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We study two families of excitable cellular automata known
as the Greenberg–Hastings model and the cyclic cellular au-
tomaton. Each family consists of local deterministic oscil-
lating lattice dynamics, with parallel discrete-time updating,
parametrized by the range � of interaction, lp shape of its
neighbor set, threshold � for contact updating, and number �
of possible states per site. These models are mathematically
tractable prototypes for the spatially distributed periodic wave
activity of so-called excitable media observed in diverse disci-
plines of experimental science.

Fisch, Gravner and Griffeath [Fisch et al. 1991] studied ex-
perimentally the ergodic behavior of these models on Z�,
started from random initial states. Among other phenom-
ena, they noted the emergence of asymptotic phase diagrams
(and dynamics on R�) in the threshold-range scaling limit as
�� � �� with ���� constant.

Here we present several rigorous results and some experimen-
tal findings concerning various phase transitions in the asymp-
totic diagrams. Our efforts focus on evaluating bend�p�, the
limiting threshold cutoff for existence of the spirals that charac-
terize many excitable media. Our main results are formulated
in terms of spo�p�, the cutoff for existence of stable periodic
objects that arise as spiral cores. Some subtle consequences of
anisotropic neighbor sets �p �� �� are also discussed; the case
of box neighborhoods �p ��� is examined in detail.

1. INTRODUCTION

In the two�dimensional Greenberg�Hastings model�
or GHM �Greenberg et al� ���	
 Greenberg and
Hastings ���	� we imagine the points of Z� as be�
ing occupied by neurons that can be rested �state

�� excited �state ��� or in a sequence of recovery
states �� � � �� � � �� where � � �� The state of
the system at time n is represented by a function
�n � Z� � f
� �� � � � � � � �g that evolves according
to the following simple rules�
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�a� If �n�x� � i � �� then �n���x� � i � �� �Note	
throughout this paper arithmetic in the state
space is done modulo ���

�b� If �n�x� � � and at least � neighbors are ��
then �n���x� � �
 otherwise �n���x� � ��

Here the neighbors of x are the points y such that
y � x � N for some prescribed set N � For a given
p � ������ we will always take for N the closed
ball Bp��� of radius � in the lp metric	

N � fy 	 kykp � �g�

where kykp � �jy�jp � jy�jp���p for p � �� and
kyk

�
� maxfjy�j� jy�jg� We call � the threshold

and � the range�
The state at x is said to update automatically in

case �a�� and by contact in case �b��
The closely related cyclic cellular automaton� or

CCA �Fisch et al� ����� ���
� evolves similarly� ex�
cept that all sites update by contact �a site in state
i updates when there are at least � neighbors in
state i� ���
These two parametrized families of cellular au�

tomata are prototypes for excitable media	 periodic
wave dynamics that arise in many areas of applied
science� In two dimensions such systems are typ�
ically characterized by the emergence of spatially
distributed �target patterns� and�or spirals� One
of the more bizarre real�world examples of an ex�
citable medium is Cyclic AMP wave transmission
in the �amoeba aggregation phase� of the slime
mold Dictyostelium discoideum	 see �Newell �����
for a nice photograph of the characteristic wave
patterns� �Later on this creature becomes a multi�
cellular slug� but that�s another story��
Beginning with the seminal work of Wiener and

Rosenblueth ������� and fueled by discovery of the
Belousov�Zhabotinski oscillating chemical reaction
in the late sixties �see �Winfree ������� a sizable
body of knowledge has developed on the subject of
excitable media� Over the past decade� in partic�
ular� rapid advances in computer technology have
sparked an explosion of research activity� Refer�
ences �Gerhardt et al� ����
 Kapral ����
 Mar�

cus et al� ����
 Winfree ����� are representative
of recent experimental and applied modeling ef�
forts� while �Durrett ���

 Durrett and Neuhauser
����
 Durrett and Steif ����� ����
 Fisch et al�
����
 Gravner
 Gravner and Gri�eath ����� con�
tain the beginnings of a rigorous mathematical the�
ory� See also �Dewdney ����� ����
 Durrett ����

Gri�eath ����
 Mikhailov ����
 To�oli and Margo�
lus ����� for expository accounts of excitable cellu�
lar automata� and �Muller et al� ����� for pictures
of actual Belousov�Zhabotinski spirals�
We should note that other paradigms such as

partial di�erential equations and coupled lattice
maps are also often used to model excitable sys�
tems� In this paper� however� we will focus on de�
tailed aspects of GHM and CCA dynamics�
A primary tool for the analysis of excitable cel�

lular automata is computer visualization� so we re�
fer to the � possible states at each site as colors�
The reason for our interest in these systems and
the motivation for much of this paper can be seen
in Figure �� which are representative snapshots of
the GHM evolution on a 
���
�� grid with p � 
�
� �

p

�� and various values of � and �� In the

experiments depicted in this �gure� as through�
out most of the paper� we started from primordial

soup� that is� the product measure with uniform
density ���� Thus� the initial colors of sites are
independent and take the � possible values with
equal probability�
One should bracket the images in Figure � with

two less interesting scenarios	 when � � � and
� � � the image remains virtually indistinguish�
able from random noise� and when � � �� and
� � � it evolves to the trap ��x� � � from which
no changes are possible�
Evidently GHM can self�organize starting from

primordial soup� Similar but even more exotic
self�organization takes place in CCA
 see �Fisch et
al� ����� color plates E�H� for some representative
patterns�
The basic problem concerning excitable cellular

automata is the classi�cation of their limiting be�
havior as n � � �with probability one� on the
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� � �� � � � � � �� � � �

� � �� � � � � � ��� � � 	

FIGURE 1. Representative snapshots of the evolution of the Greenberg�Hastings model on a ��� � ��� grid
with p � �� � �

p
��� and various values of � and �� 	The shape of N � Bp	�
 is shown in the middle�
 The

initial states were created by random assignment of colors to each site with equal probability� and the snapshots
were taken after ��� steps� Boundary conditions are periodic� that is� opposite edges are identi�ed�
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FIGURE 2. Greenberg�Hastings spirals from the band test �top� and nucleation �bottom�� The parameters are

p � �� � �
p
�	� � � 
� � � �� the dimensions of the band are l � �
 and w � �� Times are �� ��� �� and �
 for

the top row and 	� �� �� and �� for the bottom� Compare Figure � �top right��

FIGURE 3. A spiral core spo for p � �� � � �	�
� � 
	� The ��� strands have been colored mod ���
so one can imagine � � ��� but in fact any � � �
will do as well� what matters is how a wave that
is �barely� able to bend wraps around� in this case
moving clockwise� The black area is irrelevant to
the spo� nothing that happens there� or outside the
picture� can disturb the behavior of the ring�

FIGURE 4. Smallest known ten�color spo with the
parameters p ��� � � � and � � �� due to D� Pri�
tikin� The colors are as follows� white � 	� bright
red � �� then across the spectrum to violet�red�
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in�nite lattice� based on the values of p� �� � and
�� One possibility� for large thresholds �� is �xa�

tion� each site is eventually painted a �nal color�
In GHM this amounts to global relaxation� or dy�
ing out�

lim
n��

�n�x� 	 
 for all x�

CCA has an enormous set of traps since there is
no automatic updating� so the �nal �xated state
retains evidence of the original soup�
A more interesting outcome is local periodicity

with period �� here� �n does not �xate� but

lim
n��

�n��x� 	 ���x� for all x�

An argument from �Fisch et al� �

�� shows that�

Theorem 1.1.For � 	 �� � � �� and � � �� any

GHM or CCA system is locally periodic of period

�� with probability one�

Outline of proof. Somewhere in the random initial
state is a clock� that is� a loop of sites on which all
� colors are arranged cyclically �necessarily cycling
more than once if � is odd�� Since � 	 �� the color
at every site of the clock advances each time� so
the set of sites Z that eventually change color every
time is nonempty� To argue that Z 	 Z

�� suppose
not and �nd x �� Z and y � Z that are neighbors�
Since the value at x cannot continually cycle as
rapidly as the value at y� it is easy to see that
eventually we will have �n�y� 	 �n�x���� from then
on x will be periodic with period �� contradicting
the choice of x� �

This proof incorporates the simplest example of
a stable periodic object� or spo� By de�nition� an
spo is a �nite set A � Z� together with a mapping
� � A� f
	 �	 � � � 	 ���g� such that� for each x � A�

jfy � A � y � x � N and ��y� 	 ��x� � �gj � ��

In words� each site x � A sees at least � neighbors
of the next color� and hence advances each time�
independently of the states of sites in the comple�
ment of A� �We remark that this notion continues

to make sense and to play a key role in dimensions
greater than two��
Existence of spo�s for a given rule guarantees

their presence somewhere in the primordial soup�
and therefore ensures that the process cannot �x�
ate� The systems in the top row of Figure � have an
easy time manufacturing spo�s out of randomness�
we invite the reader to guess some of their loca�
tions in the graphics� For higher thresholds� as in
the systems in the second row� it is much less clear
whether spo�s can be formed dynamically� whether
they even exist� and whether the in�nite system is
locally periodic�
Our �rst result shows that spo�s are abundant

when ��jN j is su�ciently small�

Theorem 1.2.Suppose 
 � �

�
and ��jN j � 
��� and

let � be the restriction of the initial random state

to A 	 B��K��� Then there exists K� � � such

that� if K � K�� the probability that � is an spo

tends to � as ����

This theorem is easy to prove� Let 
� be the mid�
point of �
	 �

�
�� If K is large enough� then for large

� each site in A has at least 
� jN j neighbors in A
and the law of large numbers implies that with high
probability each site will have at least �
��� jN j
neighbors in each state� Using elementary reason�
ing in the spirit of the proof of Theorem ���� we
will show in Section � that su�ciently large spo�s
grow to �enslave� any remaining nonperiodic sites�
thereby establishing local periodicity for the same
parameter region�

Theorem 1.3.Suppose 
 � �

�
and ��jN j � 
��� If �

is large� the system is locally periodic of period ��
with probability one�

This� too� will be proved in Section ��
When Theorems ��� and ��� apply� the threshold

is su�ciently low that contact updating predomi�
nates from the beginning and little self�organiza�
tion need take place� The case p 	 �� � 	

p
�
�

� 	 �� and � 	 �� mentioned in connection with
Figure �� is typical of this �debris phase�� For in�
termediate thresholds� excitation is sustained only
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in widely separated �nucleating centers�� but these
locations are able to create spo�s that proceed to
enslave their environment� In general� we suspect
that the existence of an spo implies that the sys�
tem becomes locally periodic with period �� For
instance� the systems corresponding to Figure �
all have spo�s� and we believe they are all locally
periodic� A proof of this conjecture would need to
address various subtle distinctions� GHM rules� for
instance� can produce stable patches of �all 	�s�
mixed with stable patches of period �� One ex�
ample is the periodic core surrounding the hole in
Figure 
 below�
To avoid such di�culties� we will concentrate

here on the problem of existence of spo�s� and in
particular on asymptotic results for the quantity
spo���� p
� de�ned as the supremum of the values
of � such that there exists an spo for N � Bp��
�
Our �rst step is to show that�

Theorem 1.4.For any � � 
 and any p� the limit

spo��p
 �� lim
���

spo���� p


��

exists�

Proof. This follows from a soft �renormalization�
argument that is simple enough to give in this in�
troduction� By replacing each site in an spo with
an m�m square of the same color� it is easy to see
�p � � is the worst case
 that

spo���r � �
m� p
 � m� spo��r� p
� ����


Taking m � ����r � �
� and using the fact that
spo��p� �
 increases with �� we have

lim inf
���

spo���� p


��
� sup

r

spo��r� p


�r � �
�

� lim sup
���

spo���� p


��
� �

Theorem ��� shows that spo��p
 � Cp�� for some
Cp not depending on �� To see that spo��p
 � �

�
�

let r � ���� �
���� de�ne squares

Ai � �ir� �i� �
r
� �	� r
�

Bi � ���� i� �
r� ��� i
r
� �r� �r


for i � 	� � � � � ���� and set ��x
 � i for x � Ai�Bi�
We leave it as an exercise for the reader to improve
the bound spo��p
 � �

�
for speci�c values of p and

� by using other shapes instead of squares� Some
conjectures about the dependence of spo��p
 on �
will appear later in this Introduction� In general we
expect that spo���� p
 is a nonincreasing function
of �� but the only thing that is clear is that if k
divides l then spok��� p
 � spol��� p
 since one can
paint the l�color spo modulo k�
To try to compute spo���� p
� we will re�ne vari�

ous experiments introduced by Fisch� Gravner� and
Gri�eath in �Fisch et al� ����� �hereafter abbrevi�
ated �FGG�
� The �rst is the band test� which refers
to starting an excitable cellular automaton with ��s
on ��l� l� � �	� w
� ��s on ��l� l� � ��w� 	
� and 	�s
at all other sites� We call w the width and l the
length of the band� The reason for interest in the
band test can be seen in Figure �� which gives the
outcome when p � �� � �

p
�	� � � �� and � � ��

As indicated by the top row of snapshots� the ex�
cited region wraps in on itself and makes a spiral
pair� These arti�cially produced spirals are similar
to the ones generated by the same parameter val�
ues in Figure � �top right
� but have neater centers�
The similarity is far from accidental� the bottom
row of Figure � details an instance of spiral for�
mation starting from primordial soup� Note that a
band is formed �rst� which then grows into a spiral
pair�
Given � and p� �FFG� de�nes a critical value

bend��� p
 as the smallest integer such that� for
� � bend��� p
� the band is unable to fold in on
itself completely when � � � �we exclude the case
� � 
 because it presents certain complications
that we won�t go into
� To illustrate this some�
what imprecisely de�ned notion we o�er Figures 
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and �� which describe a�airs when p ��� � � ���
and � � �� or ��� respectively	 For � � �� a ju

diciously designed GHM band test barely manages
to form the stable spiral core pictured in Figure ��
the diameter of its hole is more than 
�� cells	 A
ring around this hole of suitable shape and size
constitutes an spo	 For � � ��� on the other hand�
the band test remains con�ned to the upper half

plane for all time� its ends stabilize as images under
�
�� rotations of the bug of constant width shown
in Figure �	 This bug reproduces exactly� neither
growing nor shrinking as it advances	 We have not
been able to make a spiral core when � � ��� so we
conclude that bend������ � ��	

FIGURE 5. A bug of constant width for p � ��
� � ��� � � ���

On the basis of such experiments� it was conjec

tured in �FGG� that �if a wavefront can bend in on
itself then the rule has spo�s	� Although we can

not prove this claim we have veri�ed it in a great
many cases� for various values of p	 For instance�
we have constructed spiral cores for the last two
rules of Figure � by means of a variant of the band
test that will be described in Section �	 In view
of the large size of these synthetic cores� it is easy
to understand why they fail to emerge from spa

tially homogeneous product measure in computer
simulations	
�FGG� computed bend��� p� for p � � and p �

�� and for � � � � �	 Values for p � � and
� � � � �� are given in Table �	
In all cases we have succeeded in constructing

spo�s with � � � when � � bend�����	 A simple

� bend����	
bend����	

��
bug����	

bug����	

��

� � ����� 
 
����

 � ����� � �����
� � ���� 
 �

�
� �
 ���� �� �
��
� �
 ��
� 
� �
��
� 
� ��

 

 ���

� �� ���� �
 ����

 �� ���� �
 ����
� �� ���� �� ����

�� �� ���� �� ����

TABLE 1. Values of bend��� p	 and bug��� p	 for
p �� and � � � � ���

sharpening of inequality ��	�� for the the case p �
� yields

spo
�
���� ��m��� � m� spo

�
������ ��	��

Using our spo for � � ��� we get

spo
�
��� � ��

���
� �����

This �horticultural� approach to lower bounds for
spo

�
�p� will be discussed at greater length in Sec


tion �	
As motivation for the next development� we re


turn to the case p � �� � � ��� � � ��	 Re

call that the excitation generated by a standard
band test remains con�ned to an upper half
space�
spreading out like a ���� cone with invariant ends
that are �
�� rotations of the form shown in Fig

ure �	 If we surgically remove such an end and
use it as the initial con�guration for a modi�ed
band test� our little bug simply crawls upwards	
Consequently the wave activity will never die out	
Following �FGG�� we let bug��� p� be the largest
threshold for which the band test can generate a
wavefront that lives forever	 Values of bug�����
for p � � and � � � � �� are likewise given in
Table �	
It is natural to conjecture that

bug�p� �� lim
���

bug��� p�

��
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exists� Although the simple scaling argument for
Theorem ��� does not apply directly� we will now
introduce quantities that enable us to conjecture
a precise value for bug�p� and to derive rigorous
bounds� We think our methods strongly suggest
that

lim inf
���

bug��� p�

��
� lim sup

���

bend��� p�

��
�

with equality only in the isotropic case p � 	�
As a consequence� for anisotropic neighbor sets
the regime of excitable cellular automata between
bend��� p� and bug��� p�� as described in 
FGG��
constitutes a bona �de phase in the threshold
range
scaling limit rather than a boundary e�ect�
The main course of our investigation begins by

letting � � � with � � ���
� in order to obtain

a limiting process on R� �compare 
FGG� x ���� A
precise description of the limit will be given in Sec

tion �� but in essence the continuum dynamics con

sist of truly massive parallel updating� Each site
x in the plane has a color i� in order to update
by contact� the area of overlap between the Eu

clidean neighborhood of x and the region painted
with color i � � must exceed �� Our agenda is to
study certain invariant and �superinvariant� wave
fragments in this Euclidean setting�
Given continuous functions f�x� � g�x� on the

interval ��l� r�� write

E � f�x� y� � x � ��l� r� and f�x� � y � g�x�g�

We �x our attention on the direction � � �		
��up��� and say that the region E is a bug of length

l � r and translation w if� when we start with ��s
on E and 	�s on ����w� � E� the excited region
at time � coincides with ��� w� � E� �Here z � E
denotes the set E translated by z�� Note that if
the shape of the excited region has stabilized� and
moves up� its width should be constant and equal
to w away from the ends� otherwise di�erent parts
of the bug would propagate at di�erent speeds and
the shape would not be maintained� The lattice
bug in Figure � has constant width from one end
to the other� but it is not hard to see that invariant

bugs on R� must have �rounded� ends� A prebug

of length l�r and translation w is de�ned similarly�
except that the excitation at time � should cover
at least ��� w� �E�
Bugs and prebugs can be de�ned in an analo


gous way for other directions� Let prebug��� p� be
the largest value of � for which a prebug exists in
direction �� Of course� prebug��� 	� is indepen

dent of �� This case is particularly appealing to
applied researchers because the limiting dynamics
are isotropic �compare 
Marcus et al� ������� In
order to explore the e�ects of anisotropy we also
focus on the case of box neighborhoods� that is�
p ��� While the direction � � �		 best matches
the conventional representation of our prebug enve

lope functions f and g� the box symmetries imply
that prebug�� ��� has period �		 and is symmetric
about �	�� Thus we choose 
�� �	�� as the funda

mental domain in this case� In Sections ��� we will
prove the following bounds�

����� � prebug����� � �

�
� �����

����� � prebug��	���� � ��

���
� ����	� �����

����� � prebug��� 	� � ������ �����

The next result should explain our interest in
the existence of prebugs�

Theorem 1.5.For all 
 � ��

spo
�
�p� � inf

�

prebug��� p�� �����

In particular�

spo
�
�	� � ������ �����

and

spo
�
��� � ���	�� �����

Inequality ����� is proved by taking the prebug that
yields the lower bound in ������ shaving o� a little
bit� and arranging rotations of the prebug to pro

duce an spo� The proofs of ����� and ����� are sim

ilar but more tedious� in anisotropic cases �p �� 	�
one must produce a continuous family of prebugs�
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one for each direction �� Inequality ����� is worse
than our lower bound in ����� and ����� since we
have trouble constructing prebugs for � near �	��

but we believe this is a technical shortcoming of
our method� The spiral core in Figure � is appar�
ently made up of a large collection of �viable ends

�ends that can advance without shrinking
 similar
to the bug ends with slightly higher threshold�
 so
the picture at least suggests the following conjec�
ture�

Conjecture 1.6.There exists �� such that

spo
�
�p� � inf

�

prebug��� p�� �����

for all � � ���

Equation ����� is false for � � �� Theorem ���
implies that

lim
���

spo
�
�����

��
�

�

�
�

and we can in fact show that spo
�
��� � �

�
� In

keeping with �FGG�
 we believe that

spo
�
����� � bug����

and that �� � � in Conjecture ���� There is a
lot of experimental evidence in support of these
conclusions but we will not go into the details here�
We have equal faith in this conjecture�

Conjecture 1.7.For every p�

bug�p� � sup
�

prebug��� p�� ������

Moreover
 based on experiments that will be dis�
cussed in Section �
 we believe that the inf in �����
is attained at � � ���
 while the sup in ������ is
attained at � � ��
The methods of this paper provide a good deal

of information about the existence of spirals� How�
ever
 rigorous upper bounds on spo

�
��� p� seem

much more di�cult to prove� How does one rule
out the existence of spo�s with architectures alto�
gether di�erent from those produced by the band
test� This issue is still quite murky even for the

so�called Moore neighborhood �p ��� � � ��� per�
haps the simplest open question is this�

Problem 1.8.Show that if p � � and � � �� spo�s

do not exist for 	 � �� or even 	 � ��

A proof in �Fisch et al� ����� can be used to show
nonexistence when 	 � �� Of course any clock is an
spo if 	 � �� But already for 	 � 	 it becomes quite
challenging to �nd spo�s as � increases� We leave
it as an exercise for the reader to construct spo�s
when 	 � 	 and � � � or � � �� one way is to run
the GHM on a ��� � ��� array
 say
 and capture
an organizing center �compare �FGG
 color plate
C��� If 	 � 	 and � � �
 however
 for any tech�
nologically feasible array the GHM dies out and
CCA �xates starting from primordial soup� It is
tempting to conclude that spo�s do not exist for
these parameter values� Gradually over the past
two years
 in an impressive display of combina�
torial creativity
 D� Pritikin �private communica�
tion� has constructed increasingly complex spo�s
for larger and larger numbers of colors� Figure �
on page ��� shows the current record holder� the
smallest known spo with � � �� �its dimensions
are approximately ��� ��� cells�� Thus
 a second
open question
 easy to state if not to solve
 is this�

Problem 1.9.For p � �� � � �� and 	 � 	� �nd the

supremum of all � for which an spo exists�

We believe this supremum is �nite� in other words

spo�s do not exist once the number of colors is
large�
Our intuition tells us that for � large and 	 just

below bend���
 any alternative to the ring architec�
ture of spiral cores should be less capable of making
an spo� Thus we believe that Pritikin�s discoveries
above bend��� are artifacts of small range� But rig�
orous con�rmation of this hunch remains one of the
outstanding problems in the analysis of the phase
diagrams for GHM and CCA rules�
The remainder of our paper is organized as fol�

lows� Theorems ��	 and ��� are proved in Section 	�
In Section � we describe a variety of computer ex�
periments that shed light on asymptotic features
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of GHM and CCA rules� with emphasis on the box
neighborhood �p � ��� We describe the method
used to construct the spo of Figure � and even
larger spiral cores� We introduce additional cut�
o	s end������ and end

�

������ and explain their
connection with prebug������ We present tenta�
tive numerical estimation of the asymptotics for
bend����� and bug����� by extrapolating from
data for � � 
�� Altogether� the �ndings of Sec�
tion � depict a reasonably coherent and plausible
scenario for a phase �with ���� between spo�p� and
bug�p�� in which there are no stable spiral cores
and yet wave fragments propagate in certain direc�
tions�
The �nal three sections of the paper are de�

voted to rigorous results� In Section 
 we prove
our upper bounds on prebug��� p�� Lower bounds
on prebug��� 
� are proved in Section �� and on
prebug����� in Section ��

2. PROOFS OF THEOREMS 1.2 AND 1.3

In this section we prove that the low�threshold
regime � � jN j�
� of parameter space is locally pe�
riodic in the threshold�range scaling limit� In fact�
our method applies in any dimension d to show
that essentially no self�organization takes place in
this �debris�dominated� region� The �rst ingredi�
ent is a special case of �Durrett ���
� Lemma 
���
or of the left�hand inequality in �Gravner and Grif�
feath ���
� ���
��� see also �Durrett ����� for details
of the proof�

Lemma 2.1.Suppose b � �

�
� There are constants ��

and r� such that� if � � �� and r � r�� each site

x � B��r�� satis�es

j�x�N� �B��r��j � b jN j	

This simply expresses the geometric fact that the
boundary of a large ball is locally �at�
The second ingredient in the proof of Theorem

��
 is a standard large�deviations result� See� for
example� �Durrett ����� Chapter �� x ���

Lemma 2.2.Let X��X�� 	 	 	 be independent� identi�

cally distributed Bernoulli random variables with

P �Xi � �� � ��� and P �Xi � �� � � � ���� Let

Sn � X�� � � ��Xn� If a � ���� there is a constant


 � � such that

P �Sn � an� � e��n	

Theorem ��
 is an easy consequence of the two lem�
mas� Theorem ��� is proved by starting from an
spo in the initial soup and applying Lemma 
�� to
�nd a growing ball of periodic sites�

Proof of Theorem 1.2. Let b � ��� �
�
� and choose

R � r�� where r� is as in Lemma 
��� Pick a � ���

so that ab � ����� If x � A � B��R�� and � � ���
Lemma 
�� guarantees that x has at least n � b jN j
neighbors in A� So Lemma 
�
 implies that� for any
x � A�

jfy � A � y � x � N� 
��y� � 
��x� � �gj � an � �

with probability at least ��e��n� Since jAj � C��

and n � ���� summing the error probabilities we
see that the probability that A is not an spo is
at most jAj e��n� which tends to � as � � �� as
claimed� �

Proof of Theorem 1.3. Let b � � and pick r � r�� For
z � Z�� let Az be the event that the restriction of
the initial random state to B���r�z� r�� is an spo�
For � su�ciently large� Theorem ��
 evidently im�
plies that P �Az� � �� Since the Az are indepen�
dent� the probability that Az occurs for some z is ��
Pick� by any recipe� a z� so that Az� occurs� Let Bt

be the set of sites that fail to advance at some time
s � t� and let x be any point in Bt with minimum
distance from z�� Lemma 
�� implies that x has
at least b jN j neighbors in the complement of Bt�
and so has a set Cx of periodic neighbors that are
all the same color� with jCxj � b jN j��� Repeating
the reasoning from the proof of Theorem ���� if we
suppose that x � Bs for all s � t then at some
time r we must have 
r�x� � � and 
r�y� � � for
all y � Cx� Hence x �� Br� a contradiction which
implies that Bt 	 � as t��� �
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Theorems ��� and ��� are counterparts to results
in �Durrett ����� for multicolor interacting parti	
cle systems with large threshold and range� Al	
though that paper deals with random dynamics

the regime corresponding to f� � jN j���g is char	
acterized by a �ne	grained
 asymptotically inde	
pendent stochastic equilibrium� This is but one
indication of the close connection between locally
periodic cellular automata and oscillating Marko	
vian lattice interactions such as the cyclic particle
system �Gri�eath ��

� and the epidemic with re	
growth �Durrett and Neuhauser ������ Indeed
 we
expect that many qualitative features of the phase
diagrams that are described in �FGG� are shared by
their stochastic counterparts in �Durrett ����� and
elsewhere� Monte Carlo simulations on large ar	
rays argue persuasively that excitable cellular au	
tomata are remarkably robust under random per	
turbations of the transition mechanism� One of our
primary motivations for this and related work is
the hope that in	depth analysis of GHM and CCA
rules may ultimately shed light on the stochastic
spatial modeling of phenomena such as epidemics
and ecological competition�

3. COMPUTER HORTICULTURE

We now discuss various computer experiments that
illuminate basic aspects of GHM�CCA dynamics�
Readers who want to see at �rst hand the process of
self	organization that leads to con�gurations such
as those depicted in Section � can use the program
Excite� �Fisch and Gri�eath ����� �see the section
on software availability at the end of this paper��
First
 we describe an e�cient scheme for the gen	

eration of spo�s that arise as spiral cores in ex	
citable cellular automata� Starting from a band
test with suitable length
 width
 and number of
colors �
 �FGG� reported that a stable core typ	
ically forms dynamically
 provided only that � �
bend���� For thresholds close to the cuto�
 though

the time until the system locks into a periodic con	
�guration is often quite long due to interference
between the two halves of a spiral pair or inter	

ference of a single spiral with itself� By slightly
modifying the algorithm one can grow spo�s with
surprising reliability and e�ciency�
For concreteness
 we describe our method in the

case p � �
 � � ��
 � � �� that produced Fig	
ure �� We run our system on a square array of
side ����
 with open boundary conditions� That
is
 we imagine that no other sites of Z� can be	
come excited� Imitating a band test
 we start by
generating the four	color model with

���x� �

•

� on ��� ����� ���� ����

� on ��� ����� ����� ����

� otherwise�

To reduce interference and grow larger spo�s
 we
place the band against the edge of the box instead
of in the middle� Thus we get one spiral instead of
a pair�
In the �rst phase of the procedure we run the

system and only write newly excited sites to the
screen
 painting them a color equal to the time
mod �� so that we can watch how the front de	
velops� In the particular case under consideration
the excited region at time ��
 coincides exactly
with the excited region drawn at time ���
 so we
stop the evolution and change the number of colors
from �� to ���� In the second phase of the com	
putation we paint the actual state of the process
to the screen� After ��� time units the screen has
become �lled with colored strips and we obtain a
large spo� One can
 of course
 have the computer
check periodicity�
This strategy yields lower bounds for spo��� via

������ The best result we have obtained using our
�K��K visualization technology is an spo with � �
�� and � � 
��
 for a bound of

spo
�
��� � �����

Since our �high school geometry� approach in Sec	
tion � gives the better result ���
�
 we will not
describe the details of this experiment� Horticul	
tural spo production can clearly be pushed fur	
ther to produce much more accurate lower esti	
mates on spo

�
��� than ���
�
 but we should point
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out some interesting methodological challenges� As
� increases� for � just below bend���� the size of
the hole in a spiral core grows rapidly� It should
not be necessary to store this hole in computer
memory since almost none of it enters into the
computation of a wave end�s trajectory� A clever
data structure should therefore be able to drasti�
cally reduce the amount of memory required� This
would allow for much more accurate estimation of
the cuto�� But the trajectory of an end becomes
increasingly sensitive to boundary conditions� so
great care must be taken to provide a wide enough
boundary layer	 otherwise the wavefront destabi�
lizes and 
ies o� the map� Needless to say� visual�
ization is a very helpful tool in designing gigantic
spo�s�
The dynamics of large�range experiments such

as those we have just described may be viewed as
Riemann approximations to the limiting Euclidean
dynamics mentioned in the Introduction� So in�
sight into the relationship between limiting cuto�s
bend and bug is also gained by observing the be�
havior of the band test for bend��� � � � bug���
when � is large� For the remainder of this section�
let us discuss the regime bend � � � bug in the
case p ���
Figure � shows the trajectories of ends in modi�


ed band tests over this interval of thresholds when
� � ��� The same qualitative behavior is observed
in all the systems we have observed up to � � ���
Each shaded region represents the trace of excita�
tion starting from a band shaped like a circular arc	
such a shape leads the wavefront more e�ciently
toward its preferred geometry at the ends� The
upper left picture has � � bend� the end traces
out a corner of the large spo that it will eventually
generate� Raising � by � we get the upper right
trajectory� there is an angle �with the horizontal
axis� somewhat less than ��� beyond which the end
is unable to bend� A yet higher threshold produces
the trace on the lower left� a stable cone of excita�
tion spreads out with an opening of less than ����
Finally� at the lower right� once � exceeds bug the
excitation withers away from its ends�

FIGURE 6. Trace of the excited region for p ���
� � �� and increasing values of �� �The scale is
about �ve pixels per mm�	

Based on extensive experimentation with ranges
up to ��� from arc�shaped band tests symmetric
about either �� or ���� our main conclusions are
two�

�i� Just above � � bend� the angle at which an
end gets stuck appears to approach ��� as � in�
creases�

�ii� The viable cones with highest � are symmetric
about ��� with an opening that decreases as �
increases�

In this context� it is helpful to speculate about the
behavior of semi�in
nite band tests under the Eu�
clidean dynamics� Fixing the direction � � ���
for the moment� imagine starting from ��s on

E� � f�x� y� � x � ���� �� and � � y � �g�

��s on the translate E����� ��� and ��s everywhere
else� One expects a critical value end������ �
end���� such that for � � end���� the maximal
x�coordinate of the excited region tends to ���
whereas for � � end���� the maximal excited x�
coordinate tends to ��� As a more formal de
�
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nition in this context we let end���� be the supre�
mum of values of � such that there exists �xn� yn�
excited at time n� with xn � �� We even haz�
ard a guess that at � � end���� the excited re�
gion attains a stable limiting pro	le as it moves up
with asymptotic velocity w����� Similarly a cut�
o
 end���� and critical velocity w���� should exist
starting from an initial condition semi�in	nite in
the positive direction� By symmetry of the p ��
dynamics� of course� these � and� quantities must
agree�
For other directions �� the quantities end����

and end���� can be de	ned analogously� By sym�
metry the two values also agree for � � ���� and
end���� � end����
 � ��� but a little thought
leads one to suspect that� typically�

end���� �� end����

for � � ��� ����� It is illuminating to rephrase
Conjectures ��� and ��� in terms of end� and end��
The following formulations have the advantage that
they should hold for quite general asymmetric sets
N � Since a prebug needs two healthy ends in the
same direction� we propose�

Conjecture 3.1.In each direction ��

prebug��� � minfend����� end����g�

For at least one of the two orientations a spiral
core spo needs healthy ends in all directions� so we
o
er�

Conjecture 3.2.For � � ���

spo
�
�p� � maxfinf

�

end����� inf
�

end����g�

Finally� since the trace of a wave fragment can
cover a cone between angles �� and �� as long
as ends in those directions are viable and the cone
has no problem propagating at locations away from
the ends� we believe the following characterization
of bug�

Conjecture 3.3.Let

� � minfsup
��

end������ sup
��

end�����g�

If some closed ring of excitation propagates out�

ward for � � �� then bug�p� � ��

Our experiments with p � �� mentioned above�
suggest that end� attains its maximum at � � �
and its minimum at � � ���� In light of the sym�
metries of the square� this scenario makes Conjec�
tures ��� and ��� consequences of Conjectures ����
���� the upper bound in ������ and our belief that
rings propagate for � � �

�
� See also Remark ����

We conclude this discussion of experimental 	nd�
ings with some speculative curve�	tting� By study�
ing trajectories of band tests such as those shown
in Figure � for systems with larger ranges� we have
extended Table � to all 	 � ��� Evaluation of the
exact cuto
 becomes increasingly delicate as 	 in�
creases� so there may well be some small errors in
our numerical results� But for ballpark estimates
we have calculated least�squares 	t of estimated
data for bend�	� and bug�	� over the �� values
	 � �� � � � � �� to curves of the form

a� b	�� � c	���

Extrapolation to the limit yields the rough guess

bend � ����� bug � �����

4. PREBUG UPPER BOUNDS

In this and the next two sections we will deal di�
rectly with the Euclidean dynamics obtained by
setting � � �

�
	�� scaling space by ��	� and letting

	 � �� To formalize the time evolution of the
limiting system it is convenient to de	ne a con�
tinuum GHM operator G that acts on measurable
functions 
 � R� � f�� �� � � � � �� �g� Denoting by
jAj the area of a set A� we set

	 G
�x� � i� �mod� if 
�x� � i � ��
	 G
�x� � � if 
�x� � � and

j
����� 
 �Bp�	� � x�j � ��

	 G
�x� � � otherwise�
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In terms of G� the time evolution may be succinctly
described as �n�� � G�n� An analogous operator C
describes the Euclidean CCA�
We feel that Euclidean parallel dynamics con�

stitute a promising new framework for the study
of nonlinear spatial systems� If a multistate con�
�guration is represented by a tessellation of space
into colored regions with smooth boundaries� the
discrete�time dynamics of a transformation such
as G can be studied in terms of its action on the
boundaries� The asymptotic shapes of rings and
spirals in excitable cellular automata are studied
by this approach in �Gravner and Gri�eath 	

���
Our basic task for the remainder of the present pa�
per is the estimation of continuum wave fragments
invariant under G 
or C�� an undertaking we refer
to informally as bug architecture�
Two simplifying features of the threshold�range

scaling limit should be mentioned� First� for p � �
the action of each update is rotation�invariant� So
shapes of continuum rings� spiral wavefronts and
symmetric spiral cores are genuinely circular� In
particular� prebug
�� �� is independent of �� Sec�
ond� since B�
�� 
�diamond�� is a ��� rotation of
B�


p
����� 
�box��� dynamics for the cases p � 	

and p � � are equivalent up to a simple linear
transformation� Hence the corresponding cuto�s
satisfy

spo
	� � �

�
spo
��� bug
	� � �

�
bug
���

and so forth� For this reason we focus only on the
case p � � as an extreme instance of anisotropy�
We can also take � � 	 without loss of generality�
we set N � Bp
	��
Given continuous functions f � g on the interval

��l� r�� let
E � f
u� v� � u � ��l� r� and f
u� � v � g
u�g�


��	�
set � � 	 on E� and � � � otherwise� E is said
to de�ne a prebug of length l � r and translation

w in direction � � � if G� � 	 on the translate

�� w�� To study prebugs in directions � �� �� it is
convenient to leave f and g alone and rotate the

neighborhood� Let N� be the image of N under a
counterclockwise rotation through �� and �x w so
that w � g
u�� f
u� for u � 
�l� r�� Set

h
u� v� � jE � 

u� v � w� �N��j� 
����

Then E is a prebug in direction � if and only if
h
u� v� � 	 for all u � ��l� r� and f
u� � v � g
u��
Upper bounds on threshold levels that admit

prebugs can be obtained by playing o� the �top�
of a bug against an �end�� Our next three propo�
sitions derive the right�hand inequalities of 
	����

	��� by adapting one and the same strategy to the
di�erent geometries of box� diamond and circle�

Proposition 4.1.When p �� and � � �� prebugs do

not exist for 	 
 �

�
�

Proof. Let E be a prebug of translation w in the
direction � � �� and let �u be a point where g
attains its maximum� There are no points of E
in R � 
g
�u����� so 	 	 h
�u� g
�u�� 	 �
	 � w��
Since there are no points of E in 
����l� � R
and the prebug has translation w� we must also
have 	 	 h
�l� g
�l�� 	 w� The two inequalities
imply that 	 	 w 	 	� 	��� and hence 	 	 �

�
� �

Proposition 4.2.When p � � and � � ���� prebugs
do not exist for 	 
 ��

���
�

Proof. Let E be a prebug of translation w in di�
rection � � ���� and let �u be a point where g
attains its maximum� There are no points of E in
R � 
g
�u���� and the prebug is assumed to have
translation w� so

h
�u� g
�u�� 	 h�
w�� 
����

where h�
w� is the area of the intersection of the
strip R� 
��w��w� with N���� We have h�
w� �



p
��w�

p
����
��w�� where � � minf�w�p�g�

A simple calculation shows that h� is increasing on

��
p
���� and decreasing on 


p
����

p
���

Now consider h
�l� g
�l��� Any contribution to
this area must come from the right half of N���� A
glance at Figure � shows that

h
�l� g
�l�� 	 h�
w� ��
p
�w � �

�
w�� 
����
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w

w ��� ��

��� ��

FIGURE 7. The diamond�s center is ��l� g��l���
The area h��l� g��l�� of the shaded region is at
most w�

p
� � �

�
w� �bound for the area to the left

of the vertical line� plus �

�
w� �area of the triangle��

The function h� is increasing on ��� �
p
���

Combining ���	
 and ����
� we get

� � max
w

minfh��w
� h��w
g�

Choose w� �
�

��

p
� so that h��w�
 � h��w�
� Since

h� is decreasing on �w��
p
��� and h� is increasing

on ���
p
��� we conclude that � � h��w�
 �

��

���
as

claimed� �

Remark 4.3.The maximum of h��w
 occurs at w� �p
��	� where h��w�
 � �

�
� This is the greatest

threshold at which an in
nite band can reproduce
itself in the direction � � ��� under p � � dy�
namics� In fact� some calculation shows that the
most di�cult direction for such an in
nite band
is � � ���� Imagine starting G from a very large
ball of ��s on a background of all ��s� The ball
should be so big that� as far as G is concerned�
its boundary is essentially �at in all directions� If
� � �

�
the ball presumably generates a ring that

expands forever with an asymptotic shape� But if
� 	 �

�
the resulting ring should break apart in the

direction ��� and its images under ��� rotations�
and then disintegrate from the ends of its frag�
ments� Thus �

�
is presumably the largest threshold

that can propagate a ring inde
nitely for p � ��
In the terminology of �FGG�� we conjecture that
ball��
 � �

�
�

Proposition 4.4.When p � �� prebugs do not exist

for � 	 ��		��

Proof. Once again� let E be a prebug of transla�
tion w and let �u be a point where g attains its
maximum� A reasoning entirely parallel to that of
Proposition ���� with N � N� being the unit disk
instead of a diamond� shows that

h��u� g��u

 � h��w
 ��

•

minf�w��g

w

�
p
�� r� dr

and that

h��l� g��l

 � h��w
 �� tw � �

•

�

t

p
�� r� dr�

where t �
•

�� w��� is the abcissa of the vertical
chord in Figure ��

w

w ��� ��

FIGURE 8. The area h��l� g��l�� of the shaded

region is at most w
•

�� w��� �bound for the area
to the left of the chord� plus the area of the cap
delimited by the chord�

Di�erentiation shows that h��w
 is decreasing on
� �
�
� �� and that h��w
 is increasing on ��� ��� If w� �

����	�� is the solution in � �
�
� �
 of h��w�
 � h��w�
�

we conclude as in the proof of Proposition ��� that
� � h��w�
 � ��		�� as claimed� �
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Remark 4.5.The maximum of h��w� occurs in ��� �
�
�

at the point w� � ��
p
	
 and a little computation

shows that

ball��� � h��w�� � ��
�	

in the terminology of �FGG��

5. PREBUG AND SPIRAL LOWER BOUNDS for p � 2

To obtain the lower bound of ���	� for prebug��� ��

we will construct a prebug of constant width w on
���k � ��� �k � ���
 with f�x� � g�x� � w
 g�x� �
g��x�
 and

g�x� �

• p
R� � x� if � � x � k


a� b�x� k� if k � x � k � �


where a �
p
R� � k� and b � k�

p
R� � k�
 so that

g has a continuous derivative� The general ap�
proach we take is the following� �rst pick b and w
to take care of the end of the prebug
 then choose R
large enough to take care of the middle
 and �nally
de�ne k and a to solve the above equations�
Let r � l � k � �� de�ne E �
��� by

E � f�u� v� � u � ��l� l� and g�u�� w � v � g�u�g�
and de�ne

h�x� v� � jE � ��x� g�x� � v� �N�j�
�this di�ers from �
��� in that the second argument
indicates vertical displacement from the top of the
bug
 rather than absolute position�� For E to be
a prebug we need h�x� v� � � for x � ��� l� and
v � ��� w�� The next three lemmas show that
 for
large R
 it su�ces to check this inequality at the
three points �l� ��
 �l� w� and ��� w�� Let ��v� c�
be the area of the portion of N between the lines
y � �cx� v and y � �cx� v � w �Figure ���

Lemma 5.1.If R is su�ciently large� to conclude that

E is a prebug it su�ces to check that

�i� h�l� v� � � for v � ��� w�� and
�ii� ��v� c� 	 � for all v � ��� w� and c � ��� b��

Proof. For u � �l � �� l� we have h�u� v� � h�l� v�

because
 over this range of values of u
 sliding the

�

slope � c

v

w

�

FIGURE 9. The shaded area is ��v� c�� We have
��v� c� � ��w� �� for v � ��� w� and c � ��� b� �see
the proof of Lemma ��	��

disk �u� g�u�� v��N to the left along lines of con�
stant v can only increase the intersection with E�
Thus �i� implies h�u� v� � � for u � �l � �� l��
To study the range u � ��� l � ��
 suppose �ii�

holds� Since � is continuous
 there is an 
 	 � such
that ��v� c� � ��
 for v � ��� w� and c � ��� b�� For
R large enough we can approximate E locally by a
straight band of slope g��u�
 and write

h�u� v� � ��v��g��u��� 
 � �

for all u � ��� l � �� and v � ��� w�� �

Lemma 5.2.Property �i� of Lemma 	�� holds provided

that h�l� �� � � and h�l� w� � ��

Proof. Let i�v� � jfx � � � �x��v � bx� � Ngj

where j � j represents length in R�� It is easy to see
that

�

�v
h�l� v� � �i�v� � i�v � w��

Now i�b� � �
 and i�v� is increasing on ���� b� and
decreasing on �b� ��
 so if we let v� be the point in
���� b� where i�v�� � i�v� � w�
 then h�l� v� is in�
creasing on ���� v�� and decreasing on �v�� ��� Thus
the minimum of h�l� v� over ��� w� must be attained
at an endpoint� �

Lemma 5.3.Property �ii� of Lemma 	�� holds pro�

vided that ��w� �� 	 ��
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Proof. If � � arctan c is the angle that the line
�v � cx makes with the x�axis� then

��v� c� �

• minf�v�w� cos���g

v cos�

�
p
�� r� dr

�see Figure 	�
 From this it is clear that increasing
v decreases the integral
 Setting v � w and z �
w cos�� the right side becomes

• minf�z��g

z

�
p
�� r� dr�

which is increasing as a function of z on ��� ��
p

�

and decreasing on ���
p

� �� �compare Remark �

�


Changing variables� we conclude that the minimum
of ��w� c� for c � ��� b� occurs at an endpoint
 The
proof of Lemma 

� shows that

��w� b� � h�l � �� w� � ��

so we only need to worry about ��w� ��
 �

Proposition 5.4.When p � �� there are prebugs �of
constant width� for � � �
�		�

Proof. Let � � arctan b
 By Lemmas 

��

�� in
order to manufacture the desired prebug it su�ces
to pick w and � so that ��w� ��� h�l� ��� and h�l� w�
are all at least 

�		
 From the proof of Lemma 

�
we have

��w� �� �

• minf�w��g

w

�
p
�� r�dr�

Consulting Figure �� we see that

h�l� �� �

•

w cos�

�

p
�� r�dr �

�

�
w� sin� cos��

h�l� w� �

• �w cos�

w cos�

p
�� r�dr �

�

�
w� sin� cos�� A�

where A is the area of the black region in Figure ��

To compute A� we observe that if�x� is the abcissa
of the leftmost point P of the black region� then

A �
x�
�

•

�w �
•

�� x��

•

�
•

x�

�

p
�� r�dr�

The last four expressions are tedious to deal with
by hand but can be easily evaluated by computer


Taking w � �



�
 and � � �
���
 gives the de�
sired bound
 �

P

slope � b

�

w

w

�

FIGURE 10. The lightly and darkly shaded regions
have area h�l� �� and h�l� w�� respectively� The
black region sticking out of the circle has area A�

As advertised in the introduction� we now con�
struct an spo by shaving a little o� our isotropic
prebug and arranging its rotations in a circle


Proof of Theorem 1.5 for p � 2. Let R� denote rota�
tion through an angle �� Let E be a bug of width
w de�ned on ��l� l�� and let M be a large number
chosen so that � � arcsin	w�	M 
 l�� � ���� for
some integer �� Set

B � E 
 	M� 
��

B� � 	B 
 	
� w�� � R�B�

B�� � R��B
� � B�

Finally� write �	M� � jBj�jB��j� WhenM is large�
rotation by � and translation by 	
� w� almost co�
incide� so �	M� � 
 as M � �� Since E is a
prebug for threshold �� if we decrease the thresh�
old to � � �	M� and start with ��s on B�� and 
�s
on B�� then at time � we will have ��s on B�� For

 � j � �� set Rj � R�j�B

�� and let 		x� � j on
Rj� From the last observation and the rotation in�
variance of the limiting dynamics in the case p � ��
it follows that 	 de�nes a ��color spo for threshold
�� �	M�� As noted in the introduction� by choos�
ing � to be a multiple of �� we can also construct
a ���color spo for any �� � �� �
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6. PREBUG AND SPIRAL LOWER BOUNDS for p ��
The strategy for p �� parallels that for p � � ex�
cept that now� in order to make an spo� we need to
construct di�erent prebugs for di�erent directions
�� As in Section �� we will leave the prebug alone
and rotate the neighborhood� Let N

�
be the set

that results when the p �� box N is rotated coun�
terclockwise through �� and suppose without loss
of generality that � � � � ���� To obtain a lower
bound for the existence of prebugs� we will design
prebugs of constant width w on 	�
j � ��� 
k � ��

with

g
x� �

•

•

•

•

•

a� � b�
x� j� if �j � � � x � �j�p
R� � x� if �j � x � k�

a� � b�
x� k� if k � x � k � ��

where a� �
p
R� � j�� b� � j�

p
R� � j�� a� �p

R� � k� and b� � k�
p
R� � k� are chosen so that

g has a continuous derivative� Our general strat�
egy is as follows� �rst pick b� and w to take care
of the left end of the prebug� then pick b� to take
care of the right end� then choose R large enough
to handle the middle� and �nally determine j� k�
a� and a� by solving the above equations�
Write l � j � �� r � k � ��

E � f
u� v� � u � 	�l� r
 and g
u��w � v � g
u�g�

and h
x� v� � jE � 

x� g
x� � v� �N
�
�j� To check

that E de�nes a prebug in direction �� we have to
verify that h
x� v� � � for x � 	�l� r
 and v � 	�� w
�
The next three lemmas serve to reduce the number
of points 
x� v� that we need to check� Once more�
let �
v� c� be the area of the portion of N between
the lines y � �cx � v and y � �cx � v � w 
Fig�
ure ���� The �rst two lemmas are almost the same
as their counterparts in Section ��

Lemma 6.1.If R is su�ciently large� to conclude that

E is a prebug it su�ces to check that


i� h
r� v� � � and h
�l� v� � � for all v � 	�� w
�
and


ii� �
v� c� 	 � for all v � 	�� w
 and c � 	�b�� b�
�

v

w

slope � c��B�A�

�A�B�

FIGURE 11. The shaded area is ��v� c�� The points
marked on the vertical line have ordinate �� �v�
�v� and �v � w �from the top down��

Proof. Using the same reasoning as in the proof
of Lemma ��� 
and its mirror image�� we see that
h
u� v� � h
r� v� for u � 	r � �� r
 and h
u� v� �
h
�l� v� for u � 	�l��l � �
� Thus 
i� implies
h
u� v� � � for u � 	r � �� r
 � u � 	�l��l � �
�
Similarly� 
ii� implies that h
u� v� � � for all u �
	�l � �� r � �
 and v � 	�� w
� by the reasoning in
the proof of Lemma ���� �

Lemma 6.2.Property 
i� of Lemma ��� holds provided

that h
r� �� � �� h
r� w� � �� h
�l� �� � � and

h
�l� w� � ��

Proof. We �rst show that h
r� �� � � and h
r� w� �
� imply h
r� v� � � for v � 	�� w
� Let i
v� � jfx �
� � 
x��v � b�x� � N�gj� Then





v
h
r� v� � �i
v� � i
v � w��

Let 
A�B� be the corner of N
�
in the �rst quadrant


Figure ���� Pick v� so that �v� � b�
�B� � A�
Now i
v�� � B� and i
v� is increasing on 	��� v�

and decreasing on 	v���
� so if we let v� be the
point in 	��� v�
 where i
v�� � i
v� � w�� then
h
l� v� is increasing on 	��� v�
 and decreasing on
	v���
� Thus the minimum of h
l� v� over 	�� w

must be attained at an endpoint� An analogous
argument proves that h
�l� �� � � and h
�l� w� �
� imply h
�l� v� � � for v � 	�� w
� �
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The next result is weaker than the corresponding
Lemma ��� for a simple reason� when � � � � ����
the minimum of �	c� w
 does not occur at c � ��

Lemma 6.3.Property 	ii
 of Lemma ��� holds pro�

vided that �	w� c
 � � for c � 
�b�� b���
Proof. Let j	v
 � jfx � 	x��v � cx
 � Nagj� It is
easy to see that

	

	v
�	v� c
 � �j	v
 � j	v � w



De�ne v� by requiring that the line y � �v � cx
intersect two opposite sides of the rotated square if
and only if v � 
�v�� v��� It is easy to see that j	v

is constant on 
�� v�� and decreasing on 
v���� so
	��	v � �� 	See Figure ��� For the slope pictured
there� v� � v�� However� if c � �� then v� � �v��


�

We are now ready to prove the lower bounds of
	���
 and 	���
�

Proposition 6.4.When p �� and � � �� prebugs of

constant width exist for � � 
�����

Proof. We take a� � a�� b� � b� � b� and j � k�
For w � �

�
and b � �� we have

h	�l� �
 � w � 	b� �
�

�b

and

h	�l� w
 � w � 	�w � �
�

�b
�

as can be seen from Figure ��� Choosing b � �w
we get h	�l� �
 � h	�l� w
 � 	�w � �
��w� Now
�	w� �
 � �	��w
� so to make all three areas equal�
set 	�w � �
��w � �	� � w
� Solving for w gives
w � 	� �

p
�
�� � 
������ in which case all three

areas are

�	�� w
 � 	��
p
�
�� � 
�����


This candidate for a prebug has b � �w � �

�
	� �p

�
� By Lemmas ��� and ���� in order to complete
the proof we must show that for the chosen w the
minimum of �	w� c
 over � � c � b occurs at c � ��
A routine analysis of the three possible intersection

w

�w � �

b� �

slope b

FIGURE 12. The lightly and darkly shaded regions
have area h��l� �� and h��l� w�� respectively�

con�gurations con�rms this 	when both edges of
the strip intersect the square one must use the fact
that w � �

�

� �

Proposition 6.5.When p � � and � � ���� prebugs
of constant width exist for � � 
�����

Proof. Again take a� � a�� b� � b�� and j � k�
To prepare for the cases � � � � ���� which will
be analyzed later in this section� we now develop
general formulas for the areas of certain strips� Let
	A�B
 be the corner of N� that is in the �rst quad�
rant� The sides of our rotated rectangle have de�n�
ing equations sjx� tj� for j � �� �� �� �� where

s� � s� �
B �A

A�B
�

s� � s� �
A�B

A�B
�

t� �
�

A�B
� t� � �t��

t� �
�

A�B
� t� � �t�

	see Figure ��
� For i � �� �� � we refer to �iw�cx
as line i� and denote by

xij �
�tj � iw

sj � c
	���


the coordinate of the intersection of line i with side
j� To compute �	w� c
 we consider two cases� as
shown in Figure ���
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��B�A�

�A�B�

��A��B�

�B��A�

side 0

side 1

side 2

side 3

FIGURE 13. Numbering of the sides of N��

slope � c

��B�A�

��A��B�

�B��A�

x��

x��
x��

x��

w

w

slope � c

��B�A�

��A��B�

�B��A�

x��

xL � x��

xR � x��

x��

x��

w

w

y

FIGURE 14. Computation of the shaded area ��w� c��

In Case � we have �w� cB � �A� ��w� cA �
�B� �w � cB � �A� Then

��w� c� � �

�
�x���x���w��x���x���w� �

�
�x���x���w�

In Case � we have �w � cB � A � ��w � cB�
��w � cA � �B� �w � cB � �A� Then

��w� c� 	 �

�
�x�� � x��� � �x�� � xR�w

� �

�
�xR � xL��y � w� � �

�
�xL �B�y�

where xR 	 maxfx��� x��g� xL 	 minfx��� x��g�
and y 	 �s�xL � t��� �s�xL � t���

For � 	 ��
 �that is� A 	 �� the slope b we choose
for the end of our prebug will place us in Case ��
so that� consulting Figure �
� we obtain

h��l� �� 	 h�r� �� 	 �x��w � �

�
�x�� � x���w�

h��l� w� 	 h�r� w� 	 �xRw � �

�
�xR � xL��y � w�

� �

�
�xL �B�y	

These last formulas are not pleasant to manipulate
by hand� but with the computer one �nds that for
w 	 	
����� and b 	 	
����� the values of h��l� ���
h��l� w� and ��w� �� are all at least ���

�� In
view of Lemmas �������� the proof will be complete
once we check that the minimum of ��w� c� over
��� b� occurs at an endpoint� �Recall that ��w� b� �
h�r� �� w� 	 h��l� �� w� � 
� using Lemma �����
To evaluate ����c we will not attack the formu�

las directly� but instead observe that by changing
from c to c�� we gain and lose two triangles� so
in Case �� ignoring terms of order ���

��

�c
	

�x�
��
� x�

��
� x�

��
� x�

��
�

�
	

Now when A 	 � and B 	
p
�� we have s� 	 s� 	

�� s� 	 s� 	 ��� t� 	 t� 	
p
�� t� 	 t� 	 �p�� so

x�� 	

p
�� w

�� � c
� x�� 	

p
�� w

� � c
�

x�� 	

p
�� �w

�� � c
� x�� 	

p
�� �w

� � c
�
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and

��

�c
� �

�
��
p
��w����

p
���w���

•

�

��� c��
�

�

�� � c��

•

�

which is positive� In Case ��

��

�c
�

x�
��
� x�

��
� x�

��
� x�

��

�

and x�� � ��
p
�� w���	 � c�� so

��

�c
�

�

�	 � c��
� �

�	� c��
�

where � � �

�
��
p
��w����

p
��w����

p
���w��� �

	 � �w�� and � � �

�
�
p
� � �w��� The right side is

positive when �	�c���	�c� �
•

��� and negative

when �	� c���	 � c� �
•

���� so ��w� c� increases
and then decreases in 
�� b�� Hence the minimum is
attained at an end point� which 
nishes the proof�

�

We now turn to lower bounds for � � 	 � 
���
Our 
rst goal is to show that to verify the hypoth�
esis of Lemma ���� it su�ces to check the value of
��w� c� at one point� As in the proofs of Propo�
sitions ��� and ���� it is useful to know a little
about the prebugs in question in order to reduce
the number of cases we have to consider� so we
will describe them now� For historical reasons we
will let � � 
�� � 	 and � � 	 � �	�
 � 
�� 	��
Table � lists the choices of w� b�� and b� for our
prebugs �which su�ces to describe them modulo
the choice of a su�ciently large R� for �� values
of �� We extend these choices to all � � 
�� 	� by
declaring that they are piecewise linear and con�
tinuous� The column of the table that gives the
associated thresholds 
 should explain why we use
a 
ner grid near � � ���� For the rest of the paper�

our case analysis refers to the prebugs of Table ��

Lemma 6.6.Let w�	�� b��	�� and b��	�� for 	 �
��� 
���� be de�ned by Table � and linear interpola�

tion� For each 	 � � � 	 � 
�� there is a constant

c
�
such that ��w� c� is increasing and then decreas�

ing on 
�b��	�� c�� and on 
c
�
� b��	��� Hence to

verify the hypothesis of Lemma ��� it su�ces to

check that ��w�	�� c
�
� � 
�

Proof. To evaluate ��w� c� for c � � there are 
ve
cases to consider� as indicated by Figure 	�� We
begin by evaluating the derivative of � in each of
the 
ve cases�
In Case 	 we have

��

�c
�

x�
��
� x�

��

�
�

Recalling ���	� and the choices s� � s�� t� � �t� �
�� we see that the right side equals

�t� � w��

�s� � c��
� �t� � w��

�s� � c��
� ��

In Case �a�

��

�c
�

x�
��
� x�

��

�
�

with x�
��

increasing and x�
��

decreasing� so in this
case � is decreasing and then increasing� �In the
last statement� and similar claims below� we allow
the possibility that one of the cases is empty� i�e��
that � is monotone over the interval��
In Case �b�

��

�c
�

x�
��
� x�

��
� x�

��
� x�

��

�
�

Note that in deriving this formula there are two
alternatives to consider �x�� � �� x�� � ��� but
the formula is the same for either� Similar remarks
apply to Cases � and �� Plugging in ���	�� and
using the fact that s� � s�� the right side becomes

�t� � w��

�s� � c��
� �t� � �w��

�s� � c��
� �t� � w��

�s� � c��
�

�t� � �w��

�s� � c��
�

To check this and the two similar formulas below�
note that the coe�cients of w alternate �	� �� 	� ��
and that the subscripts of t and s agree with the
second subscript of x� Rearranging� we see that
the area is decreasing when

�s� � c��

�s� � c��
�

�t� � �w�� � �t� � w�� � �t� � w��

�t� � �w��
�
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� A B w b� b� � ��w�� c�� g��l� �� g��l� w� g�r� �� g�r� w�

���� ����� ����� �����	� �����
� �����
� �������
���� ����� ����� ������� ������� ����
�� ������� ������� ������
 ������
 ����
�� ����
��
���� ����� ����� ������� ���
�	� ������� ������� ������� ������� ������� �����		 �����	�
���� ����� ����� ������� ������� ������� ����	�� ����	�� ����	�� ����	�� �����	� �����	�
��	� ��		� ���
� ������� ������� ������� ������� ������� ������� ������� ������� �������
��	� ��	�� ����� ���
�
� ������� �����	� ���	
�� ���	
�� ���	
�� ���	
�� ������	 ������	
���� ����� ����� ���
��	 ������� �����
� ���	�
� ���	�
� ���	�
� ���	�
� �����	� �����	�
���� ����� ����� ������	 �����
� ������� ���	��� ���	��� ���	��� ���	��� ������� �������
���� ����� ����� �����	� ���
��� ���
��� ���	��
 ���	��
 ���	��
 ���	��� �����		 �����		
���� ����
 ���	� �����	� ���
��� ������	 ���		
� ���		
� ���		
� ���		
� ����
�� ����
��
���� ����� ����� ���		�� ������� ������� ���		�� ���		�� ���		�� ���		�� ������� �������
���� ���
	 ��	�� ���	��� ������� ��
		�� ���	��� ���	��� ���	��� ���	��� ����
�� ����
��
���� ����	 ��	�� ������� ������� ��
���� ���	�	
 ���	��� ���	�	
 ���	�	
 ������� �������
���� ���
� ��	�� ������
 ������� ������� ���		�� ���	��� ���		�� ���		�� ������� �������
���� ����
 ��	�� ����
�� ������� ������� ���	��� ���	��	 ���	��� ���	��� ������� �������
���� ����� ����� ������� ������� ���			� ������� ������� ������� ������� �����	� �����	�
���� ����� ����� ������� �����
� �����	� ������� ������� ���	��� ������� ������� �������
���� ����� ����� ������� ��
���� ������	 ������� ������� ���		�� ������� ����
�
 ����
�

���	 ����
 ����� ������� ��
�	�� ���
�	� ����	�� ����	�� ���	��� ����	�� ������� �������
���� ����� ���	� ����
�� ��
���� ��	���� ����	�
 ����	�
 ���	��� ����	�� ������
 ������

���� ����� ����� �����
� ��
�	�� ��	���� ����	�
 ����	�
 ���	�
� ����	�� ������� �������
���� ����� ����� ����	�� �����	� ��		��� ����	�	 ����	�	 ���	��� ����	�	 ������
 ������

���� ����� ����� ������	 ������� ��	���� ����	�	 ����	�	 ���	

� ����	�� ������� �������
���� ���
� ���
� ������� �����
� ��	���	 ����	
� ����	
� ������� ����	
� ������� �������
���� ��
�� ���
� ������� ������� ��	���	 ������
 ������
 �����	� ������� ����		� ����		�
���
 ��
�� ����� ������
 �����	� ��	���� �����	� �����	� ������� ������
 �����
� �����
�
��
� ��
�� ����� �����	� ���
��� ��	��
� ������� ������� ������� ������� ����
�� ����
��
��
� ��
�� ����� �����	� ������� ���	��
 ���	��� ���	��� ���	��	 ���	��� ������� �������
���� ����� ����� ������� ������	 ������	 �����
�

TABLE 2. The columns headed A
 B
 w
 b�
 b� and � prescribe the design speci�cations for the family of
prebug candidates used in the proof of Theorem ���� The remaining columns list the �ve �vital statistics� that

according to Lemmas �������
 ensure that these candidates are all legitimate prebugs for � � ���	�� See also
the section on software availability at the end of this paper�

Since �s��c����s��c�� is decreasing on ��s���s���
it follows that within Case �b the area � increases
and then decreases�
In Case � we have

��

�c
	

x�
��
� x�

��
� x�

��
� x�

��

�
�

Substituting �
���� the right side becomes

�t� � w��

�s� � c��
�

�t� � �w��

�s� � c��
�

�t� � w��

�s� � c��
�

�t� � �w��

�s� � c��
�

The intercept t� is less than � and within Case � we
must have �w � �t�� which implies that t� � w �
t� � �w � �� Rearranging� we see that the area is
decreasing when

�s� � c��

�s� � c��
�

�t� � w�� � �t� � �w��

�t� � w�� � �t� � �w��
�

Now �s��c����s��c�� is increasing on the interval
��s���s��� so � is decreasing and then increasing
in Case ��
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x��

x��

x��

x��

x��

x��

x��

x��

Case � Case �a Case �b

x��

x��

x��x��

x��

x��

x��x��

Case � Case �

FIGURE 15. Intersection con�gurations for the proof of Lemma ����

Finally� in Case � we have

��

�c
�

x�
��
� x�

��
� x�

��
� x�

��

�
�

By ��	
�� and since s� � s�� the right side equals

�t� � w��

�s� � c��
�

�t� � �w��

�s� � c��
�

�t� � w��

�s� � c��
�

�t� � �w��

�s� � c��
�

Rearranging� we see that the area is decreasing
when

�s� � c��

�s� � c��
�

�t� � w�� � �t� � �w�� � �t� � w��

�t� � �w��
�

Since �s� � c����s� � c�� is increasing� within Case
� the area � increases and then decreases	
We can now identify the c

�
in the statement of

the lemma	 For A close to �� w � A and �w � B�
so we start with Case 
 when c � �	 In that case
� is d�i �decreasing then increasing� in Case 
 and
i�d in Case �� taking c

�
to be the minimum in Case


� the desired conclusion holds on ��� b��	

When A is close to 
� w � A and �w � B� so we
start in Case 
 �when c � �� where � is decreasing	
Case 
 can lead to either Case �a or �b	 If �a comes
�rst� two sequences can occur�

Case 
 Case �a Case 
 Case �
d d�i i i�d
d d d�i i�d

The derivative of � is continuous so the signs must
match at the transitions between cases	 If Case
�b comes �rst� then the second row is the only
possibility since � is i�d in Case �b	 For either of
the situations depicted� taking c

�
to be the �rst

minimum �which may occur in Case �a or Case 
��
the desired conclusion holds on ��� b��	
The �nal possibility one needs to consider� which

occurs for A near 	���� is that � starts in Case �a or
�b	 But this situation can be analyzed by simply
deleting the �rst column above	
The details are similar but simpler when c � �	

There are two more cases to consider� lines 
 and �
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intersect side �� and line � intersects side � or side ��
As in the �ve cases considered above� there is at
most one critical point within any case� so it is only
a question of checking how the cases �t together to
conclude that � is i�d on 	�b�� 
�� Further details
are left to the reader� �

As this paper�s grand �nale� we now construct an
spo for excitable dynamics on R� with the square
neighborhood N and threshold � 
 ������

Proof of Theorem 1.5 for p �
 2. The �rst step is to
verify that for the limiting dynamic with � 
 �����
there are prebugs in each direction �� Combining
Lemmas ������� we see that to produce a prebug at
threshold � it su�ces to compute �ve numbers and
show that their minimum is at least �� The last �ve
columns of Table � gives these �ve numbers for the
values of � considered above� To prove the exis�
tence of prebugs for intermediate values of gamma
using a computer program� we need to reduce the
task to a �nite computation�
To do so we begin by observing that if D is the

diamond with vertices �
��p��� ��p�� ��� and D�

is D rotated by ��� the area of the symmetric dif�
ference of D and D� is less than four times the
area of the shaded triangle in Figure �� which is
�� � cos � � sin ���� � sin ��	 Now sin � � �� and
for � � � we have cos � � � � ���
� so the area in
question is smaller than � � �

�
�� � �

�
�� � � � 
��

when � � �	
In the last paragraph we considered what hap�

pened when we changed the rectangle	 As we move
from one value of � to another the slope changes
as well	 It is easy to see that� if the strip width
changes by less than �� the minimum strip width
changes by less than 


p

�	 Furthermore� if the

two slopes change by less than � then the other
four areas of interest change by at most 


p

�	 To

relate these remarks to changes in the parameter
� we observe that for � � ��� �
� �w���� �b����
and �b���� are all � �	 Investigating the val�
ues of the minimum for � � k � ����� we �nd
that in all cases the minimum of the �ve areas is
at least 	��
���� �which occurs for k � ��
���	

��
p
�� ��

���
p
��

�
p
� sin ��

p
��� � sin ���

�
p
� sin ��

p
� cos ��

FIGURE 16. The area of the symmetric di�erence
between the two squares is less than four times the
area of the shaded triangle�

Since every point in ��� �
 is within �����
 of a grid
point� setting � � 	�� � �����
� it follows that at
all intermediate values the minimum is larger than

��
����� ��� � ���� 


p

 � �����
 � 
��
�	 The

number of computations required can be reduced
by a factor of � by noting that outside �
�� 
�
 the
minimum is 	����� so there it su�ces to investigate
� � k � ����	
Having produced a family of prebugs for all di�

rections �� the last step is to generalize the proof
of Theorem �	� in the case p � 
 to make an
anisotropic spiral core	 Let E

�
be our prebug of

constant width w
�
in direction �� de�ned on the

interval ��l
�
� r
�

	 Again� R

�
is rotation through �	

Write B� � E���M� ��� �� � arcsin�w���M� l����
and� for j � ��

Bj�� � R�j
�E�j

� �M� ����

�j�� � �j � arcsin�w�j
��M � l�j

��


Each �j is a continuous function of M and de�
creases to � as M � �� so for each � there is a
smallest value ofM � call itM�� such that �� � 
		
Note that in this case B� � B�	
Let B�

� � B� � �E� � �M�w���	 For � � j � ��
put

B�

j�� � R�j
�fE�j

� �M�w�j
�g� � R��j

Bj���
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and let B�

�
� B�

�
� By de�nition B�

j � Bj� Write

�� � sup
��j��

jBj �B�
jj�

Since our prebugs vary continuously as a function
of the direction �� �� � � as ���� It is easy to
check that if � � ����	 � �� and there are all �
s
on Bj and �
s on Bj�� at time �� then there will
be all �
s on Bj�� at time �� From this it follows
that if we set ��x
 � i for x � B�

��i� � � i � ��
we have de�ned an spo for the limiting dynamic�
In conclusion� we note that this construction of a
core from spo
s of all orientations can be applied
for any value of p� proving ����
� �
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SOFTWARE AVAILABILITY

A commented listing of the �Turbo Pascal
 pro�
gram findbugs�pas that was used to generate the
data in Table � is available by request� as are other
short programs used for various numerical calcula�
tions�
The interactive program Excite�� mentioned in

Section �� is also available free of charge upon re�
quest� It runs on any ����� �or higher
 PC pro�
vided with VGA �or better
 graphics�
Please address requests to D� Gri�eath� Math�

ematics Dept�� University of Wisconsin� Madison
WI �	��� �gri�eath�math�wisc�edu
�
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