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ESTIMATING THE CRITICAL VALUES OF STOCHASTIC GROWTH MODELS
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Abstract

Interacting particle systems provide an attractive framework for modelling the
growth and spread of biological populations and diseases. One problem with their
use in applications is that in most cases the existing information about their critical
values and equilibrium densities is too crude to be useful. In this paper we describe a
method for estimating these quantities that does not require very much computer
time and produces fairly accurate results.

CONTACT PROCESS; CRITICAL VALUES

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60K35

In this paper we describe a method for estimating the critical values of interacting
particle systems and apply the method to two special cases of two examples. In each of
the systems we consider the state of the process at time ¢ is & C Z4 and we think of the
x €&, as being occupied by a ‘particle’. In the definitions below, 4" is the set of neighbors
of 0. For example, /"= {y: | y ||, = 1}, the 2d nearest neighbors.

Example 1. The threshold contact process.

(a) Occupied sites become vacant at rate 1.

(b) A vacant site x becomes occupied at rate g if at least one of its neighbors
Yy EXx + A is occupied.

Example 2. The basic contact process.

(a) Occupied sites become vacant at rate 1.

(b) An occupied site gives birth to a new particle at rate 8. A particle born at x is sent
to a randomly chosen neighbor y €x + A", If y is occupied then no birth occurs.

To describe the questions we want to answer we have to introduce some ‘well known’
results about these processes. More detail can be found in Liggett (1985) or Durrett
(1988). The two systems described above are attractive, i.e. if & C &; then we can define
realizations of the process starting from these initial configurations on the same space
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456 L. BUTTELL, J. T. COX AND R. DURRETT

in such a way that & C & for all 1 = 0. An immediate consequence of this property
is that if we start from & =7Z¢ then as t—oo, & = &, where = denotes
weak convergence, which in this setting is just convergence of finite-dimensional
distributions. General results imply that £ is the largest possible stationary dis-
tribution for the system. Of course it may be the trivial stationary distribution dg,
the point mass on the &, and in this case we say that the system dies out. We define the
critical value in general by

B.=inf{B: & # 64}

and write B, (i) for the critical value of Example i whend =2and /" ={y: |y |, =1}

To get lower bounds on S,(i), we observe that the birth rate per particle is at most 48 in
Example 1 and at most £ in Example 2. Using the equation for dP(0E &! )/dt it is easy to
see that

(1) p()z=14, B(2)z1.

Upper bounds on the critical values are more difficult, but Liggett (1991) (see Cox and
Durrett (1991) for a proof of this corollary of his result) and Holley and Liggett (1978)
have shown

() B()=1.14, B.(2)=4.

The bounds in (1) and (2) are not very tight but are the best known results and are
much better than what is known about many other examples. This brings us to our main
question: how do you estimate S, from computer simulation? The first and simplest
answer is to run the system and see what happens. Consider Example 2 on a 200 X 200
lattice with periodic boundary conditions, i.e. points x and y are neighbors if there is a
z€WN sothatfori =1, 2, x; — y; = z;mod 200. If we take f = 1.45 and run the process
until time 200 then the system dies out. If we take f = 1.85 and plot the fraction of
occupied sites at times ¢ €[0, 200] we get a curve (see Figure 1) that suggests that the
system is converging exponentially rapidly to an equilibrium in which about 28% of the
sites are occupied.

The last experiment gives us a crude estimate of 8.(i). With a little more thought we
can extract quite a bit more information from one simulation. Our first step is to change
the time scale so that:

(a) Occupied sites become vacant at rate d.

(b) An occupied site gives birth to a new particle at rate 1. A particle born at x is sent
to a randomly chosen neighbor y. If y is occupied then no birth occurs.

Our second step is to define a process {,: Z?— [0, 1] so that for all  €[0, 1]

(3) &3(x)= 1,2 4 is a realization of the process with death rate 4.

In words, {,(x) is the largest value of § = 1 for which site x is occupied at time 7. To
construct {,(x) we define for each site two rate-1 Poisson processes {S;,n =1} and
{T}, n = 1}, asequence of random variables { U, n = 1} that are uniform on (0, 1), and
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a sequence of random variables {Y, n = 1} that are uniform on x + .#". All these
sequences are supposed to be independent. The evolution is then computed using the
following rules:

(a) at times s = S, we set {(x) = {(Y7) if {(x) <{(Y7),

(b) at times ¢t = TF we set {,(x) = Urif {,(x)> U;.

To see that the transitions go in the right direction in (a) and (b) note that increasing the
value at x makes that site occupied in more processes, while decreasing the value makes
it vacant more. Using the fact that the set of 7' with U} <4 is a Poisson process with
rate 4 it is easy to check that (3) holds.

The last construction is convenient for mathematicians but not for a computer. To
simulate {,(x)on A= {0, 1,- - -, L — 1}? with periodic boundary conditions we use the
following algorithm:

(a) pick a site x at random,

(b) flip a fair coin to see if the event should be a birth or death,

(c) if the event is a death we generate an independent U that is uniform on (0, 1) and
set {(x)= U if(and only if) U < {(x),

(d) if the event is a birth we pick a neighbor y at random and set {(x) = {(y) if (and
only if) {(y)> {(x).

The sequence of {’s generated by the last procedure corresponds to the embedded jump
chain for {,(on A= {0, 1,- - -, L — 1}? with periodic boundary conditions). To see this
note that the Markov property of the Poisson process implies that the site and type of the
nth arrival are i.i.d. and uniformly distributed over the set of possibilities. In passing
from the mathematical to the computer definition of the process we ignore the amount of
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458 L. BUTTELL, J. T. COX AND R. DURRETT

time that the process spends in each state, but this is harmless. The asymptotic fraction
of time a site is occupied is the same in both processes.

Since the algorithm just described simulates the process simultaneously for all values
of 6€[0, 1] we can estimate the limiting density p(d) = P(0EZL) in the obvious way.
Start with {,(x)== 1. This corresponds to having all sites occupied for all § = 1. Run the
processon {0, 1,- - -, L — 1}?out to time 7, (that is, we perform L2T transitions) and let
p(0) be the fraction of sites with {(x)= . Figure 2 shows the curve that results when
L =200 and T = 1000. As the reader can probably guess from the smoothness of the
graph, the curve that results is not very random.

1 L) 1 L) 1 T 1 L) L} 1

Contact Process, Diamond 1

Figure 2

The curve in Figure 2 suggests that d,= 1/8, lies in (0.6, 0.62). To get more accurate
results we will use a method that is common in the physics literature (see e.g. Dickman
and Burschka (1988) pp. 133-134). We pick a sequence of values §;,, compute our
estimates y; = p(J;), use linear regression to fit

4) logy;, =a + blog(y — d;)

for various values of y, and then use the y that minimizes the sum of the squared errors as
our estimate of J,. This recipe is based on the assumption that the limiting density
satisfies

(5) p(O)~C@.—0)" asdtd
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TABLE 1
Simulation data and estimates for the basic contact processind =2 with #" = {y: ||y ||, =1}
0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600

0.201756  0.187177  0.171103  0.154968  0.136846  0.118090  0.095542  0.066958
0.202806  0.187920  0.172399  0.154910 0.137894  0.119404  0.096929  0.071865
0.204008  0.189009  0.173444  0.157070  0.139735 0.119517  0.0983%90  0.070650
0.203487  0.188987  0.173302 0.157512  0.138902 0.117495 0.097007 0.069811
0.202691  0.187921  0.172019  0.155705  0.137787 0.118466  0.096439  0.067464

d.=0.6058 b=0.5638  sse=0.000084
.= 0.6078 b=10.6094  sse=0.000070
J, = 0.6066 b=0.5740  sse =0.000080
é.=0.6070 b=0.5962  sse=0.000195
d. = 0.6058 b=0.5614  sse=0.000098

where f(x)~ g(x) means f(x)/g(x)—1 as x—0. The asymptotic behavior in (5) is
believed to hold in a wide variety of models (see for instance Janssen (1981) or
Grassberger (1982)). The exponent b is a critical exponent usually denoted by £ in the
physics literature. Since £ is our birth rate we prefer the non-traditional designation here.

The data in Table 1 show what happened in five applications of this technique to
Example 2. To estimate the density we ran the system with L = 200 and from times
3000-10 000 we examined the density of occupied sites every 10 units of time for the
indicated parameter values, averaging the 700 observations to get the number in the
table. The reader should note that we waited until time 3000 to allow the density to
converge to equilibrium (this time was picked by examining the behavior of the density
versus time in earlier runs), and that we did not take values of d too close to the critical
value because there the estimated values have large fluctuations. Table 1 gives the values
of 4, and b that were obtained. As the reader can see, the estimates of J, do not fluctuate
very much but the values of b we compute vary considerably. The values we obtained are
consistent with the estimates one can find in the physics literature. Brower et al. (1978)
give d. =~ 0.607 (our J, is their 7./4) and with the help of definitions in Cardy and Sugar
(1980) one can compute that b =~ 0.585. The results just quoted are for ‘Reggeon field
theory’, a physical system that is equivalent to the basic contact process, see Grassberger
and de la Torre (1979). To break some new ground we tried our method on the basic
contact process in d =2 with /"= {y:||y|lo=1)}. Table 2 gives the data and the
estimates that were obtained.

The method described above for the basic contact process, after a simple modifica-
tion, can be applied to the threshold contact processond =2 with /" = {y: ||y |, =1}.
The first step is to construct a simulation of the processon A = {0, 1,- - -, L — 1}*for all
values of S €(0, 1). We restrict our attention to this range of #’s since we expect . < 1.
We skip the formulation of the process in continuous time and go directly to the
computer implementation. The rules are similar to those of the contact process, but the
roles of births and deaths are interchanged since we are now thinking of {(x) as being the
smallest value of # for which the site is occupied:

(a) pick a site x at random,
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460 L. BUTTELL, J. T. COX AND R. DURRETT

TABLE 2
Simulation data and estimates for the basic contact process ind =2 with A" ={y: ||y | . =1}

0.640 0.645 0.650 0.660 0.665 0.670  0.675 0.680 0.685 0.690

0.197356 0.186144 0.174303 0.149870 0.136977 0.122005 0.105020 0.087854 0.067079 0.039907
0.198550 0.186745 0.174749 0.149549 0.136050 0.121693 0.106166 0.089208 0.070799 0.048279
0.198122 0.186976 0.175197 0.149662 0.135723 0.121786 0.106173 0.087697 0.067154 0.044513
0.199175 0.188028 0.176177 0.151025 0.137936 0.123157 0.106734 0.090322 0.071316 0.045715
0.198609 0.187124 0.175380 0.150437 0.136795 0.122231 0.106565 0.087491 0.065672 0.039821

J.=0.6935 b =0.5883 sse = 0.000086
d. = 0.6962 b =0.6400 sse = 0.000018
J.=0.6952 b=0.6336 sse = 0.000376
J.=0.6948 b=10.6010 sse = 0.000233
J.=0.6937 b =10.6015 sse = 0.000325

(b) flip a fair coin to see if the event should be a birth or death,

(c) ifthe event is a death we set {(x) = 2 to indicate that the site is vacant for all values
of BE(0, 1),

(d) if the event is a birth we generate an independent U that is uniform on (0, 1), let u

be the minimum value of {(y) at the neighbors of x and set {(x) = x v Uif (and only if)
{(x)>uvU.
The explanation for the algorithm just described is similar to the one for the basic
contact process. To check (d), we note that the arrival in the birth Poisson process will
result in an attempted birth if and only if # < U and there is an occupied neighbor if and
only if f <u.

TABLE 3
Simulation data and estimates for the threshold contact process in d =2 with A" = {y: |y ||, =1}

0.520 0.515 0.510 0.505 0.500 0495 0490 0485 0480  0.475

0.156908 0.147908 0.138387 0.127824 0.116877 0.104858 0.091512 0.074972 0.057401 0.031316
0.157799 0.149075 0.139558 0.129311 0.118361 0.106314 0.092922 0.077515 0.059076 0.035973
0.158014 0.149019 0.139224 0.129132 0.118086 0.106558 0.092419 0.076550 0.058795 0.034451
0.157529 0.148579 0.139130 0.129097 0.117853 0.105908 0.092067 0.076985 0.057221 0.026437
0.156985 0.147983 0.138522 0.128505 0.117261 0.105718 0.092249 0.077888 0.058389 0.030872

B.=0.4725 b =0.5476 sse = 0.000159
B.=0.4716 b =0.5581 sse = 0.000205
B.=0.4719 b =0.5543 sse = 0.000168
B.=0.4736 b=0.5126 sse = 0.000031
B.= 0.4729 b=0.5194 sse = 0.000086

Once we know how to simulate the threshold contact process, its critical value can be
estimated as before. Table 3 gives the data and the estimates that we obtained. The five
estimates of J, suggest strongly that . <0.5 <1. We are interested in the conclusion
J. <1 because the survival of the threshold contact process with § =1 implies that
coexistence occurs in the threshold voter model that uses the same set of neighbors. See
the discussion after Theorem 4 in Cox and Durrett (1991). It is conjectured that
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TABLE 4
Simulation data and estimates for the threshold contact process in d =1 with A" = ( —2,—1,1, 2}

0.90 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82

0.347724 0.336823 0.324793 0.311667 0.296228 0.278344 0.256045 0.227495 0.184683
0.347846 0.336897 0.324812 0.311581 0.295896 0.277866 0.256227 0.228511 0.186545
0.347393 0.336585 0.324597 0.311030 0.295543 0.277243 0.254816 0.226734 0.184835
0.348652 0.337927 0.326005 0.312772 0.297339 0.279550 0.258626 0.230826 0.189139
0.347920 0.337078 0.324876 0.311679 0.296152 0.278399 0.256484 0.228065 0.189437

B.=0.8115 b =0.2704 sse = 0.000011
B.=0.8109 b=0.2731 sse = 0.000003
B.=0.8109 b=02772 sse = 0.000014
B.=0.8109 b =0.2675 sse = 0.000002
B.=0.8100 b =0.2782 sse = 0.000039

coexistence occurs in the threshold voter modelind = 1 when A" = { —2,— 1, 1, 2}. To
support this conjecture we have investigated the critical value of the corresponding
threshold contact process. The results reported in Table 4 suggest J, <0.82 < 1.

The conclusion we would like the reader to draw from the four examples is the
following: given a one-parameter family of stochastic growth models (translation-
invariant finite-range processes & C Z?with & an absorbing state) one can estimate the
critical value for the existence of a non-trivial stationary distribution by estimating the
equilibrium densities at 8—10 values and then fitting a straight line as in (4). In many
situations one can simulate the process simultaneously for all parameters in the range of
interest so the estimation can be done from one run.
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