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Consider the family tree T of a branching process starting from a single 
progenitor and conditioned to have v=v(T) edges (total progeny). To each 
e d g e ( e )  we associate a weight W(e). The weights are i.i.d, random variables 
and independent of T. The weighted height of a self-avoiding path in T starting 
at the root is the sum of the weights associated with the path. We are interested 
in the asymptotic distribution of the maximum weighted path height in the limit 
as v = n  ~ o0. Depending on the tail of the weight distribution, we obtain 
the limit in three cases. In particular if y2p(W(e)> y ) ~ 0 ,  then the limit 
distribution depends strongly on the tree and, in fact, is the distribution of the 
maximum of a Brownian excursion. If the tail of the weight distribution is 
regularly varying with exponent 0 ~< ~ < 2, then the weight swamps the tree and 
the answer is the asymptotic distribution of the maximum edge weight in the 
tree. There is a borderline case, namely, P(W(e) > y) ~ cy 2 as y ~ oo, in which 
the limit distribution exists but involves both the tree and the weights in a more 
complicated way. 
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1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF RESULTS 

Let Z0, Zt,..., be a discrete parameter Bienaym6-Galton-Watson branching 
process, starting from a single particle, the "progenitor" (i.e., Z0 = 1). As 
has been pointed out by many authors (e.g., Harris, (11) Jagers(12)), the 
structure of such a process is conveniently described by its (random) family 
tree T, which we shall regard as a rooted and labeled tree, (see below for 
details). We write v = v(T) for the total number of vertices in T; v is the 
total progeny of the branching process. To each edge ( e )  of the tree T we 
associate a random "weight" W(e), such that (conditionally on T) the ran- 
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dom variables { W(e): { e )  e T} are independent and identically distributed 
(i.i.d.). We are interested in limit laws of certain sums of the weights under 
the condition v ( T )=n ,  as n--, oe. Specifically, if s is a self-avoiding path in 
T starting at the root, and consisting of the edges ( e l ) ,  @2),.--, (e~) ,  then 
we define the height of the path s as 

k 

H(s) = Hw(s) = ~ W(ei) 
i = 1  

The weighted tree height is 

H(T) = Hw(T) = max H(s) (1.1) 
s c T  

Our theorems give the conditional limit distribution of cnH(T), given 
v(T) = n, as n ~ 0% for suitable choices of c,,. 

As is clear from definition (1.1), calculation of the conditional limit 
distribution of H(T) may be viewed as an extreme value problem for cer- 
tain types of overlapping sums of i.i.d, random variables. There is one such 
sum corresponding to each path s from the root in T. The classical problem 
of the distribution of the maximum of n i.i.d, random variables corresponds 
to a tree consisting only of n branches emanating from the root (or an 
arrangement of n i.i.d, weighted segments in parallel). 

Conditioning on the total progeny v is somewhat unnatural from the 
point of view of branching processes. However, our motivation comes from 
considerations of channel length statistics in river basin hydrology, where 
T is regarded as an idealized model for the network of branches of a river 
(in the absence of geologic controls); a rather extensive background to the 
literature on this model can be found in Jarvis and Woldenberg/13) Here 
v(T) equals the total number of branches of the river plus 1, and we may 
think of W(e) as the length of the branch ( e ) .  Some justification for 
conditioning on v(T) (large) in this model can be found in Gupta and 
Waymire (9) and references therein. We point out that v(T) has also been 
considered in the context of neutron branching processes, where v 
represents the total number of neutrons produced; see Harris (Ref. 11, 
Section IV.6.3). Conditioning on a large v may also be reasonable for this 
interpretation. Finally, there is a large combinatorial literature on trees 
with a fixed, but large, number of vertices. Some of this literature and its 
relation with branching processes is surveyed in Aldous. (1'2) 

To state our results precisely, we introduce some further notation. 
Following Harris (11) and Jagers, ~ we label vertices of T as follows. The 
root, corresponding to the progenitor, is denoted by ( 0 ) .  It forms the 
zeroth generation of T. Other labels are assigned recursively. The vertices of 
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T which are adjacent to <0> form the first generation of T. They are 
labeled <0, e~>, ! <~s~<~N(O), in some order, and are called the children of 
<0>. N(0) is the number of children of (0>; this number can be zero, 
in which case T consists of <0> only. A generic label is of the 
form <0, gl, s2,.-,ek>, with ~;>~1, 1 <~i<~k. The label is assigned to one 
of the vertices adjacent to <0, sl,...,ek_,>. The vertices other than 
<0, el,..., sk_l>, which are adjacent to <0, sl,..., ek> (if any) are labeled 
<0, el,...,ek+l>, ek+~=l ,2 , . . . ,N,  where N=N(O, el,...,ek) is the total 
number of such vertices of T. These vertices are called the children of 
<0, sl,..., sk>. All vertices which receive a label of the form <0, e~,..., sk> 
make up the k th generation of T. They are precisely the vertices of T which 
are connected to the root <0> by a self-avoiding path in T of exactly k 
edges (see Fig. 1). The height h of such a vertex is taken to be k. Thus 

h(0, el,..., e~)=k (1.2) 

The total size of the kth generation is Zk (Zo = 1 ). The extinction time is 

z = ~ ( T ) : =  min{k>~ 1 : Z k = 0  } (1.3) 

<0,i,i,i> 

<0,i 

<0,1,2> 

<0,1,3> 

// of ,2> 

Fig. I 

<-i> 

860/4/1 - 15 
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and the total progeny is 

v=v(T):= Zk= ~ Zk (1.4) 
k = 0  k = 0  

The height of T is 

h(T) = ~ -  1 = max h(x) (1.5) 
< x ) ~ T  

We shall also use (0, e 1 . . . . .  /;k) as a label for the unique edge between 
(0, el ..... ek 1) and (0, el,..., ek), so that references to edges and vertices 
of the graph for T may be used interchangeably. An edge (stem) connecting 
the root ( 0 )  to an artificial vertex ( -  1 ) may be added in this regard. 

Next we choose an i.i.d, family of random variables { W(0), W(0, eL ..... ek): 
ei>~l, l<~i<<.k, k~>l}, which is independent of T. W(x) is the weight 
associated with ( x )  if ( x )  = (0, el ..... ek) is one of the edges of T. The 
weighted height of ( x )  = (0, e~ ..... ek) then becomes 

k 

H ( x ) = H w ( x ) =  ~ W(0,~l,...,~j) [ H ( 0 ) = 0 ]  (1.6) 
j = l  

and the weighted height of the tree T is 

H(T) = Hw(T) := max Hw(X) (l.7) 
(x)~T 

The regular height, as given in (1.5), is obtained in the special case when 
P(W(0) = 1 )=  1. 

We write 

pr=P(Z1 = r l Z o  = 1), f(s) = ~ prs r 
r = 0  

for the offspring distribution and its generating function. Throughout  
we shall assume that this offspring distribution satisfies the following 
conditions: There exists a number ~ > 0 for which 

f (~)  = e f '  e (e) and ~ r2pr~r<o~ (1.8) 
r = O  

Pl < 1 (1.9) 

Condition (1.9) merely rules out a trivial degenerate case. As we shall 
indicate, the typical case in which (1.8) holds is the critical branching 
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process whose offspring distribution has a finite second moment (e = 1 in 
this case). A minor nuisance which needs {o be discussed is periodicity. Let 

d =  g.c.d.{r: Pr > 0} (1.10) 

Then all Z , ,  n >~ 1, have to be divisible by d, and v can take only values 
congruent to 1 rood d. 

The following theorem is our main result. 

Theorem 1. Let the branching process {Zn} satisfy (1.8) and (1.9). 
Assume further that 

0 <  # = E W ( 0 )  < oo (1.11) 

and 

y2p(r W(0)I > y) --* 0, as y --* oo (1.12) 

Then, 

lim P (  C--~ F Hw(T)<~xlv(T)=n) 
#=-~ (% \ # x/ n 

= ~ {1-(kx)2}e ~2;-=P(x/2M*<~x) 
k ~ - - c o  

(1.13) 

where 

~2 ) 1/2 

r ~ 0  

and M *  is the maximum of a Brownian excursion. 

The special case of this theorem when W(0)= 1 w.p.1 (i.e., when H~. 
is replaced by h, and # =  1) is due to KolchinJ iv) Our contribution is to 
show that under conditions (1.11) and (1.12) the particular form of the 
distribution has no influence, but that the limit distribution in (1.13) is 
entirely governed by T. In fact Hw(T) behaves like #h(T) for our purposes. 
This is made explicit in the following proposition in which T does not have 
to come from a branching process at all. 

Proposition 1. Let T n be any sequence of trees with 

v(T,) = n and h(T,) = O(x/n ) 
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If (1.11) and (1.12) hold, then 

H(Tn)-ph(T,) -~0 in probability (1.14) 

It seems somewhat strange that the limit distribution in (1.13) would 
be that of x f2M* [cf. Durrett and Iglehart (5) for the last equality in 
(1.13)]. For this reason we discuss in Section2 the special case of a 
geometric offspring distribution (and constant weights). In this case we can 
use a simple mapping which goes back to Harris (1~ to equate the height 
h(T) with a functional of a simple symmetric random walk. Although it 
was not used there, the Harris coding was noted in de Bruijn, Knuth, and 
Rice (4) in connection with the expected tree height. In any case, we shall see 
precisely how this coding explains why the distribution of M *  crops up. 

Almost the same method of proof as used for Proposition 1 allows us 
to deal with the case where W(0) has heavier tails than in (1.2). We restrict 
ourselves to regularly varying tails where (1.11) and (l.12) are replaced by 

P(W(O)>y)~y-~'L(y), y ~  (1.15) 

for a slowly varying function L(-) and 0~<~<2. (The case ~ = 2  is a 
boundary case; see Remark 3 below.) We shall see that, in contrast to 
Theorem 1, under (1.15) the branching tree T has no influence on the 
conditional limit distribution of H~(T). This limit distribution is simply the 
same as for the maximum of n i.i.d, weights associated with the edges of T. 
Specifically we prove the following theorem. 

Theorem 2. Let the branching process {Zn} satisfy (1.8) and (1.9). If 
W(0) satisfies (1.15) for some 0 ~< ~ < 2, and en satisfies 

then 

nc~L(c.) ~ 1, n ~  

lim P(c.Hw(T)~ y[v(T)=n)=exp{-y-~'} ,  (y~O) 
n ~ 3  

n --~ 1 ( d )  

Remark 1. Under condition (1.8) one can introduce the branching 
process {Z~ ~)} with Z~o ~) = 1 and offspring distribution 

p~) = g ( z 7  ~ = r I Z(o ~) - -  1 )  = PrOf 
f(c~) 

This branching process is critical, and its family tree has the same 
conditional distribution, given ~ Z~ ~) =n ,  as the tree T, given v(T)= n; cf. 
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Kennedy/15) This is the reason why we called a critical branching process 
the typical case for our purposes. 

Remark 2. Gupta, Mesa, and Waymire (8) consider the special case 
when W(0) is exponentially distributed and the tree is binary (i.e., 
Po = P2 = �89 The proof for this case is specialized in that it exploits the 
Markovian structure of the branching process. The proof does not depend 
on the result for (constant) unit weights. In fact, using the comparison 
methods of the present paper one may also derive (for binary trees) 
Kolchin's (~7) theorem for constant weights, as well as our more general 
theorems (1.1) and (1.3), from the exponential case. 

Remark3. If W(0) has a tail as in (1.15), but with ~ = 2 ,  then 
Theorem 2 does not apply as stated, while Theorem 1 applies only if 
L(y)~O as y ~ o o .  If (1.15) holds with e = 2  and L(y)-,oo as y ~ o o ,  
then Theorem 2 still holds. However, there is a "middle weight" case, 
namely, the borderline case, where 

P(W(O)> y )~cy  2, y ~ o o  

for some c > 0 .  In this case the limit in the left-hand side of (1.13) still 
exists, but it can no longer be easily calculated explicitly. It involves both 
n 1/2 max<x>~r W(x) and the structure of T. 

Remark 4. Recently some other interesting connections between 
trees, branching processes, and excursions have been found with applica- 
tions to Brownian local times and to the construction of superprocesses; see 
Neveu and Pitman (2~ and LeGal1. (18)'(19/ However, the result described 
in Section 2 is the only case known to us which exploits such structure to 
solve the extremal problem. In particular, the binary case is still not known 
as a direct consequence of a sample path analysis. These and a variety of 
other ideas are considered more generally in recent papers of Aldous. (1)'(2) 

2. G E O M E T R I C  O F F S P R I N G  D I S T R I B U T I O N  

This section is not required for the main results described in the 
introduction, and can be skipped by readers interested only in the proofs 
of those results. As pointed out in the introduction, a general calculation 
of the limit distribution for the case of constant weights is given in 
Kolchin. (17) 

We suppose that the offspring distribution is given by pj:= 
P(Z l=j]Zo=l )=rJ(1-r ) ,  j=0 ,1 ,2  .... ( 0 < r < l ) ,  and that W(x)=l  
w.p.1. Let {Sn} be the simple symmetric random walk starting at 0, and 
let 7- -min{k~>l :  Sk=O}. Define a (signed) random walk excursion, 
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{Xln): 0~<t~<l}, as the process {n 1/2SE~1: 0~<t~<l} conditioned on 
{? = n}. Let P~ denote the distribution of {XI"~}. For a random variable X 
and an event A, let (XIA)  represent a - random variable distributed 
according to the conditional distribution of X given A. We will see that the 
limit distribution of Theorem 1 is easily obtained by an application of the 
encoding of trees as random walks given by Harris (Ref. 10, Theorem 5, 
p. 485). Note that our trees are ordered by the subtree structure in the sense 
that a tree in which, for example, the first-generation offspring (0, 1 ) has 
5 children and first-generation offspring (0, 2)  has 7 children is distinct 
from the tree in which (0, 1) has 7 children and (0, 2)  has 5. Here is a 
description of an encoding which can be used. Add an artificial vertex 
( - 1 )  to T, which is connected by an adge to ( 0 )  but not to any other 
vertex. Order the vertices lexicographically with ( -  1 ) at the beginning. 
For example, the tree of Fig. 1 yields the list ( - 1 ) ,  ( 0 ) ,  (0, 1), 
( 0 , 1 , 1 ) ,  ( 0 , 1 , 1 , 1 ) ,  ( 0 , 1 , 2 ) ,  ( 0 , 1 , 3 ) ,  ( 0 , 2 ) .  Now assign to T a  
random walk path by drawing a closed polygonal path going around T 
clockwise as in Fig. 1. Start this polygonal path at ( - 1 )  and go to (0 ) .  
If the path is at (0, E l ,  e 2 ..... e k )  and (0, e I ..... ek, j )  is the first child of 
(0, al ..... e~) (in the lexicographical ordering) not yet "surrounded" by the 
path, then move to (0, el, e2 ..... ek, J ) .  If there are no such children, then 
the path moves back to (0, el, e2,..., E~_ 1). We continue until all vertices 
of T have been surrounded and the path returns to (0 ) .  From there we go 
to ( - 1 ) .  The random walk path corresponding to T will take a step 
of +1 (resp. - 1 )  whenever the polygonal path moves from some 
vertex (0, 51, ez,..., ek) to a child (0, el, e2,... , ek+l) (resp. to its parent 
(0, el, e2 ..... et:_l )). The first and last steps of the random walk are a + 1 
and a - 1 corresponding to the moves of the polygonal path from ( - 1 ) 
to ( 0 )  and back from ( 0 )  to ( - 1 ) .  One easily sees that there are two 
steps in the polygonal path for each edge of T, one giving rise to a step of 
+ 1 by the random walk and one to a step of - 1. Thus the image will be 
a random walk path of length 2v(T), which has 7 equal to 2v(T) and is 
strictly positive at times 1, 2 ..... 2v (T) -  1. Each such random walk path is 
the image of a unique labeled and rooted tree. From this it is not hard to 
obtain the next result. 

Proposition 2. Given v(T)= n each of the ( 2,,-2 i/n)( n-1 ) sample realiza- 
tions of T have equal probability. Moreover, 

(n - ~/2h(T) l v(T) = n) = ~,~ ( max {I XI2~)I } I ~/= 2n) 
O~<t~<l 

where equality is in distribution. 
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The proof of the next theorem wil now follow as an application of the 
above proposition and some weak convergence theory for conditioned 
random walks. 

Theorem 3. For the geometric offspring distribution with 0 < r < 1, 

lim P(n ~/2h(T)<~ ylv(T)=n)=P(M*<~2 ) 
n ~  oo 

Proof We simply use the fact that, 

P~ ~ P* (2.1) 

where =~ denotes weak convergence and P* is the distribution of a signed 
Brownian excursion {B*}; e.g., see Kaigh, (~4) Kennedy, (~6) or Durrett, 
Iglehart, and Miller. (6) The result now follows from Proposition 2 since 
max I'l is a continuous functional of the excursion. 7q 

3. LIGHT WEIGHTS (PROOF OF THEOREM 1.1) 

Throughout  this section {W(x)} are i.i.d, random variables, 
independent of T (i.e., the branching process), which satisfy (1.11) and 
(1.12). We begin with the following: 

Proof of Proposition 1. Let ( x n )  be a vertex of Tn such that 

h(xn) = H(Tn) = max h(x) 
x ~  Tn 

If x~ = (0, el,..., eh) with h --- h(Tn), then 

h 

j = l  

Since h(T,) is assumed to be O(~,fn), it follows from the weak law of large 
numbers that 

P(Hw(T,,)-ph(T,,)<. -exfn)~P { W(0, e~,..., @ - # }  ~< - e  ~ 0  
j 1 

(3.1) 
for every e > 0. 

This proves a lower bound for H(T~). To obtain an upper bound we 
will use a version of Chebyshev's inequality. As a warmup, suppose the 
distribution of W(0) has a finite eighth moment. Then 

P(Hw(Tn)-#h(Tn))~x/-s 2 P([H(x)-#h(x)] >jex/-n ) (3.2) 
x ~ T n  
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This sum contains v ( T , ) = n  terms, and for x =  (0, el ..... ek) we have for 
suitable constants C/<  oo 

P(/-/w(x) - ~h (x ) />  e ~/-~) 

(i = P  [W(0, el ..... e j ) - u ] < ~ e  
j i 

{(i ~< 8 - 8 n - 4 E  E w ( 0 ,  e l  ,..., e j )  - ]~ ] 
j t 

C1 e - Sn -4k4E[ W( O ) - I.t ] s 

.< c~e-~n ~ { h ( r . ) }  4 

<~ C3e Sn-~ (3.3) 

Thus (3.2) tends to zero in this case. 
In the general case we shall first use a truncation before we apply 

Chebyshev's inequality. Choose bn such that 

bn 
- -  - .  o ,  n P ( J  m(0)l  > b . )  --, 0 (3.4) 

Such constants b, exist by virtue of (1.12). We then have [with I(A) 
denoting the indicator function of A] 

P(W(x) r W(x) 1([ W(x)l ~< b,) for some x s Tn)--+ 0 (3.5) 

so that one may replace W(x) by W(x) l(IW(x)J ~<bn) for the proof of 
(1.14). This, however, will not be a good enough truncation. We shall have 
to replace the W(x) by 

m(")(x) := m(x) 1(I W(x)l ~<a,) 

for a sequence of constant a,<~bn, a,--+oo, which in general does not 
satisfy the second requirement of (3.4). Consequently (3.5) with bn replaced 
by an will not be valid. However, by using the fact that T, is a tree we will 
be able to obtain 

P(3 (0, e l , . . .  , ek> ~ T,, Jl <J2 ~< k s.t. [W(0, e l , . . .  , ej/)[ > an, i =  1, 2) ~ 0 

(3.6) 

But 
k k 

W(0, el ,..., ej) ~< ~ W(')(0, ~ ..... ej) + max W(x) (3.7) 
j = l  j = l  x ~ T  
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for any (0, ex ..... ~k) for which there is at most one j ~ k  with 
I W(0, el,..., @l > a,.  Therefore, 

P(H(Tn) - #h(T,) >~ ~x/n) <~ P([.W(x)I > b,, for some x 6 7",) 

q- P ( 3 ( O ,  gx ..... g k )  ff Tn ,  Jl  < J 2  -G < k  s.t. [W(0, gl, '" ,  Eji)l > an, i =  1, 2) 

+ e [ w ( ' ) ( 0 ,  gl ..... 
(O,<,...,ek) j 1 

<. o,(1) + nP (") (') [W) - E { W )  }]~>~ (3.8) 
J 

where W~ "), W(2"),... are i.i.d, with the distribution of W(0)I(IW(0)[ ~<an). 
[In the last inequality we used the fact that 

E{ WI " ) -  t~} --" 0 

and k<~h(T~)= O ( x ~  ), b,, = o(x/-n).] In view of (3.8) it therefore suffices 
to show that for a , = n  3/8, (3.6) is valid, and the right-hand side of (3.8) 
tends to 0. 

To start with (3.6), its left-hand side is bounded by 

P(3(O, F, 1 ..... I?.ji ) e T,, Jl < J2, s.t. ]W(0, el ..... eji)[ > a,, i =  1, 2) 

(h(T,) + 1) n(P(I W(O)[ > a~)) 2 

----_ o(n3/2a,, 4) 

because there are at most v(T,)= n choices for (0, El,..., e;~)~ T,, and once 
we have picked (0, ~1 ..... ~j2), there are at most (J2 + 1)~< h(T,)+ 1 choices 
for Jl. Thus (3.6) holds. 

To estimate the last term in the right-hand side of (3.7), we slightly 
sharpen (3.3). Note that 

r := E{IW(')(O) - E{ W(')(O)} [ r} 

f? <~ C(r) yr ~P(I W(O)l >1 y) dy 

= O(ar 2 log a.) (3.9) 

for r~>2 and suitable constants C(r). It follows that for some C <  oe 

E [ W(~)(O, ~,..., ej)-E{W(')(O)}] 
j 1 

<~ C{ka~](n) + k3(~(n) ~4(/~) n I- ~32(n) ~2(rl)) 

+ k2(~42(n) + ~6(n) ~2(n) + ~5(n) ~3(n)) + k~8(n)} (3.10) 
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Since k<~h(Tn)= O(x/-n ) and an=n 3/8, the right-hand side of (3.10) is 
O(t111/4 log n). As in (3.3) we now obtain that the last term in the right-hand 
side of (3.7) is o(n-3 + 11/4 log n) --+ 0. Thus Proposition 1 follows. [] 

Theorem 1 is now immediate from Proposition 1 and the special case 
of Theorem 1 when P(W(O) = 1) = 1 (which amounts to replacing H by h 
and # =  1) which was proved by Kolchin/17) 

4. HEAVY WEIGHTS (PROOF OF THEOREM 1.3) 

Throughout this section {W(x)} are i.i.d, random variables, inde- 
pendent of T (i.e., the branching process), which satisfy (1.15) for some 
0 ~< ~ < 2 and a slowly varying function L(-), i.e., L(ty)/L(t) -+ 1 as t ~ ~ .  
For the appropriate selection of scale coefficients c n such that 

nP(W(x)>cn)=ncn~L(c , , ) -~ l ,  as n - ~  (4.1) 

one has (see Feller, (7) p. 278) 

cn 1 max W ( x ) = ~ F ~ ( y ) : = e x p { - y  ~} (y~>0), as y ~  (4.2) 
(x)~T 

where v( T) = n. 
We will show, as asserted by Theorem 2, that in this case the distribu- 

tion of the heaviest path in the tree is distributed as the largest weight in 
the tree. In the following estimates the specific values of the slowly varying 
factor may change from one line to another; however, to make the notation 
manageable we shall recycle the symbol L whenever convenient. 

Again it will be more convenient to consider an arbitrary sequence of 
trees Tn satisfying 

v(Tn) = n and h(Tn) = O(~,/-n) (4.3) 

We base our proof on (3.6) and (3.7) here also. The strategy is to select 
truncation levels an ---> ~ in such a way that the trimmed height coincides 
with the truncated height of a path with (high) probability 1 - o ( 1 )  as 
n ~ or. The truncation is also chosen so that for trees of height h(Tn)= 
O(~fn), the largest of these truncated heights is o(cn) in probability, 
whereas the maximum weight over the tree is of order cn, and scales 
according to (4.2). In particular, as already noted in Section 3, 

P(3(O, e l , . . .  , 8ji ) E Tn, Jl < J2, s.t. [W(0, el ..... ej~)] > an, i =  1, 2) 

<~ (h(T,) + 1) n(P([ W(0)l > a n ) )  z 

= O(n3/2[a~L(a,)] z) 
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Thus, by virtue of Feller (Ref. 7, Lemma 2, p. 277), (3.6) holds for 

3 1 
a , = n  p when ~-~<p<-e  (4.4) 

The next thing to check is that the largest of the truncated heights 
(n) k H e (7".):=max<0,~ ~ ...... k>~Tn~'~,j=l W(~)( O, ~1,..., eft, is o(c.) for this trunca- 

tion level. Again using Lemma 2 on p. 277 of Feller, (7) it is easy to check 
that the tree height h(T, )  [being O(nl/2)]  is o(c,), since c,=nV~L(n);  
use Theorem 1.5.12, p. 28, of Bingham, Goldie, Teugels. (3) Also, one has 
#,  := EW(')(O) is bounded for a > 1, while /~, is regularly varying (in a,)  
with exponent 1 - ~ for 0 ~< ~ ~< 1. In either case, therefore, I~nh(T,) is o(c,) 
for 3/4~< p < 1/~. With this we again need only estimate the centered 
values (') Hw ( T , ) - t 2 , h ( T ~ ) ;  i.e., if the centered truncated height is o(c,), 
then so will be the truncated height. The following lemma provides the 
suitable choice of p for this, [-consistent with (4.4)]. 

Lemma 1. There is a 0 < 0 < 1/4c~ such,that for p = 3/4e + 0 < 1/c~, 

(') ec~) = o(1 ) P(kHw ( T . ) -  tz.h(T.)L > 

for each ~ > 0. 

Proof  All of the estimates using Chebyshev's inequality in (3.10) 
apply with p replacing the 3 there. In particular one obtains the upper 
bound 

max P ( lg~ ) (x )  - #.h(x)l  > 5c.) 
x ~ T .  

~< n --gT~s max E [ W(')((0, el,..., e j ) ) -  #,,] 
Cn <O'~I'""g'k>E Tn j 1 

l'l 

C. s 

+ n{~24(n) + ~6(n) ~2(n) + ~s(n) ~3(n)} + n'/2~8(n)] 

where by standard calculations (see Feller, (7) p. 280) one has, for r >~ 2, 

~r(n) <. Kra(, r ~) L(a , )  = Krn(r-~)P L(n) 

Let r />0.  Again writing c, = nl/:L(n) and using the Lernma 2, p. 277, of 
Feller, (7) one obtains that for all n sufficiently large the Chebyshev bound 
is dominated for some K >  0 by 

Kn3/2 + (8-~)0 + ,7-8/~ + 8,i <~ Kl73/4- 2/~ + (8 c~)0+9~ -- O(1) 

for 0 and rl sufficiently small. [] 
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