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Summary. We consider a system that models the shape of a growing polymer. Our  
basic problem concerns the asymptotic behavior of Xt, the location of the end of 
the polymer at time t. We obtain bounds on Xt in the (physically uninteresting) case 
that d = 1 and the interaction function f (x )  > O. If, in addition, f (x )  behaves for 
large x like Cx -p with fi < 1 we obtain a strong law that gives the exact growth 
rate. 

Introduction 

Let Bt be a Brownian motion and f :  IR d ~ IR a be Lipschitz continuous. In this paper 
we will be concerned with processes of the form 

i s (1.1) Xt = Bt + ds ~ du f (Xs  - X,,) . 
0 0 

If f ( x ) =  ~(x)x/llxll and 0(x) > 0, Xt is a continuous analogue of a process 
invented by Diaconis and studied by Pemantle (1988a,b) so stealing a metaphor  
from that paper (and changing the sign) we can think of Xt as the trajectory of 
a tourist who wants to stay away from places she has visited before. For  a more 
serious physical motivation one can think of Xt as describing a growing polymer in 
which newly added units are repelled by existing ones. As a polymer model, (1.1) 
has two serious weakness: (i) the repulsion does not prevent self-intersections, and 
(ii) while real polymers can rearrange themselves to minimize energy, ours cannot. 
However, in contrast to Edward's model (see Westwater (1980a)) the existence of 
the process presents no problem. Theorem 11.2 of Rogers and Williams implies 
that (1.1) has a pathwise unique strong solution. Furthermore, one can hope that 
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results about  the end to end displacement of our polymer will give some insight 
into the behavior of more realistic models. 

In this paper we will be concerned with the asymptotic behavior of Xt as 
t ~ oo. The reader will see this problem presents some interesting mathematical 
challenges. Most of our results are confined to one dimension but the first one is 
general. 

Theorem 1. Suppose II f (x) IE < M and f has compact support. There is a constant 
F < oo so that 

lim sup II Xt [I/t < F a.s. 
t--~ ~3 

To see that there is something to prove, notice that the cumulative drift, Xt - B,, 
at time t might be as large as Mt2/2. Indeed in Theorem 4 we will see that for any 

< 2, there are examples with bounded f in which X~ is of order t ~. Although 
Theorem 1 is not obvious, it is not difficult to prove. The key observation is that if 
f ( x )  = 0 for Ilxll > K and IlXtll grows too quickly then many annuli 
{x: (n - 1)K < II x l] < nK} must be crossed quickly. However after a fast crossing 
the drift is small and the chances of another fast crossing are not very good. 

To get lower bounds on Xt/ t  we have to impose some strong assumptions. 

Theorem 2. Suppose d = 1,f>= 0 and f(O) > O. Then there is constant 7 > 0 so that 

lim in fXt / t  > ~ . 
t-c- oO 

The conditionf(O) > 0 is too strong;fT~ 0 should be sufficient. A more interesting 
problem is to strengthen the conclusion. 

Conjecture 1. Suppose f has compact support, f > O, and f ~  O. Then there is a con- 
stant I~ > 0 so that 

X t / t  ~ # a.s. 

To see why this should be true consider 

Yt = Bt + i ds i d u f ( r s -  Yu), 
0 (s - T )  § 

i.e., a modification in which we look back only T units in time. It is easy to check 
that Zt = { Y ~ -  Yt-s: s s [ 0 ,  T]} (defined for t > T) is an exponentially ergodic 
Harris chain with state space C([0, T], IR) and hence Yt/t ~ v almost surely where 
v is the average drift in equilibrium. By analogy, it seems reasonable to guess that 
{X~ - X t - s  :s~ [0, oe )} converges rapidly to equilibrium and Conjecture 1 holds. 
Carrying out this approach seems difficult. Perhaps the result can be proved using 
ideas from Kusuoka  (1985). 

The a s sumpt ion f  > 0 is undesirable since it says that our tourist avoids familiar 
territory by moving North. The situation becomes very complicated when f has 
values of both signs. 

Conjecture 2. Suppose f has compact support, x f (x )  > O, and f ( - x )  = - f ( x )  then 
X~/t --, 0 a.s. 

Before the reader declares that this is an obvious consequence of symmetry we 
would like to observe that there is no zero-one law, so one might have Xt / t  -* c > 0 
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on a set of probability 1/2. Indeed the last behavior occurs in Westwater's polymer 
model (see Kusuoka  (1985)), but computer simulations of related discrete systems 
suggest that for our process the following scenario is more likely. X~ grows (or 
decreases) linearly for a while until a fluctuation overcomes the drift, which is O(1), 
and brings the process well below its maximum. At this point the push from above 
is larger than that from below and the process tends to decrease for a while. Once 
the process gets well inside the initial increasing segment things get complicated 
but can be visualized if one thinks of the g raph  of the local time at time t as 
a mountain range and X~ as a Brownian ant that drifts downhill and drops sand at 
rate 1. We have no idea whether Xt satisfies the central limit theorem or displays 
more interesting behavior but suspect that this will be very difficult to resolve. 

The problems we encountered in the compactly supported case become some- 
what simpler w h e n f i s  not integrable, for then the drift grows with time. Suppose 

(11) If(x)l < M 
(A2) f ( x )  is decreasing for x s [q, oo) 
(A3) xPf(x)  --+ l > 0 as x --+ oo with 0 < / / <  1 

Letting xt = T - ~ X ( t T )  and Wt = T - 1 / 2 B ( t T )  we can rewrite (1.1) as 

(1.2) x, = T 1 / 2 - ~  + T 2-~ ~. ds du f (T~(x s  - x , ) ) .  
0 0 

If we take ~ = 2/(1 +/3) so that 2 - c~ = ~/~ and let T--+ oo we see that the limit, if 
all goes well, should satisfy 

(1.3) x t =  d s S d u  l 
o o (xs - x,) ~ ' 

One solution is xt = Co t" where Co satisfies 

1 Idu 
(1.4) ec~~ = ! (1 - u~) e " 

Our first result says that this argument provides an upper bound 

Theorem 3. Suppose (A1)-(A3) hold and ~ and Co are as above. Then 

lim sup X t / t  ~ < co �9 
t--+ oO 

Theorem 3, when suitably reformulated, holds in IRe. A more interesting extension 
would be to prove 

Conjecture 3. Suppose d : 1 and f ( x )  = x/(1 + Ixl ~+a) with 0 < fl < 1. Then with 
probability �89 

X~/t ~ -~ Co �9 

To see the difficulties involved the reader should try the following much simpler 
open question. 

Problem. Under the hypotheses of Conjecture 3, 

suplX,  l = co a.s. 
t 
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Our  final result gives some suppor t  for Conjecture  3. 

Theorem 4. Suppose (A1)-(A3) hold, f >  O, and f(O) > O. Then 

Xt / t  ~ -* Co a.s. 

The rest of  the paper  is devoted to proofs. Theorem k is proved  in section (k + 1). 
Sections 2-4  are independent  of each other  and can be read in any order  but  the 
p roof  in Sect. 5 depends on results in Sects. 3 and 4. In  what  follows Co is the 
constant  in (1.4) and c is used for constants  either slightly larger or smaller than  co, 
so we use D to denote  d u m b  constants  whose values are unimpor tant .  

2 Upper bound for compactly supported f 

In this section we assume that  
(i) f :  IR d ~ IR d is Lipschitz continuous,  

(ii) f (x )  = 0 for II x II > 1, 
(iii) II f(x)II < g for all x. 

We will prove  the following result that  after rescaling space and then changing time 
to make  the Brownian  mot ion  have variance t gives the version stated in the 
introduction.  

Theorem 1. There is a constant 7 > 0 so that 

lim sup [I Xt II/t =< 2/7 a.s. 
t--* ~3 

Proof Consider  the one dimensional  s.d.e. 

(2.1) dYt = dBt + 2(-Y~-~--2) + 77K dt I1o = 0 

and impose  reflecting b o u n d a r y  condit ions at 0. We can choose the pa ramete r  
7 > 0 so small that  if H = inf{t : Y~ = 2} then 

(2.2) P(/~ _-> 57) => 1/2. 

N o w  let H ,  = inf{t : [[ Xt II = 2n}, z, = Hn - H , _  , ,  ~q, = ~-~, where • t  is the filtra- 
t ion generated by the Brownian  mot ion  and define events G, = {% > 57}, 
F ,  = {% _<- 27}. When  Fn happens  we speak of a fast crossing f rom 2n - 2 to 2n. 
When  G, happens  we speak of a slow crossing f rom 2n - 2 to 2n. 

To  prove  the result it suffices to show that  lim inf,_~ | H,/n > 7. The first step in 
doing this is to observe that  ifHN <= 7N, then at least half of the z l , .  . . . .  rN must  be 
smaller than 27, so there are at least N/2 fast crossings f rom 2n - 2 to 2n. The 
second step will be to show that  after a fast crossing f rom 2n - 2 to 2n there is 
probabi l i ty  at least 1/2 that  the crossing f rom 2n to 2n + 2 will be slow, so that  the 
total  t ime to get to 2N will be larger than 7N with high probabil i ty.  
To  carry out the second s tep  note that  the process Rt = ][ Xt IJ -- 2n satisfies 

(2.3) dR~ = dBt + -2(Rt +-2n) + ~ ' f ( X ~  - Xu)du dt . 
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Now suppose that Fn has happened and n > 1. Then for any t e EHn, Hn + 57], the 
drift in (2.3) is bounded above by (d - 1)(2(Rt + 2))-1 + 77 K while the process is in 
[2n, 2n + 2]. A standard comparison theorem for stochastic differential equations 
(see e.g. Rogers and Williams V.43) implies that we can build a process Y' identical 
in law to Y so that 

Y; > HX(H, + t)[] - 2n for t~E0,57] 

so P(G,+I INn) > 1/2 on F,.  The desired conclusion now follows from a result of 
Dubins and Freedman (1965) (see e.g. Durrett  (1990) p. 220) 

Suppose Gn is adapted to Nn and let Pn = P(GnINn-1). Then 

(2.4) 1G~ p , , ~  1 a.s. on p~ = oo . 
m = l  1 m = l  

To derive the desired conclusion now we let N, be the number of fast crossings 
in the first n trials and N~ = limNn. On {Noo < oo} it is clear that l iminf , .~  Hn/ 
n __> 2 7. On {Nn = oo } we can apply (2.4) to conclude that the number of slow 
crossings M, satisfies 

liminfMn/(Nn/2) > 1 a.s. 
n ~ ( x 3  

The last result implies that for n > no, 

4 N,  
M n > 

= 5 2  

For  n > no either Nn > n/2 (in which case Mn > n/5 and H,  > 7n) or N,  < n/2 (in 
which case there are more than n/2 crossings that take more than 27 units of time 
and Hn > 7n). In all cases we have lira infH,/n > 7 and the proof is complete. 

3 Lower bound when f is positive at 0 

In this section we consider the one-dimensional situation with f > 0. We do not 
require t ha t f ha ve  compact support but we do need f r o  be positive near 0. Again, 
scaling space and time gives the result in the introduction. 

Theorem 2. Let A = inf{f(x):  Ix[ < �89 Then 

lira infX~/t > A 1/2/2 . 
t---~ o9 

Proof We will prove this result by getting a lower bound on the total drift up to 
time t and then observing that the contribution of the Brownian motion can be 
ignored. Indeed in this argument Brownian motion could be replaced by any 
process with B~/t~O as t ~ o o .  Let g(x)=A when 1x1__<1/2 and g ( x ) = 0  
otherwise. 

i ds i duS(xs- x.)> i ds i dug(xs- Xu) 
s 0 0 0 

1 t t 
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t 
where # is the occupat ion  measure  #(C) = So l c ( X , ) d s  and 

J(v) - ~ v(dx) S v(dy) g(x - y) .  

If  v is a probabi l i ty  measure  suppor ted  in [0, n] then 

( ) J(v)  > A v([0,1/23) 2 + ~ v((k/2, (k + 1)/2]) 2 > A /2n  
k = l  

by the Cauchy-Schwarz inequality. Let bt = sup{Xs :s < t} and at = inf{X~ :s < t}. 
Then 

X t -  Bt = i ds i d u f ( X ~ -  X~) 
o o 

At2~2 t2A 

- 2(1 + bt - at) = 4(1 + bt - i n f ~ B s )  ' 

since Xt  >-_ B,. On the other  hand 

X t - -  B t ~= 1 + bt - inf Bs ,  
s<_t  

so it follows that  

(3.1) 1 + bt - infBs > tA1/2/2 . 
s<_t  

The last inequality implies that  

(3.2) lim in fb t / t  > A 1/2/2. 
t ~ o 0  

To strengthen this to the conclusion of Theorem 2 observe that  if s < t 

X t - X s = B t - B , +  d u S d v f ( X u - X ~ ) ,  
s 0 

so taking s to be the first t ime max,__<tXr is at tained it follows that  

Xt  - b~ > inf(B~ - B~) , 
g ~ t  

(3.3) 

and 

(3.4) lim in fX~/ t  > lira i n f b d t .  
t--* OD t ~ o O  

Combin ing  (3.4) with (3.2) completes  the p roof  of Theorem 2. 
Fo r  results in Sect. 5 we will need a simple extension of the results above. 

$ s 

If we let b~ = max~<,<tXs and repeat  the proofs of (3.1) and (3.3) it follows that  

(3.5) 1 + b~ - Xs - inf (B,. - as) >-_ (t - s)A1/2/2 

(3.6) Xt  - bf > inf (Bt - B,.) . 
s<_r<_t  
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Adding (3.5) and (3.6) gives 

(3.7) X t  -- Xs  >= (t - s)A1/2/2 q- inf (B t -- Br) -I- inf (Br - Bs) - 1 .  
s<_r<_t s<_r<__t 

343 

4 Upper bounds for fat tailed f 

We begin by proving  a fact abou t  Brownian  mot ion  that  will be very impor t an t  in 
this section and the next. 

L e m m a  4.1 Le t  b < 1/2. Then for  any k < oo 

P sup ( t - s )  b > x  < C x  -k 
\ 0 _ < s < t _ < l  

Proof. L e m m a  1.1 in Gars ia  Rodemich  Rumsey  (1970) implies that  if (i) 0, 
~b:lR + ~ IR + are cont inuous  and increasing, (ii) 4(0) = 0, and (iii)f: [0, 1] ~ IR is 
cont inuous  and satisfies 

then for s, t E [0, 1] 

ds d t O  ! f ( s ) - f ( t ) l  _ A < so 
0 • ( I s -  tl) 

Is--t[ 

If(s)  - f ( t ) l  =< p( ls  - tl) = 8 ~" O- l (A / xa )d~b (x )  
0 

If  we take f ( s )  = B~, $(x) = Ix[ k, q~(x) = Ixl 1/2 and k > 2 then the modulus  of 
continuity 

p(r) -- 8 i A 1/kx- 2/k �89 x -  1/2dx = Ck A1/kr 1/2-2/k , 

0 

where Ck is a constant  that  depends only on the value of k. If  we pick k large enough 
so that  1/2 - 2/k  > b it follows that  

sup ]B~ - Bt[/( t  -- s) b < Ck Ax/k . 
O_<s<t_<l  

E A  = E[B1 - Bol k < oo so Chebyshev 's  inequali ty implies P ( A  > x k) < x - k E A ,  
and the desired result follows. 

Turn ing  now to the p roof  of Theorem 3, we begin by recalling that  the 
assumpt ions  on f th roughou t  this section are 

(i) If(x)l  __< M 
(ii) f ( x )  is decreasing for x e  [q, oo) 

Off) x~ f ( x) ~ l > O as x ~ ~ w h e r e O < f i < l .  
Let c~ = 2/(1 + fl)~ (1, 2), observe 2 - c~ = c~fi, and define Co by 

1 Idu 
(4.1) ~c~ +~ = ! (1 - u~) p " 

Let  s > 0 and c > Co. Our  aim is to show that  if T is large P ( X T  > ct ~ for some 
t > T) < e. The first step in achieving this aim is to make  some choices that  for the 
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momen t  will seem rather mysterious. Their purposes will be revealed in the proof  
below. For  the moment  the reader should be content  to check that  such choices are 
possible. Once we have introduced the necessary definitions we will explain the 
idea behind the proof. Pick 0 > 1 so that 

0 c ~  +~ (4.2) ? = c -  - ~ - -  > 0 .  

Pick N > q large enough so that  f ( x )  < OIx -~  for x > N. Choose  p, 9 > 0 and 
b E (0, 1/2), so that  

(4.3) v = 2 -  ~ + 2p < ~ ,  

(4.4) v < ~(~ - g - 1/2)/(e - b).  

This is possible since 2 - :~ < e and the r ight-hand side of (4.4) is :~ when b = 1/2 
and g = 0. Note  that  e < 2 so v > 0. Let eT = T -p, define Jlr by the requirement 

(4.5) T 2 - ~ M ( ~ ? T  + T - a N )  = (c7/2)e 2 . 

Note  that the definition of ~/r and (4.3) imply fly ~ ( c 7 / 2 M ) T - ~  and let 

(4.6) Co(t) = c i (as ~ -1 )  v ewds  r  = (Po(t) + q r  . 
0 

Let z = inf{t: xt = ~bl(t)}, and let G = sup{u < ~:x~, = Co(u)}. We will show that  
P(z < 1) is small by getting an upper bound  on the drift at times s e for, z] which 
shows that  the crossing from qSo at time a to ~b~ at time z must  be due to an 
abnormal ly  large fluctuation in the Brownian motion.  To  bound  the drift we let 

v = sup {u ' r  (u) + T - ~ N  < ~bo(s)} 

with s u p O =  O. (Note that  v depends on s.) Since xt < r for t < r and x~ > ~bo(S), 
using (i) and (ii) (and recalling N => q) gives 

s v 

(4.7) y f ( T ~ ( x ~  - x,))du < M ( s  - v) + y f (T~(dPo(S)  - r  . 
0 0 

To estimate the integral on the right we observe that  the choice of N and the 
definition of v imply 

f ( T ~ ( r  - r  __< Ol{T~(r  - Cz(u))} -~ < Ol{T~(O~(v)  - r -z  . 

N o w  

S O  

(4.8) 

41(v)  - e l ( u )  = Co(V) - Co(U) > c(v  ~ - u ' ) ,  

v 0 i ldu 0 v~-l~cg + 
~ f ( T~(~po(s) - q~l(u)))du =< c ~ r ~  ~ (v ~ Z u~) p - c~T~ ~ 
0 0 

by the definition of Co given in (4.1). N o w  the convexity of qSo implies 

(s - V)r < Co(s) - Co(V) = ~ + T - a N ,  
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and recalling the definition of r gives 

(s - v) <-_ O?w + T-~N) / (CeT)  . 

Using the last inequality and v _< s with (4.7) and (4.8) gives 

s ( / ~ 0 ~+l ~ _ ,  ~ / 
If(T~(x~ - x , ) ) d u  < M(rlT + T - ~ N )  (CeT) + C~ aS ~ .  
0 / 

Recalling 2 -- e = aft and using the definition of t/T in (4.5), and 7 in (4.2), we have 

$ 

(4.9) T 2-~ ~f(T~(x~ - x . ) ) d u  __< (~/2)eT + (c - 7)~s ~ -  1 .  
0 

The last inequality gives an upper bound  on the drift that  is smaller than (b;(s). To  
complete the proof  we will now bound  the contr ibut ion of the Brownian motion.  
Using Lemma 4.1 with k > 1/g, the Borel Cantelli lemma, and Brownian scaling it 
follows that  (almost surely) for large T 

T-1/2IB~T - B,T] <= TO(t - -  s )  b for all 0 __< s < t __< 1 

Hence for large T, 

(4.10) T~(z - G)bT 1/2-~ > T-~(BT~ - BT~) 

> x~  - x .  - ( ~ / 2 ) s T ( T  - -  a )  - -  ( c  - -  ~ ) ( ~  - -  o - ~ ) ,  

by (1.2) and (4.9). N ow 

q~i(~) -- r = t l T  + C i (C~S =- i )  V eTdS , 
ff 

so the r ight-hand side of (4.10) is at least 

(4.11) tiT + C{(r ~ -- ~ )  V eT(~ -- ~)} -- (7/2)eT(Z -- a) -- (C -- ?)(r= -- ~ )  

--> ~ + 2 { ( ~  - r v ( ~ ( r  - G))} 

since for a, b, c, x, y > O, c(x  v y) - ax  - by > (c - (a + b)) . (x  v y) (consider two 
cases: x > y, x < y.) Combining (4.10) and (4.11), recalling the definition of t/T, and 
using 

~ - ~ = f c~s ~ - ~ d s  __> ~ c~s ~ -  ~ d s  = (~  - ~)~ 
0 

gives 

(4.12) r ~  - a)bT 1/2-~ >= D r  -v  + (7/2)('c - a) ~ . 

We will now show that  our  choice of v makes this inequality impossible for large T. 
To do this we observe that  using D to denote dumb constants whose values are 
un impor tan t  

T~  i /2-~ <_ D T  -~ when h < D ' T  -(~+g-~+ i/2)/b 

TOhbT a/2-~ <= (2/2)h" when h > D T  -(~-~ 
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O u r  choice  of  v a n d  b in (4.4) impl ies  t ha t  

v c~(c~ --  g - 1/2) ~ - g --  1/2 c~ - g --  1/2 
(4.13) b < b(c~ - b) e - b + b 

SO 

v + g --  e + l / 2  o r - g - l ~ 2  
< 

b c ~ - b  

a n d  the i n e q u a l i t y  in (4.12) is i m p o s s i b l e  for  l a rge  T. Th is  shows  t ha t  when  
]Bt - Bs] < T ~  - s] b for  all  0 < s _< t _< 1 it is i m p o s s i b l e  to  have  xt = q~l(t) for  
t __< 1 a n d  the p r o o f  is comple te .  

5 Lower  bound for fat  tai led f 

T h r o u g h o u t  this  sec t ion  we will s u p p o s e  

(i) I f (x)  l < M 
(ii) f ( x )  is dec r ea s in g  for  x ~ Eq, oo) 

(iii) x~ f (x )  ~ l > 0 as x ~ oo where  0 < fl < 1 
(iv) f ( x )  >= 0 a n d  f ( 0 )  > 0. 

The  p r o o f  of  T h e o r e m  4 is s imi la r  to  t ha t  of T h e o r e m  3 bu t  r equ i res  m o r e  
c o m p u t a t i o n .  As  in the  las t  sec t ion  we beg in  by  m a k i n g  a n u m b e r  of  choices  w h o s e  
p u r p o s e s  will  b e c o m e  c lear  la ter .  After  we have  e n o u g h  def in i t ions  we will  exp la in  
the  i dea  b e h i n d  the  proof .  Let  ~ > 0 a n d  c~ (0 ,  co). W e  c h o o s e  c5 > 0 to  sat isfy 

( 5 . 1 )  y - (1 - c~)2Co* +/~c -~  - c > O, 

a n d  then  p ick  N la rge  e n o u g h  so t ha t  

(5.2) f ( x ) > I ( 1 - 6 ) x  -~ f o r x > N .  

N e x t  c h o o s e  b ~ (0, 1/2), 9 > 0, 0 < )o < v < :~ to  sat isfy 

( 5 . 3 )  - -  + - -  > ;t 
1 - b 2(1 - b) 

9 1 - 2b 
(5.4) - - -  + c~ 

1 - b 2 ( 1  - b )  
m > s  

1/2 - 9 
( 5 . 5 )  v/~ > ~(c~ - 1 ) / ~  

(1 -- b) 

(5.6) v < { ~ -  g - 1 / 2 - -  Zb(~ - 1)/~}/(1 - b ) .  

T o  see t ha t  such  choices  can  be m a d e ,  no t e  t ha t  when  2 = 0, g = 0, a n d  b = 1/2 we 
can  p ick  v smal l  e n o u g h  so t ha t  inequa l i t i e s  (5.3)-(5.6) h o l d  s tr ict ly.  
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Let  xt = T - ~ X ( t T ) ,  ar  = T -~, tlr = T -~ and  

~ o ( t ) =  ct ~ -  ar  ~ l ( t )  = ~o( t )  - t lr  

= inf{t:x~ = q~l(t)} 

= s u p { u  < ~ : x u  = 4 o ( U ) }  

p = i n f { t : x t  = 050(0} 

t r  = inf{t:  qSo(t) = 0} = c - 1 / ~ T  -~/~ . 

Using L e m m a  4.1 with k > l /g,  the Borel  Cantel l i  lemma,  and  Brownian  scaling it 
follows tha t  (a lmost  surely) for large T 

(*) T - 1 / 2 l B s r  -- B~[  <= T~ --  s) b for all 0 < s < t -_< 1 

O u r  a im will be to show tha t  if(*) holds  and T i s  large then ~ < 1 is impossible.  We  
will do  this in two steps. Firs t ,  we will show p > t r  and  then we will show tha t  
t r  < o" < ~ < 1 is impossible .  In  each par t  of the p r o o f  we will use the a s sumpt ion  
f (0 )  > 0 to give a lower b o u n d  on the rate of g rowth  of X,.  

L e m m a  5.1. I f ( * )  and T >  To(g, b), we must  have p >= tr .  

P r o o f  W h e n  t < t r ,  qSo(t) < 0. To get a lower b o u n d  on xt we observe tha t  (3.7) 
with s = 0 and  t = u implies  

Xu > �89 1/2 + in f (B ,  - Br) + infBr  - 1 . 
r<=u r<=u 

Changing  the t ime scale u = tT ,  using (*), and  dividing by T ~ gives 

xt = T - ~ X ( t T )  > ~ ( t )  =- T ~ ( t T A 1 / 2 / 2 -  2 T  1/2T~ b -  1). 

Let  ~c = (4/A1/Z) 1/(1-b) W h e n  t = ~:T (~ 

t T A t / 2 / 2  = 2T1/2TOt b . 

So if Ur = 2~cT (~ t >= ur ,  and T is large then 0( t )  > 0. To take  care of 
[0, Ur] we not ice  tha t  over  this in terval  

tp(t) > - T - ' ( Z T 1 / 2 T ~  + 1) -- - T - ~ ( D T O T  (~ -2b)/2(1-b) _ ~  1) 

~ao(t) <= D ' T  ~/2(1-b) _ _  T-Z.  

Now,  (5.3) guarantees  that  for large T, 4 o ( T )  <= - T-a~2,  so using (5.4) we see tha t  
for large T, ~,(t) > qSo(t) for t c [ O ,  Ur] and  the p roo f  of L e m m a  5.1 is complete.  

To finish the p r o o f  of Theo rem 4 now it suffices to show: 

L e m m a  5.2 I f ( , )  and T >  T l ( 9 ,  b) then it is impossible to have t r  < a < ~ <= 1. 

P r o o f  Suppose  tha t  t r  < ~r < z < 1 and  let ~ < t < z. We  want  to get a lower  
b o u n d  on the drift at  t ime t. To do  this using (ii) we have to know Xt - X~ > q so 
our  first step is to observe that  (3.7) says 

X t  -- Xs  >= (t -- s)A1/2/2 + inf (B~ - B~) + inf (B~ --  B~) - 1 , 
s ~ r ~ t  s ~ r ~ t  
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so it follows from the proof  of Lemma 5.1 that if t - s __> Uz and Wt satisfies (,) then 

(5.7) X t  T _ X s  T ~ ( D T ( ( 1 -  2b)/2(1-b))+(l +b)o - -  1)  ~ q 

for large T. Let v = t - u T. To estimate the drift of xt = T - ~ X ( t T )  we observe that 
xt _-< ~bo(t) and if s __< v, 

q <= T~(x t  - Xs) < T~((Oo(t) - (~l(S)) , 

so (ii) and (iv) imply 

t v 

(5.8) ~ f ( r ' ( x ,  - x s ) ) d s  _-> 5 f ( T ' ( r  - q~l ( s ) ) d s .  
0 0 

Using the definition of the q5 i and then (5.2) we see that  for large T the right hand  
side of (5.8) is equal to 

" 1 - 5 ~. Ids  
(5.9) ~f(T~(Ct'o - cs~ + q r ) d s  > ~ Jo ( t~ -- s~ + ~IT/C) a 

_ _ l - - 6 I i  l d s  i l d s  1 
c e - ~  o (t ~ - s~ + ~ / c ) ~  - ~  (t ~ - s ~ + ~ / c ) ~  " 

Changing variables s = tu and using eft = 2 - 

i i /du (5.10) Id s  = t~-  I 
o ( t~ - s~ + t l r /c)  ~ (1 - -  lg ~ + tlT/Ct~) p 

__> (1 - a ) t ~ - ~ c  I+p 

for large T, since t > t r  and v > 2 imply ~ r / c t  ~ < qr/Ct}" -+ O. TO estimate the 
second integral on the right hand  side of (5.9) we observe that t ~ - s ~ > 0 implies 

i < cPl(t - v)fll~r = lclIUT/rfT 
I d s  

(5.11) ~ (t ~ _ s ~ + tlT/c)l~ = . 

Combining  (5.9)-(5.11) and using the definition of 7 in (5.1) gives 

1) 
(5.12) ~ f ( T ~ ( c t  ~ - cs ~ + t / r ) ) d s  > (~ + c ) t ~ - ' a  (1 - -  6)21ur 

o = T ~  T~r/PT 

N o w  we use (1.2) and the relationship 2 - c~ = ~fl to write 

t 

(5.13) - T1 /2 -~ (BT~  - B T , )  = - -x~  + x ,  + T 2 -~  ~ d t  ~ f ( T ~ ( x ~  - xs))ds 
~r 0 

> - c ( r  - ~ )  + r lr  + (~ + c)('c ~ - ~ )  

- (1 - 6 ) l u r r l ~ e ( z  - ~) 

by (5.8) and (5.12). Letting ~T = (1 -- 6)lur~l~ p, then using the convexity of x" and 
the fact that  a > t r  we can write (5.13) as 

(5.14) - T 1 / z - ~ ( B T t  - B r a )  >= y (  "c~ - -  (7 a) + r lr  - -  ~ T (  "c - -  a )  

/~T "~ (~)~O'~-1 - -  ~ T ) (  '/;" - -  (7) 

> ~ r  + ( ~ t }  - 1  - ~ r ) ( ~  - c0 
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Now (ignoring constants) 

t~ -1 = T-Z(~-l)/~ r/T p = TVa U T = T ( g - 1 / 2 ) / ( l - b )  

and we have supposed (see (5.5)) 

g 1 
- -  + / ~ v  < - ;~ ( c~  - 1 ) / ~  

( l -b)  2(1-b) 

so IT = O(t} - i )  and the right hand-side of (5.14) is positive for large T. Using (,) 
now, it follows that for large T 

(5.15) Tarl/2-~l'c - cr[ b >- t/T -b T t~- i('c - o-). 

To see that this is impossible for large T we notice that 

T~ ~ t/r when 

T~ b < 2 f r - i h  when 

and  (5.6) implies  tha t  

- 9 - v - 1 / 2  + 

b 

h <- DT (-~ 

h >= DT (g+ 1/2-~+x(~- 1)/~)/(1 -b) 

g + 1/2 - c~ + 2(e - 1)/c~ 
> 

1 - b  
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Note added in proof. M. Cranston and T. Mountford have proved Conjecture 1. 


