3.7 implies that the sequence
V,* is tight.
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