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Adv. Appl. Prob. 11, 355-383 (1979) 
Printed in N. Ireland 

@ Applied Probability Trust 1979 

AN INFINITE PARTICLE SYSTEM WITH 
ADDITIVE INTERACTIONS 

RICHARD DURREIT ,* University of California, Los Angeles 

Abstract 

The models under consideration are a class of infinite particle systems which 
can be written as a superposition of branching random walks. This paper gives 
some results about the limiting behavior of the number of particles in a 

compact set as t oo and also gives both sufficient and necessary conditions for 
the existence of a non-trivial translation-invariant stationary distribution. 

INFINITE PARTICLE SYSTEM: RANDOM WALK: BRANCHING PROCESS: POINT PROCESS 

1. Introduction 

In this paper we shall study a class of Markov processes whose state at each 
time is a countable (or finite) subset of Rd. The evolution of these processes 
may be, informally, described by the following rules. If r, is the state at time t 
then 

(i) for any x e r, P {x rxI+} = s + o(s), 
(ii) there is a non-negative measurable function b such that for any open set 

G with G O n, = 0 

P{+snG 0# }=s(Z JG b(x,y)dy)+o(s) 

P{rf+s n G contains two points} = o(s). 

In the terminology of Holley and Stroock (1978) what we have described is a 
birth and death process in which the death rate for particles is one (indepen- 
dent of the configuration) and the birth rate at y when the state is r is given by 
Exe b(x, y). In this paper we shall prove some results about the limiting 
behavior of n, as t -> oo and we shall use these results to give both sufficient and 

necessary conditions for the existence of a non-trivial translation-invariant 

stationary distribution. For most of the results given below we shall assume 
that the process is spatially homogeneous, that is, b(x, y) = b(0, y - x). In some 
cases, however, we can obtain conclusions under the weaker assumption that 
Jb(x, y) dy = 

3 <oo where 0 is a constant (independent of x). We shall always 
assume that the second condition is satisfied. 
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356 RICHARD DURREIT 

The key to our analysis is the observation that if the process starts with a 
finite number of particles then qr(K), the number of points in r, n K, has the 
same distribution as the corresponding quantity in a particle system which 

operates according to the following rules: 

(i) all particles have exponential lifetimes with mean 1/(P + 1), 
(ii) each particle at its death gives birth to 0 or 2 particles with probabilities 

1/(p + 1) and 3/(3 + 1), 
(iii) if there are two particles born as a result of a death at x then one is 

placed at x and the other at a random location y with distribution P-lb(x, y), 
(iv) all the random variables and events in (i), (ii) and (iii) are independent. 
It is easy to check that the description given above defines a unique process 

when the initial configuration is finite (see Athreya and Ney (1972), p. 105) 
and that this process makes transitions at the rates indicated above. From this 
construction it is apparent that starting from a finite initial configuration 
{x,,..., x,} the process has the same distribution as a superposition of n 

independent processes which begin with one point at x,. 
Intuitively this should also be true for initial configurations which are infinite. 

To guarantee this we shall define the infinite particle system by the following 
construction. Let {(rl', 

t- 
0), x E Rd} be a collection of independent copies of 

the process with qrl={x}. To define the process starting from an initial 

configuration we let rl= Uxs rl''. 
The construction above shows that the process is additive in the sense of 

Harris (1978). Our process is a special type of additive process-it has 

independent components. The last property is crucial for our analysis. Our 

approach will be to first determine the behavior of the individual r7 and then 
consider the infinite particle system as a superposition of the rl. The results we 
have obtained are summarized below. 

To describe these results we have to introduce some notation. Let Px and PE 
be the probability laws of the process rl and qrl and let Ex and E6 be the 

corresponding expectations. If A is a probability distribution on the space of 

configurations (this is described in Section 2) then we define a probability law 
PA and an expectation EA by PA(A)= JA(d?)PE(A). This is the probability law 
of the process starting from an initial distribution A. 

The first step in analyzing the infinite particle system is to determine the 
mean number of particles in a compact set. In Section 3 we compute that 

(1.1) EX~qr(K)=e e Z b,(x, K) 

where b,(x, K)= J dyb(x, 
y)b,_l(y, 

K) and bo(x, K)= 1K(x). With this result it is 
easy to determine the behavior of the process when 3 < 1. If 5 is an initial 
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An infinite particle system with additive interactions 357 

configuration with 

sup J (dx)3-n"b(x, A)= C<m, 

i.e. if the density of particles is bounded in an appropriate sense, then 

E~r6,(A)_-5 
Ce t-1). If 0 <1 this implies nr,(A) converges to 0 in probability. 

The same conclusion holds for all compact sets K if b(x, y)= b(0, y -x) and the 
initial distribution is a translation-invariant point process with finite intensity. 

The results given above show that the process 'dies out' when 3 < 1. In the 
case 0 > 1 we have the opposite behavior. If we let I, I = 7r(Rd) then for each 
x eRd 1 1 is a Markov branching process which evolves according to a 
probability law which is independent of x. It is known (see Athreya and Ney 
(1972), p. 111, p. 106) that as t -> oo e-(3-1)t 17j1 converges almost surely to a 
limit W, which has P{W, > 0} = P{f 0 for all t}= 1-(1A/ -1) (see Athreya 
and Ney (1972), p. 112, p. 7). 

This suggests that if the initial configuration ( has enough particles then for 
all open sets G n,(G) - oo in PC probability. To prove results of this type we 
need to know the particles are distributed in space at time t. To obtain this 
information we shall suppose that the process is spatially homogeneous, that is, 
there is a function b defined on Rd such that b(x, y) = b(y - x). In this case the 
function P-lb(x, y) and its iterates are transition probabilities for a random 
walk and the processes {ir, t 

_ 0} are supercritical branching random walks. 
These processes have been studied in various settings by Ney (1965), 

Kharmalov (1968), Joffe and Moncayo (1973), Asmussen and Kaplan (1976), 
Kaplan and Asmussen (1976), and others. Unfortunately none of their results 
supply the information we need to study the infinite particle system so in 
Section 4 we prove the following local limit theorem for Markovian supercriti- 
cal random walks. 

Theorem 4.1. Suppose JyYl2b(y)dy<oo and Syb(y)dy=O. If h>O and 
X,/ t /2 - X then as t ->oo 

(1.2) (23t)d/2e-(-1)t'rl,(x +[0, h]d)-- hd?p(x)Wo 

in PO probability. Here .p is a d-dimensional normal density with mean 0 and 
covariance matrix Eii = (213)-1 yyjib(y) dy and Wo is the almost sure limit of 

The reader should note that the limit result in Theorem 4.1 is the one we 
should get if the particle locations were independent. That is, if "?i is the point 
process which is constructed by assigning the particles alive at time t indepen- 
dent locations with distribution e-'t(-1)Erl (-) 

then (1.2) holds with a replaced 
by j. 
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358 RICHARD DURRETI 

In Section 5 we use Theorem 4.1 to give conditions on the initial configura- 
tion which guarantee that starting from qr, ,q(G) converges to oo in probability 
for all open sets G. The main result is the following. 

Theorem 5.1. Suppose J ly2b(y) dy <oo and let v = (23)-1J yb(y) dy. If for 
some C < oo 

lim 71([- C, C]dt1/2 _ 
-t) 

= 0/ 

then for all open sets G td/2e-(l-1)tqt(G) converges to oo in PT probability. 

In the special case v = 0 the condition above becomes ri =I =0 an obvious 
necessary condition for r,(G)-->oo in probability. Another consequence of this 
result is the following theorem. 

Theorem 5.2. If A is a translation-invariant distribution with A({rn: # A0}) = 

1 then for all 0 <-1 and all open sets G e-e'r,(G) converges to oo in pA 

probability. 

For this result we do not need the assumption SJ yj2b(y) dy < 0 but having 
omitted this assumption we must weaken the conclusion. 

In Sections 6, 7 and 8 we consider the case ( = 1, again under the assump- 
tion that b(x, y)= b(0, y -x). Under this assumption if the initial distribution is 
a translation-invariant point process with intensity A then the distribution of 
the process at any time t is translation invariant and has intensity ke(-l')t. This 

suggests that in the case 0 = 1 (and only in this case) it is possible to have a 
non-trivial translation-invariant stationary distribution. 

In Section 6 we show that if the random walk which takes steps according to 
the density b(y) [b(y=[b(y)+b(-y)] is transient then there is a non-trivial 
stationary distribution which is translation invariant. Using results of Debes, 
Kerstan, Liemant and Matthes (1970) we can then identify all the translation- 
invariant stationary distributions with finite intensity, and give conditions on 
the initial distribution A which guarantee that starting from A q, converges in 
distribution as t->oo. The condition which is sufficient for convergence is 
satisfied by all translation-invariant point processes with finite intensity. 

In Sections 7 and 8 we discuss what happens when the random walk 
generated by the density bO is recurrent. It is natural to conjecture that in this 
case there are no non-trivial translation-invariant stationary distributions with 
finite intensity, but I have only been able to prove this for one-dimensional 
processes with Jyl b(y)dy<oo and for two-dimensional processes with 
Syl 2b(y) dy <oot. The proofs of these results are based on a simple necessary 
and sufficient condition for the existence of translation-invariant stationary 

t After this paper was prepared the author learned that this conjecture has been proved by 
Kallenberg (1977) using different methods. 
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An infinite particle system with additive interactions 359 

distributions which is due to Liemant. To check that this condition is not 
satisfied we use the weak law of large numbers when d = 1 and the local central 
limit theorem when d = 2. 

The conclusions in the last three sections are related to those obtained by 
Sawyer (1976) and Fleischman (1978) for processes which they call branching 
random fields. In these models particles move according to Brownian motion, 
live for an exponential amount of time and then die giving birth to n offspring 
with probability p,. In their formulation they allow the offspring to be intro- 
duced into the state according to a distribution 

qn(x, dy1, ... , dy,) on (Rd)" 
when the particle dies at x but for most of their conclusions they require all the 
offspring to be born at the point where the parent died. Under this assumption 
they proved that the conclusions of Theorems 6.1 and 8.5 hold for branching 
random fields (see Sawyer (1976), Theorem 4.2 and Fleischman (1978), 
Theorem 4.1). Their techniques of proof are different however because they 
can rely on the explicit formulas available for branching Brownian motions. 

It is likely that the results we have stated above can be extended to the 
general branching random fields defined by Sawyer. The results should be the 
same in the subcritical and supercritical cases but in the critical case the 
conclusions of Sections 7 and 8 will require the additional assumption that 
p, f 1. The case p, = 1 corresponds to particles undergoing independent mo- 
tions. In this case it is known that the d-dimensional Poisson process is 
invariant in any d ? 1 (see Doob (1953)) and that starting from a translation- 
invariant distribution A with finite intensity, q, converges in distribution to a 
mixture of Poisson processes (see Stone (1968), Matthes (1972)). 

2. Preliminaries 

In this section we shall give some definitions and prove some preliminary 
results which will be needed in Sections 3-8. The first of these results concerns 
the description of the process. The construction described in the introduction 

gives us (for almost every (o) a mapping from [0, oo) to the countable subsets of 
Rd. To be able to discuss the distribution of the process at time t we need to 
introduce a suitable ao-algebra on the state space. To do this we need some 
definitions: 

Let M be the set of all measures i on Rd which have tk(A){0O, 1, - , oo} 
for all Borel sets A. 

We endow M with the topology of weak convergence. That is i, --* IL in M 
if and only if lim 

inf,__. r,(G)> 
(G) for all open sets G v Rd. 

Let a44 be the Borel subsets of M. a14 is also the smallest a-algebra such that 
for each Borel set A the mapping C 

--- 
p(A) is a4-measurable. 
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360 RICHARD DURRETr 

Let L be the collection of countable subsets of Rd. Let 7r:L-->M be the 

mapping which has (qrl)(A) = IA f lI. Let ? = 
{,wr- 

A : A }. 
It is easy to see that if i, 1, e L and i, 12 then wli1 , -wl2 (consider 12- i1, i1 - 

12 c Rd). From this it follows that the measure spaces (L, Y) and (M, AJ) are 

isomorphic, and so we may define the distribution of q, as a probability 
measure on either space. Following the traditional practice we will define the 

probability measure on (M, J.). In what follows we shall use the terminology 
which has become associated with probability measures on (M, A) (see Daley 
and Vere-Jones (1972)). The reader should note that although we shall call the 
distributions point processes we do not require a priori that the probability 
measure be concentrated on M' = {~L M: pL(K)< oo for all compact sets K}. 

Having defined the distributions of the process the next notion which we 
need to introduce is the transition semigroup: if A is a distribution on (M, JA) 
let AT, be the distribution on (M, A) which has 

AT.(iTA)== A(d?)P(r~q (EA) for all Ae e. 

If the distribution of rl, is A then AT, is the distribution of ,,t,. 
For some of the results of Sections 6 and 7 we need to know that the 

semigroup T, has the Feller property. To show this we observe that 'rl 4x+rl n 
so if 

&. 
is a sequence of elements of M which converge to ? then we can 

construct a sequence of random variables ?i, n -- 1 on a probability space in 
such a way that ~ 

= r-,• 
and "i converges almost surely to a limit ij which has 

the same distribution as 
q',. 

This shows that if G is an open subset of M, 

--->P(~et E G) is a lower semicontinuous function. 
From this it follows easily that if A, converges weakly to A (as a sequence of 

probability measures on M) then 

lim inf AT, (G) 
-AT, 

T(G). 
t-3OO 

This shows the mapping A-- AT, is continuous and hence that T, has the Feller 

property. 
It is easy to show that the transition semigroup has other desirable 

properties-e.g. for 'nice' A, t-->AT, is continuous-but we shall not pursue 
this here. The rest of this section is devoted to proving a result about a special 
class of distributions. 

We begin by stating two definitions. A probability measure A on (L, T) is 
translation invariant if for all Borel sets A c L A(A) = A(x + A). Here x + A = 

{x +5: ~e A} cL and x + = {x + y : ye } c Rd. A probability measure A on 
(M, At) is said to be translation invariant if the measure Ao r is. 

In words, a distribution A is translation invariant if its probability law is 
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An infinite particle system with additive interactions 361 

spatially homogeneous. The mean measure m(A) = JA(drl)r(A) of a 
translation-invariant distribution is translation invariant and hence a constant 
times Lebesgue measure. This constant is called the intensity of the point 
process. 

Theorem 2.1. If A is a translation-invariant point process with finite intensity 
then there is a function y defined on M which has the following property: 

A 
A(dq) 

Qr ({5x 
: 
05-x<-nk Y (n} ) 

J2A(d)- 
y()) --0 

whenever nk is a sequence of points in Zd which have nk --oo for all 1 
-5 

i 5 d. 
Furthermore A({1 :Y (r) > 0}) = A({rl r:: q 0}). 

Remark. In what follows we shall refer to y as the asymptotic density for the 

point process. 

Proof. The first result is an immediate consequence of the following mul- 

tiparameter ergodic theorem which is due to Dunford (1951): 
Let N= {1, 2, ...}, let {Xi, je Nd} be an array of random variables and 

define the shift Oi by 

Xi,- ..i.v, 
- V- (OPi ) = 

Xil,- ...i,+l, 
... V j(O). 

Suppose that X1, -... 1 is integrable and that for each 15 i 
---d {Xj, jE Nd} and 

{Xi o i, jE Nd} have the same distribution. 
If nk is a sequence of elements of Nd with n- Moo for 1-i-d then 

Sk/(nkn k ... nk) converges in L'. 

(This statement of the result can be found in Smythe (1976) where an 
extension to multiparameter subadditive processes is proved.) 

To prove the second result we observe that from the ergodic theorem y is 
invariant under each shift so 

E A[i([O, 1]d); y(rl)> 0]= En[n-drl([O, n]d); Y(QI)> 0] 

-E 

A[_Y(r); 
"Y(,q)>0]- - 

f A(d 
l)In -aq([0, 

n]d)--'(?)[. 
Letting n---oo gives 

EA[ni([O, 
1]d); _y(i)> 0] = 

A(dq)-y(n)= 
EA[n([O, 1]d)]. 

Since A is translation invariant this shows A({q: y(iq) =0, qf =0})=0. 

3. p3<1 

In this section we shall assume 3 <1 and obtain conditions which imply that 
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362 RICHARD DURRETr 

starting from an initial configuration ?, q,(K) converges to 0 in probability for 
each compact K c S. 

If there is initially one particle present Z(t)=ll is a Markov branching 
process. In this case E Irlx = e't-') (see Athreya and Ney (1972), (4), p. 108) 
so P{•I 

_- 
1}-0 as t)oo. To obtain the corresponding results for initial 

configurations which are infinite we need to know how the particles are 
distributed in space. To do this we need some notation. Let 

m((3.1)x, K)=21lK()+• 
-1b(x, 

y)dy 
(3.1) 

and mn+1(x, K) = J 
m,(x, 

dy)m(y, K) for n> 1. 

m, (x, K) is the fraction of the nth generation that will be born in K when the 
process starts with one particle at x. To compute Exqt(K) we observe that 

e-t(a+l)tn( + 1)"/n! is the probability that there are exactly n arrivals before t 
in a Poisson process with rate 3 + 1, and (23/p3/ + 1)" is the expected size of the 
nth generation so 

(3.2) 
Ei"(K) 

= 
E e-a+ 

t"(2l)"m(x, 
K). 

n=O n! 
For a more detailed derivation of this result see Ney (1965). 

For some of our later results it is convenient to express Ent (K) directly in 
terms of b. To do this we let 

bo(x, K)= 1K(X) 

(3.3) and b,(x, K)= b(x, y)bn-i(y, A) dy for n- 1 

and note that from (3.1) if p,(x, K)= 3-"b,(x, K) then 

mn(x, K) = 2-" n 
PE(nx, K). 

j=0o I 

Substituting this into (3.2) gives 

E'x(K)= e-3 +1 

o 

(4 ) 
pi(x, K) 

(3.4) n=O 
i-- 
- o 

= ePpY (x, K). 
j=0 j 

From this formula we can obtain conditions which guarantee P({l,(K) <oo} = 

1 for 3 <OO and that P'({r(K)= 0}- 1 for P3 <1. These conclusions are both 
obtained from the observation that if the initial configuration is S and A is a 
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Borel subset of Rd then 

E71,(A) 
= E f(dx)iq(A) (3.5) 
= e-' 

fo 
J(dx)p,(x, A). 

From this equality we see that if the set A has supn, S (dx)p,(x, A)= C< 
then Erif(A)5 Ce't'-l). From this it follows that if P <oo, rq,(A)<oP' almost 

surely and if 0 <1 
P61{y,(A)- 

1} -- 0. 
A similar argument, which we shall now give, shows that if b(x, y)= b(y -x) 

then the same conclusion holds for all compact sets K when the initial 
distribution A is translation invariant and has finite intensity A. In this case it 
follows from (3.5) that 

E t(K) = e-tE 3)n 
EAtn(K)=e 

(t)" A(d?) fJ (dx)p,(x, 
K)= et'(-1)A IK 

and hence that q,t(K) < ooPA almost surely if 3 < oo, and PA{{, (K) _ 1} -1 0. 
By using the inequality EAr,(K)?5 Ce' 

t-1) in a slightly different manner we 
can improve the results stated above in the case 0 <1. To do this we observe 

EA 

fo 
i(K) dt = EAE (K)d1t C dt C 

t(-1) 
dt 

<oo. 

Since the lifetimes are independent of the configuration this implies that with 
pA probability 1, qt(K)= 0 for t_ to(co). It follows from this that for A almost 

every ? the same statement has P' probability 1. 

4. Supercritical branching random walks 

In this section we shall assume 3 > 1, and obtain a limit law for the number 
of particles in an open set G at time t when the system is initiated by one 

particle located at zero. In other words we shall prove a local limit theorem for 
a Markovian supercritical branching random walk. The proof of this result is 
based on the one given in Kaplan and Asmussen (1976). With some effort the 

proof given below can be extended to show the same conclusion holds for 

age-dependent branching processes. 

Theorem 4.1. Suppose Slyl2b(y)dy <oo and S yb(y) dy = 0. If h > 0 and 
/ t 1/2-X E Rd then 

(21t)d/2e(l-1)t'rl(xt + (0, 
h)d)-- 

hdqp(x) W 

in probability. Here 'p is the density of a normal random vector with mean 0 and 
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364 RICHARD DURREIT 

covariance matrix Eii = (20)-1J Yijib(y) dy and W is the almost sure limit of 

Remark. The rest of the section is devoted to the proof of this result and 

may be omitted without loss of continuity. 

Proof. Let K, = x, +(O, h)d. Let s< t and let rl,,t(y, K) be the number of 

particles in K at time t with an ancestor at y at time s. With this definition we 
can write 

,qt(K,)= 
q.,t(y, K,). 

y Erls 

Now the random variables r,s,(y, K,) are independent, so letting m(t, x, K)= 

Ex,•,(K) 
we can write 

(2pt)d/2 e-(d- (l)t( h () (x) W = 
As,, 

+ 
BS,, 

+ C, 

where 

As,, 
= 

(23t)d/2e-(0-1)' [s,(Y, 
K,)- m(t-s, y, K,)], 

y E'rls 

Bs,, 
= e-(1-1)s [(2{3t)d/Ze-(3-l)('-s)m(t 

- s, y, K,)- 
h-aS(x)], 

C, = hd (x)(e-(-x1)s Il I- W). 

To prove Theorem 4.1 we shall show that if t--oo and s(t)= tP with 0<p<l 
then 

As,(,,, B,(t),, and 
Cs(,) converge to zero in probability. 

The last term is the easiest to deal with. Since s(t) = tP and p > 0, s(t)--oo as 

t--oo and so e-(-1)s(t' ,(t),, converges almost surely to W, the random variable 
described in the statement of the theorem. From this it is immediate that 

CS(t)-* 0. 
To estimate 

As,, 
we observe that the random variables 

s,,t(Y, K,) are inde- 

pendent and, conditional on y e 
s, 's,,(y, K,) has the same distribution as 

• 
-s (K,). Now 

ErlY_s(K,) = m(t - s, y, K,) 

and from Formula (5) (Athreya and Ney (1972), p. 109) there is a constant 
C < oo such that 

E[Els(K,)]2 E 
C_-s22 

Ce2(-1)(t'-s) 

so it follows from the central limit theorem that As(t),,-0O in probability 
whenever td/2e-(1-1)s(t)/2--*0. This condition holds if 3> 1 and s(t)= tP with 
p>0. 

To show 
Bs(,o.,- 

0 we shall need an estimate for ZA(t), the number 
of particles alive at time t who are members of the nth generation. For this we 
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An infinite particle system with additive interactions 365 

shall use the following result which is due to Samuels (1971) (see relation (16), 
p. 665). 

Lemma 4.2. If (a, -20t)/t1/2- -oo and (b, -20t)/tl/2-0oo then 

E e--1)t 
EZn(t)-e-a'-1)ZZ(t)- 

- 0 
n=a, 

where 

z(t)= E Z ?(t)=1| rd. n=O 

In words most of the population at time t are from generations n in the 
interval [a,, b,]. 

Lemma 4.3. If y,/t/2-_0 
and K'= x'+(0, h)d with x,/tl/2-x then 

(2pt)d/2 -(-1)'m(t, yt,, K')-- hd ?(x) 

where .p is a normal density with mean 0 and covariance Y. 

Proof. Let a, 20t 
= 

b, be such that (b, -a,)/t--O, (a, - 
20t)/ti/2---oo 

and 
(b, - 

20t)/t1/2--- 
. 

0o 

(23t)/2e-(-1)'tm(t, y,, K') = (23t)d/2e-(-1)t t mn(y,, K')EZ,(t) 
n=O 

b, 

> e-(3-1)' E (23t)d/2m t(y, K')EZn(t). 
n=at 

Since at and b,/t converge to 20, and m(0, -) is the distribution of the sum of 
n independent random variables with distribution mi(O, -) it follows from the 
local central limit theorem (see Stone (1965), Theorem 1) that the above 

bt 

(P q(x)hde-(1-1)' 
t 

EZn(t). 
n=at 

Applying Lemma 4.2 now gives the above 

- q-(x)hde-(a-1)tEZ(t) = q(x)hd. 

To complete the proof we have to show that 

-(3-1)3 
- 
(21t)d/2mt(y, K,)EZn(t)-O0. no[a4,b,] 

The sum over n > b, is easy to estimate. Since b, = 23t 

e-to-1) )- (2 
2yt)d 

, K)EZ(t) 
e-(P-), nd/2m(y,, K')EZb(t). n>b, n>b, 
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366 RICHARD DURRETY 

From the local central limit theorem there is a C <oo such that 

sup nd/2 mn(z, (0, 
h)d)- 

cC. 
n,Z 

From this it follows that the sum over n > b, is 

< Ce-to-2)' :EZ7 (t) 
n>bt 

which converges to 0 by Lemma 4.2. 
The sum over n < a requires more care. Let 8 <(3 - 1)/2 log (203/ + 1) 

e-(0-1)' 
t 

(23t)d/2m (yt, 
K)EZ,,(t)5 

-((21t)d/2e-(O-1)t/2)e-(-1)t/2 E EZ,(t). n 58t n St 

Now 

n St n St n = 

(, 2-3 \f [ 13+211-'12f3 exp(tS 
log(2+ 

)) 
=\+1 1 20 

=-1 +11 
Since 8 < (3 - 1)/(2 log (203/( +1))) this shows that 

e-(3- 1)'/2" EZn(t)- 0 
n -St 

and hence that the sum over n 5 St converges to 0. 
It is now routine to show the last remaining piece converges to 0. 

e-(3--l)t 
1 

(2[t)d/2M (yt, K')EZ,(t) 

2d 
e-2J(3-1)t 

n n/2 mn,(y,, K)EZ,(t) 

which converges to 0 by the same argument used for the sum over n > b,. 
The proof of Lemma 4.3 is now complete. To finish the proof of Theorem 

4.1 it remains to show the following 

Lemma 4.4. If s(t) = tP with p < 1 then B(t),t---0 in probability. 

Proof. Pick e,--O so that (s(t)/t)1/2/ ,--0. From the local central limit 
theorem there is a constant C <oo such that 

1(213t)d/2e-(-1)tm(t, y, (0, h)d)l C 

for all 
t-- 

0, yE Rd. From this it follows that 

B, 
--e-(-)s 

f 
(dy)[(23t)ed/2-(-1)('tm-S)m(- s, y, 

K,)-•p(x)h] 
+ e-P-luy y t1/2E,})C(t/t- s)d/2 
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An infinite particle system with additive interactions 367 

Since e-(P-l1)s' converges in probability to W< w it follows from Lemma 
4.3 that the first term converges to 0. To estimate the second term we observe 
that e-(f-l)sEZ(s)= 1 so 

e-(1-1)sEqO({y : lyj> t1ieB}t): Ee-3-1)s 1 EZ(s) 
n >(21 + 1)s 

+ sup m,(O,{y :y>t1l2/2t}). 
n (213+l)s 

From Lemma 4.2 the first term converges to 0. To estimate the second we 
observe that from the central limit theorem, if we let 

sup m(O, {y : ly I > xn 1/2) = c(x) 

then c(x) 5 1 and c(x) ~ 0 as x ' oo. From this we get 

sup m,(0, {y :jy I> t1/2et}) C(t(tIs(2: + 1))1/2) 
n:(21+1)s 

so if s = t', p < 1 it follows from the choice of e, that the right side converges to 
0 as t--oo. This completes the proof of Lemma 4.4 and Theorem 4.1. 

5. (>1 

In this section we shall assume 3 >1 and obtain limit theorems for the 
number of particles in an open set G c Rd when the process starts from an 
infinite initial configuration. The first result is an easy consequence of Theorem 
4.1. 

Theorem 5.1. Suppose JyJI2b(y)dy<oo. If lyb(y)dy =0 and ? is a con- 

figuration with I[j = oo then for all open sets G, td/2e-(-l)tqt(G)--->oo in P' 

probability. If J yb(y) dy = p3v then the same conclusion holds if for some C < oo 

lim ([- C, C]dt1/2 _ vt) = cc 
t* 

Proof. It suffices to prove the result for sets of the form G = x + (0, h)d. If we 
let qo,t(Y, G) be the number of points in G at time t with an ancestor at y at 
time 0 then we have 

,qt(G)= q o,,t(y, G) 

and the qo,t(y, G) are independent random variables. Now if for each y we 
define W, to be the almost sure limit of e-(-l)tro,t(y, G) then from Theorem 
4.1 

( 2t)d/2 e-(0- 1)t'O,(Y, G)---< 
P (O)h 

d 
Wy. 
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368 RICHARD DURRETY 

Since the W, are independent and identically distributed random variables with 

P{W, >0}>0 it follows that td/2e-(1-l)t't(G)--_o. 
The second conclusion is proved in a similar way. If we let J,= 

[- C, C]dt/2 - vt then 

,qt(G) 9 r 0,t,(y, G). 
yE~nJ, 

From Theorem 4.1 (generalized to v# 0) we have that if y, e J, and t--oo 

lim inf P((2t)d/2-1)tt )) W inf (x) = 1. 
t-oo 2 X e[, Cr 

Since the random variables Wx are independent and P(Wx >0)> 0 it follows 
from this that if In J,I--oo then for all M<oo 

p4E(td/2 e-(13- 1)tt (K) < M) -- 0. 

which completes the proof. 

Theorem 5.1 can be generalized in two ways: (a) the restriction 

fI y2b(y) dy < oo may be removed and (b) in the case v # 0 we can weaken the 
condition 

lim,_~. 
(([- C, C]dt1/2- Vt)= o 00 

To extend Theorem 5.1 to the case fJyI2b(y) dy =oo we observe that if 

S b(y) dy > 1 then there is a bounded set B such that f b(y)1B(y) dy > 1. Let -j, 
be the particle system associated with the birth rate b(y)lB,(y). Since 

b(y)lB(y) -5 b(y) it is easy to see that for each x -i' and r~ can be constructed 
on the same probability space so that -ij(K) :~5 (K) for all t, K. Once this is 
done if we take for each x i Rd an independent copy of the process (-i,, q') 
then we can obtain a pair of processes in which 

-ft(K)< 7,j(K) for all initial 

configurations 4. 
Using this observation we can obtain the following result. 

Theorem 5.2. If A is a translation-invariant distribution with A({q : ~ 0 }) = 

1 then for all 0 < -1 and all open sets G, e-e'rq,(G) converges to oo in PA 

probability. 

Proof. For each 0< 3-1 there is a compact set K such that 3K= 
S b(y)1K(y) dy > 1+0. If =31 yb(y)1K(y) dy then from Theorem 2.1 and 
the fact that A is translation invariant it follows that for all y > 0 

lim inf pA• : ([- 1, 1]dtl/2 _ 
-t)/td/2 > y} p{ : y(r) > y/2dA 

t-Woo 

so 5([-1, 1]dtl/2 -it)-Aoo in pA probability. It now follows easily from the 

proof of the second conclusion of Theorem 5.1 that for all open sets 
G, e-e'r,(G) converges to oo in PA probability. 
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An infinite particle system with additive interactions 369 

Theorem 5.2 gives a fairly complete description of what occurs when the 

system starts from an initial distribution which is translation invariant. For 
individual configurations or non-translation-invariant initial distributions it is 
difficult to state a definitive result. For a given function b with J b(y) dy > 1 
there are many sets K with the property that J b(y)lK(y)dy >1. Since 
5 yb(y)lK(y) dy may take on different values for different sets K this leads 

through Theorem 5.1 to a variety of sufficient conditions for j,(G)--*oo. 
Combining all the possibilities gives the following result. 

Theorem 5.3. Let I= { jyb(y)1K(y) dy : b(y)1K(y) dy > 1}. If 0 E V and 

IrJ =Ic or more generally, if for some C < c, VP e 

lim q([- C, C]d t _ t) = 0 
t-> 

then qr (K)--*o in P" probability. 

Remark. In the case 0 ecV the condition InI = o is clearly also necessary. If 
0 # V, however, the condition is probably far from the best possible. I have not 
been able to determine a general necessary condition for 7, (G)--co in P" 

probability. 

6. p = 1, the transient case 

In this section we shall show that if = 1 and the random walk which has 

steps with distribution bo(y)= }[b(y)+b(-y)] is transient then there is a 
non-trivial stationary distribution. Once we have done this we can use results 
of Debes, Kerstan, Liemant and Matthes (1970) to (i) show that for every p 0 
there is exactly one ergodic translation-invariant stationary distribution with 

intensity p and (ii) give a sufficient condition for AT, to converge. 
To prove the existence of a stationary distribution we consider what happens 

when the initial configuration is a Poisson process W with intensity 1. In this 
case if A1 and A2 are open sets then 

(6.1) 
Ert(A1) 

= dx m(t, x, A1) 

where m(t, x, A1) = e-'tE=o (t/n!)b,(x, A1) and 

(6.2) 
E'[rh(A1)h,(A2)- 

t(A n A2)]= w(t, A1, A2) 

where 

w(t, A, A2)= dx ds m(t-s, x,dy)K2(y, m(s, , A),m(s, , A2)) 

8 
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370 RICHARD DURRETT 

and 

K2(y, f, g)= f(y) b(y, z)g(z) dz + g(y) b(y, z)f(z) dz]. 

The first formula is a consequence of results obtained in Section 3. The second 
formula can be obtained by a similar argument which counts the locations of 
pairs of particles. The details are spelled out in Sawyer (1976) (see (II.4)-(II.7), 
p. 686-7). 

When b(x, y)= b(y - x) these formulas can be simplified considerably. In this 
case 

(6.3) Ex,,(A) = dxm(t, x, A)= e' 
tn 

Idxb(x, A)= AI. 
n=0 n! 

Using Formula (6.3) the expression for w(t, A1, A2) may be rewritten as 

(64)ds 
dym(s, y, 

A1) 
b(z - y)m(s, z, 

A2) dz 

+2 fdsjdym(s, y, A2) b(z-y)m(s, z, 
A1)dz. 

Since m(s, y, B) 
-0 

for all s, y, B it follows from (6.4) (or from (6.2)) that 

Ewer (A2) increases as t increases. The next result gives a necessary and 
sufficient condition for the limit to be finite. 

Theorem 6.1. Let A be a bounded open set. supt,0 E'rh,(A) 
<oo if and only if 

the (discrete time) random walk which takes steps with distribution b(y)= 
[b(y) +b(-y)]/2 is transient. 

Proof. Consider the first integral in (6.4) above. By making the substitution 
v = z - y and interchanging the order of integration we can rewrite the expres- 
sion as 

f dvb(v) ds dym(s, y, A)m(s, y, A2 ) 

From formula (3.3) we can write 

(6.5) m(s, y, A)= el{yeA} 
fA 

mo(, 
y, z) dz. 

Using formula (6.5) we can write 

I 
dym(s, y, A1)m(s, y,A2v)=e-2s IA1 n 

(A2-v)i 

+e-" dy dz2m (s, y, 
Z2) 

)+e 
- 

• d1 I dym0(s, y, z) 

+J dz1 J dz Jdymo(s, y, z1)mo(s, y, z2). 
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An infinite particle system with additive interactions 371 

It is easy to see that the integral from s = 0 to oo of the sum of the first three 
terms in the last expression 

<2I A n(A2-y)+ AI1 + A2-v <oo 
so EVr (A)2 o00 if and only if 

(6.6) 
jods A dzX A 

dz2 I dymo(s, y, 

zx)mn(s, 

y, z2)= o 

Let S, be the sum of n independent random variables with distribution given 
by b(y) and Ns be an independent Poisson random variable with mean s. It is 
easy to see that for any set B 

Smo(s,y,z) 
dz = P{y + 

SN. 
e B, N > 1}. 

If we let mo(s, x, y) = mo(s, y, x) and S,', Ns be random variables which are 

independent of S., Ns and have the same distribution then we can rewrite the 
expression in (6.6) as 

I ds 
IA 

dz, 
dz2 I dymo(s, 

zl, 
y)mo(s, 

y, Z2) 
S1 2-12 

= ds 
dziP{zI+SN,-SN'eA2-, Ns 

,N' )}. 

The last expression is finite if and only if the random walk generated by 
bo(y) =[b(y)+ b(- y)]/2 is transient so the proof is complete. 

Using Theorem 6.1 we can now prove the first result mentioned in this 
section. 

Theorem 6.2. If the random walk generated by bo(y) is transient then for each 
t >0 there is a non-trivial solution of AT, = A which is translation invariant. 

Proof. Let t >0 and define a measure on (M, At) by 

1n S(A) =-1 
IX•r,,t(A). 

nm=1 

From Theorem 6.1 we have that if K is bounded 

(6.7) sup Ermt, (K)2 = C < oo 
m?l 

This implies that 

sup 
, (dn) 

(K)2 
< oo 

and hence that 
K, 

has a subsequence 
F,, 

which converges weakly to a limit E. 

(see Jagers (1974), p. 209). 
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372 RICHARD DURRETT 

It is easy to see that ,. is translation invariant. To check that .T, = X. 
observe that 

TT, = n + n-l(XT(+,1),- T) 
so from (6.7) 

nkT,T• 
=> . Now Tn . and from results in Section 2 T, has 

the Feller property, so it follows that XT, = =. 
To complete the proof we have to show that X. is not the trivial point 

process. To do this we observe that if K is a bounded set and C is a positive 
integer 

I(6.8) 
- 

(K)C} {((K))(dq) - q (K).(dq) 

2)2 + -- sup I(K)2 m(dq). C mmi 

From (6.3) we have that J Sq(K)Xf (dr)= IKI for all n -1 so letting n-0oo in the 
expression above gives 

JK - q(K).(dq) C= 
sup f (K)2 m,(d). 

Since this holds for all C, J r~(K)X(dr) = IKI and so X. is not the trivial point 
process. 

Now that we have shown that solutions of AT, = A exist we can use results of 
Debes, Kerstan, Liemant and Matthes, which were proved for clustering 
operations on point processes, to characterize the class of translation-invariant 
stationary solutions of AT, = A which have finite intensity. From Theorems 4.3 
and 4.4 in Matthes (1972) we get the following result. 

Theorem 6.3. For every t >0 and p ?0 there is exactly one ergodic 
translation-invariant point process A*,% with intensity p which is stationary for T,. 
The distributions A*t,p 0 form a semigroup, that is, if , P2 0 then At,l+ 

is the distribution of a superposition of two independent point processes with 
distributions At, and A* . t,pl t,P2" 

With this result it is easy to show that the family of stationary distributions is 
independent of t. To do this we observe that for all n > 0 

*-,, 
is an ergodic 

translation-invariant point process with 
A*-.,pT1 

= A 
--,p 

so A*-,, = AT,, and 
we have shown 

(6.9) A*,pTm2- = A*T, for all m, n 
-0. 

From (6.9) ATT, has intensity p for each t, so from the definition of 
1, 

it 
follows that A*T {(": 

t 
-- 

lf is right-continuous}= 1. Using (6.9) again we can 
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An infinite particle system with additive interactions 373 

conclude that for all t 
_0 

AA*,T, = A and hence 

*A 

= A This shows that 
there is one family of ergodic point processes which are stationary for all t >0. 

From the work of Debes et al. (1970), pp. 241, 213, 199, we can also obtain 
a convergence theorem. 

Theorem 6.4. If A is a point process with an asymptotic density y(rq) which 
has 

SJ•y()A(dr~)<oo 
then for all t>0 

A 
T>, 

I t,, 
A(dn). 

From this result and Theorem 2.1 we can conclude that if AT, = A and A is 
translation invariant with finite intensity then A is representable as a mixture of 
the A*. 

7. 3=1, d=1 

In this section we shall show that when 0 =1 there are no non-trivial 
translation-invariant stationary distributions for the one-dimensional model 
when J yIb(y) dy <m. The proof of this result is based on the following result 
which is due to Liemant (see Matthes (1972), Theorem 4.3). 

Theorem 7.1. The equation AT, = A has a non-trivial translation-invariant 
solution A with finite intensity if and only if for some compact set K 

(7.1) inf J P{rq,(K)>0} dx >0. 

Proof. We shall first show the condition is necessary. To do this we observe 
that if A has mean measure A dx then A J P{q,(K) > 0} dx is the expected 
number of particles at time 0 which have offspring in K at time nt. Since 

(7.2) PAqn t(K) > 

0}- 

- 
P{,(K)> 

0} dx 

it follows that if AT, = A 

PA{r (K) > 0} = inf PA{i, (K) > 0} = 0. 
n~l1 

Since this holds for all compact sets K, the only translation-invariant solution 
of AT, = A with finite intensity is concentrated on the empty configuration. 

To prove the converse we have to construct a translation-invariant equilib- 
rium. Let W be a Poisson point in Rd with intensity 1 and let 

1i 
_ 

n m=1 
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374 RICHARD DURRETI7 

For each compact set KS Jq(K)W,(dr~)= K <oo so it follows from Jagers 
(1974), p. 209 that there is a subsequence of W, which converges weakly to a 
limit T. 

It is easy to see that W. is translation invariant. A proof given in Section 6 
shows that W.T, = . so to complete the proof we have to show that T. is not 
the trivial point process. To do this we observe that the number of particles 
alive at time 0 which have offspring in K at time mt has a Poisson distribution 
with mean S P{jq ,(K) > 0} dx so 

Tm,, ({r : q (K) = 0}) = exp (- JP{j(K)> O}dx). 
From this if follows that 

T,({(qn:"(K)= 
0})= n- exp - P{, (K)>0} dx) 

m=1 

so if (7.1) holds 

S({ K : r(K) = 0})-- ssup g ({r : q(K) = 0}) < 1 

and this completes the proof. 

As a consequence of the proof given above we have the following result. 

Corollary 7.2. Let X be a Poisson process with intensity 1 and suppose that for 
every compact set K t/T,,({~: r(K) > 0})---0 as n -oo. Then the equation 
AT, = A does not have a non-trivial translation-invariant solution. 

Using Theorem 7.1 it is easy to show that there are no non-trivial 
translation-invariant stationary distributions when d = 1 and J IyIb(y) dy <0. 

Theorem 7.3. If d = 1 and J IyI b(y) dy < oo then for every compact set K 

limr P{7x(K)>O} dx =0. 

Proof. It suffices to show that the result holds for all intervals of the form 
[-a, a], a >0. Let v = yb(y) dy and I,, = [(v - 2e)t, (v + 2e)t] 

J P{7x(K)>O0}1dx= P{j x(K) >0}dx 

(7.3) +P{rni # 0} P{1 (K) >o I 0n# 0}dx: J5 Eq(K) dx+4etP{y I#0}. 

From formula (3.4) 

Eq:(K)= e-' -b,(x, K). 
no= 

n! 
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An infinite particle system with additive interactions 375 

If we let S, be the sum of n independent random variables with distribution 
b(y) and N, is an independent Poisson random variable with mean t then 

(7.4) Er '(K) = P{x + SN e K} 

so 

Er: (K) dx = P{-x - a 
SN, 

- x + a} dx. 

If a<et and 
x--(-v-2e)t 

then 
-x-a?-(v+e)t 

so if t>a/e 
(-v-2e)t 

J_--Erlx(K) 

dx 
-52aP{SNt >- 

(v+ )t}. 

Now from the weak law of large numbers N,/t converges in probability to 1 and 

S,,/n converges in probability to v so SN/t converges in probability to v and 
P{SN 

--(v+e)t}--O. 
By a similar argument the integral over ((-v+2e)t,oo) 

converges to 0 and so 

fEqx(K) dx -0. 

Now from Athreya and Ney (1972), p. 113, 
tP{rl 

= 0}---2 as t--*o so from 
formula (7.3) it follows that 

limsup P{l(K) > 0} dx 8 
t-.oo f 

for all e > 0 which completes the proof. 

Remark. The proof given above also shows that the same conclusion holds if 
the weak law of large numbers holds for the density b in the form S,/n 
converges to v in probability. This condition implies that the weak law of large 
numbers holds for the density b0 in the form SO/n --*0, and this implies that the 
random walk which takes step according to b? is recurrent. No two of these 
conditions are equivalent. 

8. S3=1, d=2 

In this section we shall show that when 3 = 1 there are no non-trivial 
translation-invariant stationary distributions for the two-dimensional model 
when S fyf2b(y) dy < o. To simplify the cumbersome expressions below we shall 
suppose also that S yb(y) dy =0 and that the determinant of the covariance 
matrix I of b(y) is 1 and leave it to the reader to check that the same proof 
works if v and I < are arbitrary. 

The method of proof is to show that if A is a translation-invariant point 
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process with intensity 1 and A is a bounded open set with aA = 0 then 

(8.1) limogtpA8r > h =e- 
,- 8,rr logt A 

for all h > 0. To see that this implies the desired result observe that if T is a 
Poisson process then from (6.3) E'r,(A) = AI and from (8.1) 

lim inf E'[,(A); q,(A) 
_-8(log 

t)/8r] 
i--AI 

e-h dh 
t-+oo 

for each 8 > 0 so for each C <oo 

lim sup E'[r,(A); r,(A) 5C]= 0. 
t-oo 

Using Corollary 7.2 now shows that if (8.1) holds then there are no non-trivial 
translation-invariant stationary distributions. 

The rest of this section will be devoted to proving (8.1). To do this we shall 

begin by computing the moments of 
rth(A) 

in a branching random walk. 

Theorem 8.1. If A is a bounded open set with IA =I 0 then 

t k!_A__ lim t_ 

Ex[rh,(A)]k 
=k ! JAIk 

,--lm 

(log t)k-1 4 k-1(2,r)k 

Proof. The proof is by induction. For k = 1 the statement says 

lim tm (y, x, A) = A 1/2Ir 
t-+oo 

which is a consequence of (3.3) and the fact that nb,(x, A)--- A/2rr. 
Suppose now that k -2 and that the statement holds for j < k. To prove that 

the result also holds for k we will use the following formula. 

Lemma 8.2. For all k>- 1 
k-1 1 (•k tf I Ex[iq(A)]k= m(t, x, A)+ dzb(z) ( ds m(t-s, x, dy) 

(8.2) if1 f f 

x E Y1q, (A)iEYI+Zqrls,(A 
)k-j. 

This result is a special case of a formula derived in Appendix 1 of Fleischman 

(1978). The argument given there is an extension of the one given by Sawyer in 
the case k = 2 (see Sawyer (1976), Appendix II). 

To simplify the computations below it is desirable to reduce the size of 

expression (8.2). To do this we observe that if k 
?-2, 

tm(t, x, A)/(log t)k-1->0, 
so we can evaluate the limit of tE'r,(A)k/(log t)k-1 by deriving an asymptotic 
formula for 

ds(log s)k-2 m(t-s, x, dy) 
E(logs)-1 (logs)k-i- 
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To obtain the desired formula we shall show the following. 

Lemma 8.3. Let k1(t, y, A) and k2(t, y, A) be functions which have the 
following three properties: 

(i) 
lim,__ 

dyk, (t, y, A)= 1; 
(ii) there are some normal probability densities qcp such that tk, (t, y,, A)-> 

p~(y) whenever ytl/12->y; 
(iii) there are constants Bi, Ci <oo such that, for all ye Rd 

sup Jdyk,(t, y, 
A):-5B, 

sup J m(t-s, y, dz)k,(s, z, 
A)-5 

Bi 

and 

sup skl (s, y, 
A)- 

Ci. 
s?1 

Let z Rd and let 1 be a positive integer. If we define 

j(t, x, A)= ds(log s)'-1 m(t-s, x, dy)ki(s, y, A)k2(s, y +z, A) 

for t -2 then it follows that 

(a) lim,t. 5 dxj(t, x, A)/(log t)1 = 1-1 S p(u)p2(u) du; 
(b) if x,/tl/2-x then 

lim 
t](t, x,, A)/(log t) = 

1-lp(x) p(v)2(v) dv 
t-oo J 

where p?(x) = limi tm(t, x,, [0, 1]d); 

and 

(c) there are constants Bo, Co<oo such that, for all x Rd 

sup J dxj(t, x, A)/(log t) -<Bo 

sup t t-sm(t -s, x, dy)[j(s, y, A)/(log 
s)']-5 Bo t ?sL2f J 

and supt,2 t[jl(t, x, A)/(log 
t)']- 

Co. 

Proof. Let z e Rd and let 

I(u, v) = ds(log s)1-1 m(t - s, x, dy)kl(s, y, A)k2(s, y + z, A) 

J,(u, v) = Jdxl(u, v) = Jds(log s)-1 dyk1(s, y, A)k2(s, y + z, A). 
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378 RICHARD DURRETIT 

By hypothesis f 
dykl(s, 

y, A)k2(s, y + z, A): 
BIC2s-1 

so if E ?2t-1 

(8.3) J,(ts, t)- B1 C2 jds(log s)'s-' = 
BlC21-1[(log 

t) - (log ts)']. 

From (8.3) it follows that if log sjlogt--0 then (log(ts,)/logt)'--1 and 

Jt,(t•, t)/(log t)0 
--0. To trim off the other end we pick s, T 00 such that sJ(log t) -->0. From the 

observation above we have 

(8.4) J,(2, s,) I ds(log 
s)11s-1BIC2 

B1C2St(log s)-12 

so under our choice of s, Jt(2, st)/(log t)1 - 0. 
Let K, be an increasing function of s which has lim~. K = oo. Let D, 

{y :fy 5 Ks1/2}. Under assumption (iii) we have 

(log t)-' ds(lo-g s)-s1 
s dyki(s, y, 

A)sk2(s, 
y + z, A) 

(8.5) St 

-supf 
dyki(s, y,A)C2* 

S St D 

It follows from (i) and (ii) that the right-hand side of (8.5) converges to 0 as 

t--oo so the main contribution to Jt(st, ts,) comes from integrating over the sets 

D,. To evaluate this piece of the integral we observe that 

s kl(s, y, A)k2(s, y +z, A) dy = j ski(s, us1/2, A)sk2(s, us1/2 + Z, A) du 

so it follows from (i) and (ii) that there are K. T oo which increase to oo slowly 
enough so that 

s 
kl. 

(s, y, A)k2(s, y + z, A) dy - J 1(u)2(u) du. 

From this it follows that 

lim J ds (g S) dykj(s, y, A)sk2(s, y + z, A) 
(8.6) t -- s s 

= J I1(u) 
92(u) du. 

Combining formulas (8.3)-(8.6) now proves conclusion (a). 
To prove (b) we observe that from hypothesis (iii) 

ID tm(t-s,x, 

dy)kl(s, 

y, A) i2B1 
for s 5 t/2 

2 C1 for s > t/2 
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so if s -2t-1 then by the argument given for (8.3) 

(8.7) tI,(ts, t)? 2(B1 +C1)C21-1[(log t)' -(log ts)']. 

From (8.7) it follows that if log e,/log t->0 then tI,(te,, t)/(log t)' ->0. In the 
same way we can conclude that if s/(log t)' --0 then 

(8.8) lim tI,(2, s,)/(log t)' = 0. 
t-*ao 

Let K, .oo and D, = {y: y Ks/2}. It follows from the local central limit 
theorem and hypotheses (i)-(iii) that if 8 > 0 then 

(log t)-' ds(log0s)'-S 1 tm(t-s, x., dy)kl(s, y, A)sk2(s, y +z, A) 
(8.9) 

/log tEt 

---1 
(log (SC2 for t sufficiently large. 

So again the main contribution comes from the integral over D,. 
To evaluate the other integral we observe that if s - tE, then D. has radius 

Kyssl/2<Kte,(te)1/2 
SO if t-1/2KtI(tet )1/2-_0 then it follows from (8.6) and the 

local central limit theorem that whenever 
x,/tl-/2-- 

x, 

lim (log t)-' eds(log s)-s-1 tm(t-s, x- , dy) 
(8.10) 

x k(s, y, A)sk2(s, y + z, A) = 
qp(x) I(u)(u)2 

du 

where (x) = 
lim,__ tm(t, Xt, [0, 1]d). 

Combining formulas (8.7)-(8.10) proves conclusion (b). 
To complete the proof of the lemma we have to show that the conclusions in 

(iii) hold. To prove the first we observe that 

Sdxj(t, x, A)/(log t)' 

=(log t)-1 ds(log s)t-1s-1 dyk1(s, y, A)sk2(s, y +z, A)-BC21-1. 

To prove the second we write 

(t -s)m(t-s, w, dx)j(tx, A) = du(log u)-1 t -sm(t - s, w, dx) 

x J m(s - u, x, dy)k,(u, y, A)k2(u, y + z, A). 

Since t -s > t - u over the range of integration this shows 

I(t -s)m(t-s, w, dx)j(t, x, A)/(log t)r 
- 

B C21-1 
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380 RICHARD DURRETT 

To prove the third inequality we observe that from the proof of (8.7) 

tj(t, x, A)/(log t)' -2(B, + C1)C21-1 
The proof of Lemma 8.3 is now complete. To finish the proof of Theorem 

8.1 it suffices to show that the indicated constants arise when Lemma 8.3 is 
applied to formula (8.2) 

Let 
t E[q,(A)]k 

V ,-m (log t)k-1 JA " 
We have already shown that v, = 1/2,r. From Lemmas 8.2 and 8.3 ((a) and (b)) 
it follows that for k> 2 

1 k-1 1 k-1 k 
yk 

- 
2: 

p(0)2=•r,2yjr_-/4r 4(- 1) 
vi) k- 

k -2(k - 1) (i (2 2 4(k - 1) 
-=1 and so 

Vk 1 k- k-i 
k! 4(k -1) 

j-i 
j! k -j! 

Substituting uk = 4k-1(2,rr)kvk/k! in the last formula gives 
1 k-1 

Uk-= 21 uiuk-i- (uk - 1) 
i=_1 Since u, = 1 it follows that Uk = 1 for all k and hence that Vk = k !/4k-1(2Tr)k. 

This completes the proof of Theorem 8.1. 

The next result gives an asymptotic formula for the moments of q,(A) in the 
infinite-particle system. 

Theorem 8.4. If A is a translation-invariant initial distribution with intensity 
1 then 

(8.11) lim (log t)l-kEA[rlt(A)]k = k!JAIk/(8,r)k-1 
t-+oo 

Proof. Under the hypothesis on A, EAR,(A) = dxm(t, x, A) = AI so the 
result holds trivially when k = 1. 

To obtain the result for k 2 we will use the results of Lemma 8.3. If k = 2 

E[rl7(A)]2= ] 
E[7jx(A)7jY(A)]. 

X,YEt 

When x: y, qr ~(A) and q Y(A) are independent so 

E[i 
(A)]2-= I (dx)E[rjx(A)]2+ J (dx)Erjx(A) I (dy)ERI(A) 

- aIn(dx)[EAf(A)f 
and EA[rI (A)] = J" dxE[r):(A)f2 + 1-J dx[Ey' (A)]2. 
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From the proof of Lemma 8.3 there is a constant C such that 

(log t)-1 
dx[E7 (A)]2 C(log t)-1 dxEq7(A) 

= C IAI (log t)-1 

This implies 

m 
EA[ t(A)]2 I XE[rl(A)]2 limn =lim dx 

,-- 
log t ,--.f log t 

From conclusion (a) of Lemma 8.3 it now follows that 

lim E[,(A)]2 1 A 2=A12 
l (log t) (27r2) 8AI 

To prove the result for k -23 we observe that by a similar argument 

E 
A[7h(A)]k 

E[lx:(A)]k 
lim = lim dx 
li (log t)k-1 lim dx (log t)k-1 

so it follows from Theorem 8.1 and conclusions (a) and (b) of Lemma 8.3 that 

EA[rt(A)]k k! A(lk 

lIm (log t)k- = (2) 4k-(2rf)k 

This completes the proof of Theorem 8.4. 

Having derived an asymptotic formula for the moments of qr(A) the next 
step in proving (8.1) is to use Theorems 8.1 and 8.4 to show the following. 

Theorem 8.5. For all 0> 0 

(8.12) lim (t log t) (1 - Ex exp (- 
8•rr0, 

(A)/IA I log t)) = 0/(0 + 1) 
t--* 4 

(8.13) lim t(1- EA exp (- 8Tirr,(A)/IA I log t)) = 0/(0 + 1). 
t-> 88,m 

Proof. We shall only prove the second result since it is the one which is 
needed to complete the derivation of (8.1). The idea of the proof is simple: if 0 
is 'sufficiently small' then 

EA(exp (O- (A)) = 1+ 
EA[ (A)]k 

k=1 k! 

and so 
(log t)EA[1 -exp 

(- 
Ir I (A)/log 

t)]= - ,(- 
_ EA[(A)]k 

k= 1 k! (log t)k-1 

Now as t->oo each term in the sum above converges to (- 0)k IAlIk/(8r)k-1 
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This suggests that as t--*oo 

log t EA [1 
-- exp 

-8w,(A) ] ( O)k 
0 

8er IAl log t k=1 1+0" 
To prove this statement we have to prove that the sum and limit may be 
interchanged. To do this we observe that it follows from (8.2) that for all 

101<8r/nIAI there is a constant Co <oo such that 

0" EA[rl(A)]k 
k! (logt)k- for all k 

This shows that the convergence in (8.13) occurs for all 0 e (- 8r/vIAI, 8i/IlA I). 
To complete the proof we have to show that the convergence occurs for 

08 
8•/IAAI. 

To do this we let 

?p,(0) = (log t)EA[ 
--exp (-- Or,(A)/log t)] 

for all complex 0 with Re 0 > 0. The functions p~,(0) are analytic on the right 
half-plane and have I, (0) 

1_ 
1 when Re 0>0. It now follows from Vitali's 

theorem (see Hille (1962), Theorem 15.3.1) that t,(0) -- 0/(0 + 1) for all 0 with 
Re 0 > 0. This shows that formula (8.13) is valid. 

Using formulas (8.12) and (8.13) we can now show that for all h >0 

(8.14) lim ogtPx 8 (A)>h=ee t-,. 4 loggt (Al 

(8.15) 1log 
t pA 8T rt(A) >h =e-. 

, 817 logt JAl> 

To do this let X, = 8Trr,(A)/IA I log t, F,(h) = P{X, 
<- 

h}. By Fubini's theorem 

(1-e-"Oh) dFt(h) = E 0-1e-'Y dy = 0-le-OYP{Xt > y} dy 

so 

o 

0-logt- log 
t(l 

A lim e og t {X, > h} dh = 0-1 lim - (1- EAO) = 1/( + 1). 

t.-o 
8T 

t 
t-8 8 
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