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SUMMARY

Spatial pattern, how it arises and how it is maintained, are central foci for ecological theory. In recent
years, some attention has shifted from continuum models to spatially discrete analogues, which allow
easy treatment of local stochastic effects and of non-local spatial influences. Many of these fall within the
area of mathematics known as ‘interacting particle systems’, which provides a body of results that
facilitate the interpretation of the suite of simulation models that have been considered, and point
towards future analyses. In this paper we review the basic mathematical literature. Three influential
examples from the ecological literature are considered and placed within the general framework, which
is shown to be a powerful one for the study of spatial ecological interactions.

1. INTRODUCTION

Spatial pattern and the processes that generate and
maintain pattern have been major objects of scientific
attention for decades. (See for example, reviews in
Levin & Segel (1985) and Haken (1983).) Most work
has focused on continuum descriptions; however, in
the past few years there has been a rapid increase
in the use of discretized models, in which space is
represented by a grid of ‘cells’ or ‘sites’ that can be in
one of a finite number of states (see Durrett 19884,5,c,
1992; Czaran & Bartha 1992). Biology, in particular,
has been a rich area of application for such models,
especially in the study of pattern formation in ecologi-
cal systems; however, in most cases in the biological
literature, the analysis of these models has been
carried out without reference to the broad range of
investigations in the field of interacting particle sys-
tems, spatial stochastic processes that include as
deterministic special cases cellular automata (see, for
example Fisch et al. (1991) or Hassell et al. (1991)).
The aim of this article is to bridge this gap by
describing some of the mathematical results that are
useful for applications, and applying these results to
some systems that have been considered in the
literature.

We begin by describing the general set-up of our
models. In each system there is a collection of spatial
locations called sites, which in all our examples will be
the d-dimensional integer lattice, Z¢ that is, the points
in d-dimensional space with all integer co-ordinates.
In most cases of interest in biology we will have d=2,
or occasionally d=3; but it will also be interesting to
consider the behaviour in =1 and d> 3. Our models
are generally formulated on the infinite lattice as this
simplifies the mathematical theory. However, we will
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also discuss the behaviour of these systems on finite
lattices with various boundary conditions, since this
is what one encounters in applications or computer
simulations.

Our systems can evolve in discrete time (¢=0,1,2,...)
or continuous time (¢ is any non-negative number).
Because discrete time models are used almost univer-
sally in the biological literature and are simpler to
formulate, we will begin with that case. The models
are slightly more difficult to formulate in continuous
time, as one must deal with transition rates instead of
probabilities; but as we will explain in § 6, continuous
time models are simpler to analyse than discrete time
models and they do not need ‘collision rules’ to decide
what happens when several events occur at one site in
one time step.

At each time ¢t=0,1,2, . . ., each site can be in one of
a finite number of possible states; the set of all possible
states being denoted by F. The state of the site x at
time ¢ is denoted by &,(x), and hence the state of the
process at time { is given by a function £, that assigns
to each site in Z¢ a state in F. We will say that the
function &,:Z?—F describes the configuration of the
system at time ¢. In this paper, we will typically allow
a site to be either vacant or to be occupied by a single
individual and we will interpret O as vacant, and a
value of  with 1 </<x—1 as indicating that the site is
occupied by one individual of type i.

The temporal evolution of these models is deter-
mined by specifying, for each ¢ and x, the conditional
probability that site x will be in state ¢ at time ¢ given
that the whole process was in configuration £ at time
t— 1. This transition probability is denoted by p;(x,&).
We will always suppose that p; depends on the state at
x and on the states of a finite number of neighbours:
x+y1, . . ., ¥+y, and that it does not depend on time.
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That is,
pi(8) = flEX)E(x + 1), - - (X + 7)) (1)

Of course, because the p;s are probabilities for fixed x
and & we will have

p(x€) =0 and Y p(xg) = 1.
Our formulation of the transition probabilities makes
the system rules spatially homogeneous. In the jargon
our transition probabilities are ‘translation invariant’.
That is, if we shift (or translate) the initial configu-
ration then the temporal evolution is only translated
in space. The assumption of translation invariance is
needed for most of the mathematical results; however,
it can be dropped if one is content to study the model
by simulation. Indeed, one of the attractions of
interacting particle system models is that they can be
used to study spatially inhomogeneous systems.

The first step in formulating a concrete model is to
decide on the neighbourhood set N = {y1, . . ., y,} to be
used. In many cases in two dimensions we will take

1
N:{(—I,O) (0(,0’_)1) (1,0)}.

These points are often called the ‘nearest neighbours’
of 0, as these are the lattice points that are the closest
to 0. N is sometimes called the ‘von Neumann
neighbourhood’. A second common choice is the
‘Moore neighbourhood’,
(L1)
(1,0) }
(la - 1)

(1)) (01)

N= { (—1,0)

( - 17 - 1)
These neighbourhoods are named for two mathemati-
cians who were early contributors to the theory of
cellular automata. To help keep the definitions
straight via a pun, notice that the Moore neighbour-
hood has more points.

In some situations we will want to look at larger
neighbourhoods. Let ||z|| be any distance function (two
that are well suited to the d-dimensional integer lattice
are |lzlly =z + ... + |z, or [zl = max{iz], . . .,
|z;[}) and let A" ={z:0 < ||z|| <}, the set of points
within distance r of the origin. Here r gives the range
of the interaction. Using our new notations, we can
express the von Neumann and Moore neighbourhoods
as {z:||z|l; = 1} or {z:]|z]| = 1}, respectively. The next
two figures show the distances from 0 for || ||; and || ||
The corresponding neighbourhoods are diamonds and
squares respectively.

(03_ 1)
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Variants on these two choices are possible modifying
their shape or extent. For example, one can define the
usual Euclidean norm |jxlls = (xZ + ... + x9)"? and
let N ={x:0 < ||zl < r}. However, one should not
worry too much about what neighbourhood to choose.
In most cases the qualitative behaviour of the model
does not depend on the neighbourhood used.

The purpose of this brief introduction has been
simply to spell out in a general way the rules of the
games that we will study in more detail below. The
reasons for interest in these models and the range of
possible applications will become clearer as we study
specific examples. Our approach will be to discuss the
theory and its applications in alternation. In the
lengthy §2 we will discuss contact processes and
introduce some general results.. In § 3, we will apply
these results to the daffodil model of Barkham and
Hance (1982). In § 4 we will discuss the behaviour of a
version of the contact process in which dispersal occurs
over long distances, as a prelude to analysing Crawley
and May’s (1987) model of competition of annuals
and perennials in §5. The message of these two
sections is that if dispersal occurs over large distances,
then the particle system behaves much like a system in
which all sites interact equally. In §6 we discuss
continuous time versions of the discrete time systems
studied in §§ 4 and 5 and show that in this case it is
possible to get more detailed information. This state of
affairs is analogous to (and related to) the distinction
between iteration of functions and ordinary differen-
tial equations. In §§4-6 we are concerned with
competition of plants that fall in a successional
sequence. In §7 we turn our attention to models
appropriate for the competition of different genets of
the same species or different species of the same type of
plant. These results are then applied in § 8 to Inghe’s
(1989) model of the competition of different genets of
a fixed perennial.

One of the features that makes the study of
interacting particle systems interesting for mathemati-
cians is that many of the results in the theory are
simple to state but difficult to prove. We have not
tried to explain any of the more complicated aspects of
the theory here, but have included proofs of some of
the simpler results to make the theory a little less
mysterious, and because some of the ideas are useful in
simulations. Proofs appear in the text with their
beginnings marked by Proof and their end by []. The
material between these marks can be skipped without
loss.
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2. CONTACT PROCESSES

We begin by discussing the simplest interesting model.
As we go along we will add a number of features to
enhance realism. Each site can be in state 0 = vacant
or 1 = occupied by a ‘particle’, which the reader
should think of as being a single plant. From the
viewpoint of the particles, the system evolves as
follows:

1. Particles die with probability y and survive with

probability 1 —y. That is, in each time step the
probability of death is y for any plant.

2. If the particle at x survives, then with probability
f(x,y) it gives birth to a new particle (propagule) that
is sent to y. The birth events for different values of y or
from different values of x are independent. That is,
independent of what other births may have taken
place in a given time step, there is probability f(x,y)
that a plant at x sends a propagule to site y.

3. If one or more propagules is sent to y, or if there
is a particle at y that survives, y is occupied at the next
time step; otherwise y is vacant.

In order for the transition probability to have the
form given in equation (1), we must assume that
B(xy) = gy — x) and that g(z) # 0 for only finitely
many values of z. An important special case, called the
basic contact process, has g(z) = A when z is one of the
nearest neighbours of the origin, and 0 otherwise. We
will concentrate on the basic contact process because
it is concrete and simple, and because, as the reader
will see, a large class of more complicated models have
the same qualitative behaviour.

Rule 3 says that there can be at most one particle
per site. This is a reasonable constraint for a model of
the spread of a plant species, but this realism makes
the model very difficult to analyse.

Let &/ be the state at time ¢ when initially the sites
in A are occupied (that is, &§(x) = 1 if and only if
x€A). Let t = min{t: & (x) = 0 for all x) be the first
time that there are no particles. If there are no
particles then none can be born, so at all times ¢ > t*
we will have ¢! =0, that is, &'(x) = 0 for all x. In
words, the ‘all 0’ state is an absorbing state: once the
process enters this state it cannot leave. For obvious
reasons, we say the system dies out at time 7.

The first question to be addressed is ‘When does the
system have positive probability of not dying out
starting from a single occupied site?” or in symbols
‘When is P(t'% = o0 ) > 0? Here, without loss of
generality, we have chosen the initial occupied site to
be the origin, i.e. the point in Z? with all co-ordinates
0. Note that there is probability y that the initial
particle will die before it has a chance to give birth, so
ify > 0 then P(1"% = o0 ) < 1. When P(7'% = o0 ) > 0,
we say the process survives, otherwise we say that the
process dies out. Suppose for the moment that we hold
A fixed and vary y. Because increasing y makes it
harder for the process to survive, there will be a
critical value y.(A) (possibly O or 1) so that

=0 if

Y > 7c()
o _
Pt = 0 ){ -0 i

y < 7.
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That is, when y > &, the species will almost certainly
die out; whereas for y < y,, there is positive probabi-
lity that the species will avoid extinction.

Our next goal is to give bounds on y. and to show
that 0 < y.(A) < 1. The first thing we will do is to
show that if y is too large then the system dies out. To
do this we note that if, for comparison, we change rule
3 so that each propagule results in a new particle (that
is, local competitive exclusion is ignored), then the
number of particles alive at time ¢ is a branching
process in which each particle dies with probability y
and with probability (1 — y) gives birth to an average
of 2dX new particles. The expected number of off-
spring (counting the particle if it survives) is u =
(I —v)(2dAx + 1). Iterating we see that the expected
number of offspring in generation ¢ is p'. Now the
probability of having at least one survivor is smaller
than the expected value, so if u < 1 the probability of
surviving until time ¢ goes to 0 exponentially fast. By
comparison, in the contact process some of the birth
rate will be wasted on occupied sites, so the probabi-
lity of surviving also tends to 0 if 4 < 1 and we have
proved the easy half of the following result. The
second conclusion can be proved using the methods in
Durrett (1992).

If

y > 2dA[(2dX + 1)

then the basic contact process dies out.
If

7 <1—1{0.82 4 2(1 — \)™V&-b

for some integer n = 1 then the basic contact process
survives. (2.1)

These results give only very crude bounds on y.(A):

2dA
Z e
2d) + 1

(A) = min (1 — {0.82 + 2(1 — A)#}1E 1)
n=1

For example, when d = 1 and A = 1, the upper bound
is 2/3 and taking n = 1 the lower bound is y < 2A —

1.82 = 0.18 while numerical results suggest that
y.(1) = 0.47. The lower bound in (2.1) is ugly to look
at, but it does have the nice feature that it can be
made positive for any A > 0. (Just take n large enough
so that (1 — A)* < 0.09.) Figure 1 shows a picture of
the crude bounds given above in the special case d = 1
and a numerical estimate (the middle curve) of
{(A.(A)): 0 <A< 1}, the boundary between the two
behaviours. We will have more to say later in this
section about how this boundary was estimated. For
the moment, we will concentrate on the special case in
which A = 1.

The first step in estimating y.(1) is to see what
happens for various parameter values. Figure 2 shows
a simulation of the process with y = 0.49 starting with
an interval of 160 occupied sites. In this simulation,
space goes across, time runs down the page, and the
process died out well before we reached the end of the
simulation, which represents time 480. Figure 4 shows
a simulation of the process with y = 0.45, again
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Figure 1. Upper and lower bounds on the critical values
7.(A) for the discrete time basic contact process.

starting from an interval of occupied sites. In this case
the interval grows linearly in time; and, in between
the two endpoints, more than half of the sites are
occupied. Finally, figure 3 shows a simulation of the
system with y = 0.47 = y.. Figure 3 and 4 are consis-
tent with the fact that the critical value can be
characterized by the asymptotic behaviour of 7, =
max{x: &~ (x) = 1}, the position of the right-most
particle when we start with all the nonpositive integers
occupied. Durrett (1980) has shown that for any
Y, rJt > o(y) as t = o0 and recent work of Bezuiden-
hout & Grimmett (1991) implies that the critical
value y. = max{y:o(y) > 0}. In words, when a half
line of 1s can spread into empty space at a positive
rate, the system survives; otherwise, it will die out.
Knowing this characterization of y, and looking at
figures 3 and 4 one can convince oneself that the drift
in the edge is close to 0 in the first case and positive in
the second.

Now that we know that the contact process does not
always die out, the next question to answer is ‘What
does the process look like when it survives?” To answer

Figure 2. Discrete time basic contact process in one
dimension with f=1.0 and y=0.49.
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Figure 3. Discrete time basic contact process in onc
dimension with f=1.0 and y=0.47.

this question, we begin by introducing some simple
general results. The transition probabilities for the
contact process have the property that if &(x) < &'(x)
for all x then p,(x,&) < py(x,&). In words, if a configu-
ration £ has more ls than another one & then the
probability of having a 1 at a site x on the next time
step will be larger in &. (Here, and throughout the
paper, larger means >.) When this monotonicity
property holds we say that the system is attractive, a
somewhat strange sounding term that came to the
subject from the study of the Ising model in statistical
mechanics. A more colloquial way of expressing
attractiveness is that ‘more is better’. That is, if we
increase the set of occupied sites then we increase the
probability of having occupied sites at the next time
step.

The most important consequence of the attractive-
ness property is that there is a limiting probability
distribution as { — 00 .

If we start from an initial configuration with all sites
occupied (&(x) = 1 for all x) then as { — co the state
at time { converges in distribution to a limit &%, which
is a stationary distribution for the process. (2.2)

Here the superscript 1 indicates that we are starting
from all 1s. The next things we have to explain are the
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Figure 4. Discrete time basic contact process in one
dimension with f=1.0 and y=0.45.

two phrases in italics. To do this we need another
definition. We say that & converges in distribution to
£ and write &} = EL, if for any choice of x4, . . ., x,€Z¢
and 7, . . ., 4€{0,1}, the probabilities

P('le(xl) =1, . ill(x/c) =)

"’P(&o(xl) =1 ... floo(xk) =).

That is, if we focus our attention on any finite set of
points xy, . . ., % the joint distribution of &} (xy), . . .
El(x,) converges. To say that &, is a stationary
distribution means that if we start from an initial
configuration &, with this distribution then the state at
time ¢ will have this distribution for any ¢2 1. In
other words, &., represents a possible equilibrium
distribution for our Markov chain.

We will not prove (2.2) but only try to convince the
reader this is reasonable. The basic idea is that we are
starting with the largest possible initial state and our
system is attractive so & should be decreasing and
hence have a limit. (To turn the last idea into a proof
one shows that P(&}(x) =1 for some x€d) is a
decreasing sequence for any choice of A and that this
implies that all the finite dimensional distributions
converge. See Liggett (1985) or Durrett (19884) for
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details.) Because limit £, is the limit starting from the
largest possible initial state, it should not be surprising
that it is the largest stationary distribution. That is, if
{(x) is another stationary distribution then we can
construct { and &I, on the same probability space in
such a way that {(x) < &4 (x) for all x. At the other
extreme, the distribution that assigns probability one
to the ‘all 0’ state, denoted dy, is a trivial stationary
distribution. Of course, it can happen that &, = d,
and indeed this will happen if A is too small or y is too
large. An inspired reader might guess, correctly, that

E', # 8, if and only if P(¢'® = o0 ) > 0. (2.3)

In a fair amount of generality, the survival of a process
starting from a large enough finite set implies the
existence of a non-trivial stationary distribution (see
Bezuidenhout & Gray 1991) but the converse is not
true. A counterexample is provided by a process
that mathematicians call the ‘sexual reproduction

model: p(x,E) =1—y if &) =1; p(x8) =p if

E(x) =0; and &(x + (1,0)) = &(x + (0,1)) = 1; and
p1(x,€) = 0 otherwise.

In words, a site x will be occupied at time ¢+ 1 if (i) it
was occupied at time ¢ and the particle survived or if
(i1) it was vacant at time ¢, and its northern and
eastern neighbours combined to produce a new par-
ticle. The birth rule can be liberalized to allow any
diagonally adjacent pair of particles to make a new
one. Here we will be content to explore the curious
theoretical properties of the mathematically simplest
version of the model. The next two results hold both
for the simple and for the liberal versions of the model.

Ify > 0 then P(1* < 00 ) = 1 for any finite set 4. (2.4)

That is, as long as there is positive probability of
death, the process beginning from any finite set almost
certainly will become extinct in finite time.

Proof. If all the 1s in the initial state are inside a
rectangle B, then there will never be ls in B, the
complement of B, as any point in B has at most one
neighbour in B. Once we know that the process
cannot grow outside of B, it must die out as eventually
there will be a time at which bad luck produces a
death at every point in B. ]

Somewhat surprisingly this process, which dies out
starting from any finite set, can have a non-trivial
stationary distribution.

If'y is small enough and f is close enough to 1 then the
sexual reproduction model has a non-trivial stationary

distribution. (2.5)

It is clear how one should go about producing such
a stationary distribution. The system is attractive so
we start from all 1s and let the system run. The hard
part is to show that if we do this the process does not
converge to the Os state. The intuitive explanation for
this is that if y is small and f§ is close to 1 then the
process is very good at filling in holes that develop in
the initial all s configuration, and this allows it to
avoid extinction starting from all sites occupied. The
conclusion of (2.5) is a special case of Toom’s Eroder
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fraction of occupied sites

time

Figure 5. Fraction of occupied sites versus time for the two-
dimensional discrete time basic contact process with A=0.25
and 7=0.32, 0.35, 0.38, 0.41, 0.4, 0.47.

Theorem (see Toom 1980). For a more recent proof
see Bramson & Gray (1992) and for more on this
model see Durrett & Gray (1986) and Chen (1992).

We now return to the basic contact process. Before
delving further into the theory we pause to look at
some simulations. Figure 5 gives a graph of the
fraction of occupied sites versus time for a two-
dimensional basic contact processes on a 100 x 100
lattice {0,1, . . ., 99}% starting from all sites occupied.
To avoid boundary effects we have used periodic
boundary conditions. That is, for 0 <£A<99 we
consider (99,k) to be a neighbour of (0,k), and
consider (£,99) to be a neighbour of (£,0). We have
fixed A = 0.25 and looked at six values of y: 0.32, 0.35,
0.38, 0.41, 0.44, 0.47. In the first three cases the
process survives and theory tells us (see Bezuidenhout
& Grimmett 1990) that the process will converge to
equilibrium exponentially rapidly. This is clearly
visible in the top three graphs, although there are
fluctuations in the density coming from the fact that
we are only looking at 10000 sites, and in the third
case convergence to equilibrium is not complete by
the right edge of the graph, which represents time 250.
This observation is consistent with the theoretical
result which says that the rate of convergence to
equilibrium is small when we are close to the region
where the process dies out. Figure 6 gives a picture of
the process with A = 0.25 and y = 0.35 at time 250,
which should be a reasonable approximation to &l,.
Theory tells us that the states of adjacent sites are not
independent but the correlations between the states of
sites decay exponentially fast in the distance between
them. We will have more to say about these correla-
tions in § 6.

The bottom two graphs have hit 0 before time 250
indicating that the system died out. In the third case
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Figure 6. Two-dimensional discrete time basic contact
process equilibrium state when A=0.25 and y=0.35.

we expect that this will occur before time 1000.
Theory tells us (see Bezuidenhout & Grimmett 1991)
that, except for points on the boundary between
surviving and dying out, the density of occupied sites
converges to 0 exponentially fast but the rate of con-
vergence approaches 0 as we approach the boundary.
Some readers may be worried, as was Caswell (1978,
p. 135), that all of these systems will eventually die out
as they are Markov chains on a finite state space and
the = 0 state is an absorbing state. However, this will
take a very very long time. Theory tells us (see Durrett
& Liu 1988; Durrett & Schonmann 1988; Durrett
et al. 1989; Mountford 1992) that the expected time
for an N x N system to die out is of the order of
exp(¢N?). Again ¢ — 0 as we approach the boundary
of the survival region but exp(¢N?) is a huge number
even when A = 0.25 and y = 0.38. For these parameter
values one can run the system on a 100 x 100 lattice
for several billion units of time without the process
dying out.

I'igure 7 shows estimates of the equilibrium densities
for the one-dimensional basic contact process when A
is a multiple of 0.1 and .y is a multiple of 0.01. Note
that, as expected, equilibrium density increases with
birth rate and decreases with death rate, with a sharp
increase in the density near the critical value. To
obtain our estimates for A = 0.3 we ran the process on
{0,1, . . ., 9999} with periodic boundary conditions
(le. 9999 is a neighbour of 0) until time 8000,
recorded the number of occupied sites every 10 units
of time starting at time 3000, and then averaged the
counts to get our estimate of the equilibrium density.
The same procedure was used for A = 0.1 and 0.2 but
as these systems evolve more slowly we took data from
time 15000 to time 20000. In these simulations we
waited a ‘long’ time to allow the process to converge
to equilibrium or to die out. Our estimates of the
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Figure 7. Estimates for the equilibrium density of the one-dimensional discrete time basic contact process as a
function of y for f=1.0, 0.9, . .. 0.1.

critical value given in figure 1 are the largest values of
y for which the system had not died out by the end of
our taking data. There are much more accurate ways
of estimating y, described in Buttel e/ al. (1992). That
paper also explains the trick (which will be used again
in § 5) that allows us to treat the 100 values of y for a
fixed value of f in one simulation run.

At this point we have considered only the limiting
behaviour starting from all sites occupied. The next
result, called the complete convergence theorem,
describes the limiting behavior starting from an
arbitrary initial configuration. The last result took
fifteen years to evolve to its current form. Harris
(1974), Griffeath (1978), Durrett (1980), Durrett &
Griffeath (1982) and Durrett & Schonmann (1987)
proved increasingly more general results before Bezui-
denhout & Grimmett (1990) completed the solution.
(For an exposition of their proof that contains most of
the results cited in this section, see Durrett (1991).) In
words, the next result says that if the process survives
to time ¢ and ¢ is large then it looks like the system
starting from all sites occupied. An immediate conse-
quence of this result is that any stationary distribution
is a convex combination of dy, the point mass on the
all 0 state and &%), the limit starting from all ls.

Theorem. Let (éf‘]t/‘ > () denote the distribution of &'
conditioned on the event of being alive at time ¢ As
t— o0, (! > ) =&, (2.6)

The results in this section remain valid for a variety of
generalizations of the contact process that have ‘asex-
ual reproduction’. They hold in particular for the class
of models we are about to describe, a class that has
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been chosen to cover the biological applications we
will discuss.

1. The first generalization is to allow disturbances
to affect more than one site at once. For any point x
and set D, with probability y, all the points y with
y — xeD are made vacant. The death events for
different x and D are independent, but yp, # 0 for only
a finite number of finite sets D.

2. The second generalization is to introduce depen-
dence between the destinations of the propagules. If
the particle at x survives then it gives birth to £ new
particles (propagules) with probability p,. When £
propagules are produced they are sent to locations
x+ Y, ... x+ Y, where (Y}, ..., Y,) have a joint
distribution F, on (Z“)* that is concentrated on points
y; within a distance R of 0.

3. The third rule stays the same. If one or more
propagules is sent to y, or if there is a particle at y that
survives, y is occupied at the next time step; otherwise
y is vacant.

Section summary. In this section we have introduced the
contact process, a simple but widely applicable inter-
acting particle system, and a larger class of models
with more realistic dispersal and disturbance distribu-
tions. For all of these models the following results hold.
If the birth rates are too small or the death rates are
too large then the process dies out with probability
one when we start with a finite set of occupied sets.
When survival for all time starting from a single
occupied site has positive probability there is a non-
trivial stationary distribution &%, which is defined as
the limit as ¢ = 00 starting from all sites occupied. The
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last and most important result for these processes is
that (2.6) holds. That is, when the process does not die
out it looks like &L, at large times.

3. BARKHAM & HANCE’S DAFFODIL MODEL

Barkham & Hance (1982) have used a contact pro-
cess to model the spread of wild daffodils (Narcissus
pseudonarcissus). We will begin this section by describ-
ing the model in their words (which have been edited
somewhat to shorten the description). We imagine a
1 m? area divided into 10000 units of 1 cm?® Within
this area 100 adult individuals of Narcissus are ran-
domly distributed. Each is capable of reproduction
and is of a different genet. The unit of time is
considered to be one year. Each year, each individual
may function in one of eight ways; it may continue to
exist without reproducing, it may reproduce vegeta-
tively, it may reproduce by seed, it may reproduce
vegetatively and by seed, it may reproduce in either or
both ways and die, or it may die without reproducing.

There are three variables in the model: the probabi-

lity of an adult dying in a year ( pm), the probability of

an adult producing an adult vegetative offspring per
year (pv), and the probability of an adult producing
oftspring from seed per year (ps). The following
constraints were applied to the model.

1. The area occupied by each plant is a constant
1 cm?®

2. The vegetative daughter must occupy randomly
any one of the eight 1 cm? locations adjacent to the
parent individual.

3. An offspring produced by seed must occupy
randomly a 1 cm? location 15cm distant from the
parent. This distance is an approximate mean of the
length of the scape which, under normal circum-
stances, bends over at senescence and releases seeds.

4. When the location to which a potential offspring
is randomly assigned is already occupied, the offspring
is not produced (density-dependent fertility).

5. When a vegetative and a seed offspring compete
for the same square, the vegetative offspring always
wins.

6. Any offspring allocated a position outside the
boundary of the 1 m? plot is lost from the analysis.

Based on field studies, Barkham & Hance assigned
the following values: shaded sites, pm = 0.036, pv =
0.059, ps = 0.001; open sites, pm = 0.038, pv = 0.167,
ps = 0.005. In the notation of the last section this
means y = pm. We interpret distance to mean the
Euclidean distance |zlly = (zf + z5)"* and that off-
spring produced by seed will be displaced by an
amount that lies on the discrete approximation to the
circle of radius 15 given by (15,0), (15,1), (15,2),
(15,3), (15,4), (14,5), (14,6), (13,7), (13,8), (12,9),
(11,10), (10,11), .. .. This model fits into the general
framework introduced at the end of the last section,
although it is not pleasant to write down the model in
that form. Here the probability of two offspring
pe = pv - ps with ¥; (the random variable representing
the displacement of the vegetative offspring from the
parent) uniform on the eight Moore neighbours and
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Y, (the random variable for the offspring produced by
seed) an independent variable uniform on our circle of
radius 15. The probability of one offspring p =

Sl — ps) + (1 — po)ps with ¥, in this case being a

combination of the uniform distribution on the eight
neighbours and the uniform distribution on our circle
of radius 15. Finally, the probability of no offspring
po= (1= po)(1 — ps).

Barkham & Hance simulated the system with the
open sites parameters and found to their chagrin that
‘the population rises rapidly to over 7000 m~? before
stabilizing at this unrealistically high level’. Readers
who have looked at figure 7 should not be surprised at
this. Equilibrium densities are high except for birth
probabilities close to the critical value. When Bark-
ham & Hance simulated the system with the shaded
sites parameters, they found that the population
became extinct rapidly. At first sight these results may
be distressing. However, they simply are a warning
that one cannot hope to make quantitative predictions
about equilibrium densities from the models. Taking a
lesson from how these models are used in statistical
physics, we can say that the precise location of the
boundary between the survival and extinction regions
depends on the details of the model but the qualitative
properties of the system (e.g. exponentially rapid
convergence to an equilibrium state in the survival
region) do not. In other words, because these systems
do not model the local interactions accurately, we do
not expect the quantitative information they provide
to be reliable and we should look only at their
qualitative properties.

After throwing out the field values, Barkham &
Hance attempted to stabilize the population at several
hundred plants by keeping pm and ps constant at the
field values and varying pv. However, as they found,
this can occur only for parameter values very close to
the boundary between survival and extinction (Bark-
ham & Hance 1982, p. 329, figure 3). Barkham &
Hance next experimented with changing pm and ps by
an order of magnitude. They found that values ten
times less (figure 4(f)) stabilize the density at a similar
level but oscillations are damped very markedly.

There is a simple explanation for the last observa-
tion. Suppose we set pm = ag, pv = be, and ps = ce
where ¢ is a small number, and then change the time-
scale so that one cycle of the simulation corresponds to
¢ units of time. If we then let € > 0 then our process
will converge to a limiting continuous time contact
process, which will be discussed in § 6. Reducing the
probabilities by a factor of 10 in essence slows the rate
at which we are moving through time by a factor of 10
so understandably the oscillations are reduced.

The ideas of the last paragraph can also be applied
to the basic contact process to elucidate the behaviour
of the critical curve near the point f =0,y = 0. If we
let y =¢, A =0¢ change the timescale so that one
cycle of the simulation corresponds to & units of time
and then let ¢ -0, the discrete time basic contact
process will converge to the continuous time basic
contact process. The latter model has only one
parameter, so it is natural to talk about 0, = the
smallest value of  for which survival occurs. Numeri-
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cal work suggests that 0, & 3.3 (see Brower et al. 1978),
so the critical curve will have slope approximately
1/3.3 as it nears (0,0).

Much of the rest of Barkham & Hance’s paper is
devoted to the study of a simulated 10 year coppice
cycle with alternating 5 year periods of open and
shade values. This is one type of investigation for
which particle system models are ideally suited:
answering questions about how the equilibrium
densities change as various attributes of the environ-
ment are manipulated. Barkham & Hance also inves-
tigate how the genets are distributed in the plot. We
will return to that question in §8, in which we
consider Inghe’s work.

Section summary. In this section we have, following
Barkham & Hance (1982), used the contact process to
model the spread of wild daffodils. One important
lesson here is that since interacting particle systems do
not model the local interactions accurately, we do not
expect the quantitative information they provide to be
reliable but only look at the qualitative properties.

4. LONG RANGE CONTACT PROCESS

To prepare for our analysis of the competition model
of Crawley & May (1987) in § 5, we will now discuss
the behaviour of the contact process in which the
birth/dispersal function is constant on a square of
side 2r + 1 centered at the point, i.e. f(x,y) = A for
0 < |l — yllo < r and O otherwise. The reader should
think of r as being large and will see in a moment the
reason that we want to assume that propagules are
dispersed over large distances. The square shape of the
neighbourhood is for mathematical convenience only.
The main result, (4.4) below, can be extended to more
reasonable dispersal distributions. For instance, we
could set B(x,y) = Bq((x — y)/r)[r" where ¢ is a fixed
function with [¢(z)dz = 1. We divide by r? so that
ZB(xy) > P asr— 0.

If we pretend that at all times the states of the sites
in our grid are independent then we can write the
following equation for the density v, of vacant sites at
time ¢.

vr= (4 (1 —2)) (1 - (1 =)=y~ (41)

Here R=Hy:0 <yl <7} = (2r+ 1)" =1 is the
number of neighbours. To explain equation (4.1), we
notice that in order for a site to be vacant at time ¢ + 1
then (i) either the site is vacant at time ¢ or occupied
and the plant there dies and (ii) none of its neighbours
sends a propagule. The first factor gives the probabi-
lity of (i), and the second gives the probability of (ii).

Physicists call the reasoning in (4.1) ‘mean field
theory’ because each site feels only the average value
of the states of the other sites. As in most contexts
where ‘mean field’ methods are used by physicists,
equation (4.1) is only an approximation for the
contact process as the states of various sites are not
independent, but are positively correlated. (This
follows from a result of Harris (1960), see Durrett
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(19884, p. 129).) However, as we are about to see,
analysing (4.1) provides useful information that
becomes exact in the limit as r — oo . Let

G(x) = {x(1 = p) + 71 = (1 = %) (1 = 9,

so that (4.1) becomes v,,1 = ¢(v,).

The next result describes the behaviour of the
sequence defined by vy = 0 and v, ; = ¢(v) for ¢t = 0.
The reason for interest in the limiting behaviour of v, is
that starting with v =0 (all sites occupied) and
iterating is like starting the particle system with all
sites occupied and letting time run. So the limit of the
v, is the mean field value of the density of vacant sites
in equilibrium. Figure 8 shows a graph of ¢ when
A=0.25y=0.35, and R = 4. There the iteration is
shown geometrically by drawing lines from (0,0) to
(0,6(0)) to ($(0),6(0)) to ($(0),((0))), etc. As that
picture shows and the next result proves, the limit of
the v, is the smallest fixed point of ¢ in [0,1].

Letvy = Oandlety, ., = ¢(v) fort = 0. Ast — o0 ,v, > w
the smallest solution of ¢(w) = w in (0,1]. (4.2)

Hence the iteration in (4.1) tends to a limit, possibly
at the boundary 1.

Proof. ¢ is the product of increasing functions and
hence increasing. Now v = ¢(0) > 0 =15, so v, =
¢(v) > ¢(v) = vy, and continuing we see that v, >
v, for ¢ = 1. Because v, is increasing and < 1, lim v,
exists. If we call the limit v, then letting ¢ — oo in the
relationship v, = ¢(v,_;) shows that v,, = ¢(v,). To
see that v,, = w, we note that v < w, so v, = ¢(vp)
< ¢(w) = w, and continuing we have v, < w. Letting
{— o0, it follows that v, < w; but v, is a solution of
¢(x) = x so we must have vy, = w. ]

The next result tells us when there is a solution < 1.

There is a solution of ¢(x) =x with 0 <x <1 if
and only if ¢’(1) > 1. That is, if and only if XA > 7/
R(1 — ). (4.3)

Proof. To see this note that u(x) = ¢(x) — x is such that
u(0) > 0,u(l) =0, and «”’(x) > 0 (as R > 1). Since the
tangent line to the graph of a strictly convex function
lies strictly below the graph, it is casy to see that there
is a root of « in (0,1) if and only if «’(1) > 0. ]

Remark. In treating concrete examples it is useful to
note that the fact that ¢ is convex implies that there is
at most one solution of ¢(x) = x in (0,1).

The function (4.3) tells us that, from the viewpoint
of mean ficld theory, there is a non-trivial stationary
distribution if and only if A > y/R(1 — 7). Rewriting
the condition as (I —y)RX >y, we see that it says
something quite reasonable biologically: the mean
number of offspring must be larger than the proba-
bility we lose a plant due to death, exactly as in
threshold theorems in epidemiology. As we mentioned
before, the argument leading to this conclusion is not
valid for the contact process, but the conclusion is half
right. A simple generalization of the first result in (2.1)
implies that if A < y/R(1 — y), then the contact process
dies out.
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Figure 8. Iteration of equation (4.2) when A=0.25, y=0.35.

If we let § = RX and let R — oo then ¢(x) converges
to

W) = 0+ (1= phwje 070,

Writing o = f(1 — 7) and differentiating twice gives
Y (x) = e V(1 =) + 4y + (1= p)x)ad),

Y (x) = o’ (x) + eI (1 = p)a,

so Y’ (x) > 0 and Y/ (x) > 0 for 0 < x < 1. The proofs
of (4.2) and (4.3) generalize immediately from ¢ to .
From the formula for the derivative it is clear that
Y’(1) > 1 (and hence there is a non-trivial solution
of Y(x) =x) if and only if a+ 1 —y > 1; that is,
(1 —y) > y. Again, the last condition is quite reason-
able as it says that the expected number of propagules
per plant is larger than the probability of the loss of a
particle due to death. The next result justifies our
remark that the mean field calculation is almost exact
for large r. For this result we will suppose that
Blxy) = Bgl(x — y)[r)[r" where ¢ is a fixed function
with [q(z)dz = 1.

Theorem. Suppose that (1 —y) >y and let v be the
solution of ¥(x) = x in (0,1). If r is large then the long
range contact process has a nontrivial stationary
distribution in which the density of vacant sites is
approximately v. (4.4)

This result is the discrete time analogue of the main
result of Bramson e/ al. (1989) and can be proved in
the same way. (For a considerably simpler proof, see
Durrett (1989).) The key to the proof is establishing
that if ¢ is fixed and the range is large then the sites at
all times s < ¢ are almost independent and hence the
density of occupied sites at time ¢ is almost the density
predicted by mean field theory. It is a consequence of
the proof of (4.4) that in the nontrivial stationary
distribution (which we know to be unique by results
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cited in §2) the states of different sites are almost
independent.

Section summary. ‘Mean field theory’ refers to the
practice of assuming adjacent sites are independent
(which they are not in the particle system) and then
writing equations for the evolution of the density of
occupied sites. The lesson to be learned from (4.4) and
the remarks after that result is that if propagules are
dispersed over distances that are large when compared
to the size of the cells that correspond to the sites in
the model, then the mean field calculation of the
equilibrium density (and hence of the survival region)
is almost correct since the states of different sites are
almost independent.

5. CRAWLEY & MAY’S MODEL

In this section we will discuss a model of competition
between annuals and perennials, which was intro-
duced by Crawley & May (1987). In their words, the
model may be described as follows.

1. There are two plant species: (i) an annual
invading only by seed; and (ii) a perennial, invading
only by lateral spread (through the production of
‘ramets’).

2. The plants exist in a spatially uniform environ-
ment in which habitable sites (cells) are distributed in
a hexagonal pattern. This is the simplest tesselation of
the plane, and is selected for convenience rather than
as a quantitatively accurate description of the spatial
spread of real plants.

3. The size of a cell is such that it can accommodate
a single individual of the annual species or a single
ramet of the perennial species.

4. The time unit of the model is taken to represent
one generation of the annual plant.

5. In any one generation, the perennial is capable
of occupying only those cells that are immediately
adjacent to it; it may, however, occupy any or all of its
six first-order neighbouring cells in one generation.

6. In competition, perennial ramets always exclude
the annual.

7. The annual has no effect on the demography of
the perennial.

8. In any generation, the order of events is as
follows: (i) death of the perennial ramets; (ii) birth of
the perennial ramets (occupation of empty cells); and
(iii) recruitment of annuals from seed.

9. Recruitment of annuals by seed can only occur
in empty cells (i.e. into cells not containing a surviving
or newly born perennial ramet).

10. The probability of recruitment by annuals in
any given empty cell is a function of the number of
seeds produced in the previous generation. Specifi-
cally, we assume for each cell that recruitment occurs
with probability 1 — exp( — mean number of seeds
per cell), and that the entire crop of annual seeds
is mixed and distributed at random over all cells
whether empty or not.

11. Death of perennial ramets occurs in each
generation with probability 4, independent of the age
of the ramet.

12. For cach empty cell, the probability of being
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Figure 9. Equilibrium distribution for the two-dimensional
discrete time basic contact process on the hexagonal lattice
when A=0.25 and y=0.35.

invaded by a perennial ramet from a given neighbour-
ing cell containing a surviving ramet is b, and if &
out of the six first-order neighbours contain surviving
ramets, the probability that a cell is invaded is given
by 1 — (1 — b)~.

13. To minimize edge effects, the universe has
wrap-around margins, so that the upper neighbouring
row of the top row is the bottom row (and vice versa),
and the left-hand neighbouring column of the leftmost
column is the rightmost column (and vice versa).

The hexagonal lattice is ideal because it is the
geometry that allows us to pack in the largest number
of circles per unit area. However, from a theoretical
point of view there is very little difference between the
contact process on the hexagonal and on the square
lattice. The survival region is larger for the hexagonal
lattice as a site has six neighbours instead of four, but
the qualitative properties of the model described in § 2
are the same. Given this, and the fact that the square
lattice is easier to implement in a computer, we would
have formulated the model on a square lattice for
simplicity but we will stick with Crawley & May’s
choice here.

To begin to analyse this model, observe that the
reproduction of perennials (2s) is not hindered by the
presence of annuals (1s), so the set of sites occupied by
2s is a contact process in which occupied cells remain
occupied with probability 1 — 4, and if they remain
occupied give birth onto each neighbour indepen-
dently with probability 4. Crawley & May begin their
analysis by deriving a difference equation (see page
477 of their paper) for the density of sites not occupied
by 2s at time ¢, F;:

E q=[E(l—d)+d][1 = b1 = d)(1 = E)° (5.1)
and then observing that there is a globally stable
equilibrium point with £%* < 1 if and only if

b>d6(l —d). (5.2)
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Figure 10. Sites independently occupied with probability
0.49.

Readers should recognize (5.1) as (4.1) with v, = E,,
y=d, A=b, R =6, and the first factor rewritten in
the form in (4.2). As we remarked in the last section,
equation (5.1) is based on the mean-field assumption
that the states of various sites are always independent
and hence, as Crawley & May (1987) realized,
equation (5.2) gives only an approximation to the true
condition for the survival of the perennials. The easiest
way to see that there is a significant amount of
dependence among sites is to look at a simulation.
Figure 9 gives a picture of the system with 4 = 0.25
and 4 =045 on a 100 x 100 lattice at time 100,
which in this case should be close to equilibrium.
There are 4901 particles present in the simulation.
The picture may look random but comparison with
figure 10, which shows sites that are independently
occupied with probability 0.49, shows that the parti-
cles in figure 9 tend to occur in clumps.

The correlations between the states of adjacent sites
are almost impossible to calculate analytically in the
contact process, so to estimate the values for which
coexistence occurs we have to resort to simulation.
Following part (b) of figure 1 on p. 478 of Crawley &
May, we set b =0.25 and look at the density in
equilibrium as a function of the ramet death rate d.
Figure 11 gives the estimates that we obtained by
running the system with parameters 6 = 0.01, 0.02, . . .
0.60 until time 3000, recording the fraction of occu-
pied sites every 10 units of time starting at time 2000,
and then averaging these observations. This may
sound like a lot of work; but by taking advantage of a
trick of Buttel et al. (1992) mentioned in § 2, we were
able to treat the 60 values of b in one simulation run,
which only took a few hours on a personal computer.
The lower curve in the graph gives our estimate of the
density of perennials in equilibrium, while the upper
curve gives the mean field value for the equilibrium
density. The two curves are quite close when d < 0.3,
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density

0 02 04 0.6
death probability d
Tigure 11. Actual equilibrium density for the two-dimen-
sional discrete time contact process with 6=0.25 as a

function of death probability ¢ compared with upper bound
from mean field theory.

but diverge for larger values; the lower curve hits 0
somewhere between 0.51 and 0.52.

Although equation (5.2) is only an approximate
condition for the survival of perennials, it becomes
correct in the limit of large range if one replaces E£* by
the density of sites not occupied in the perennial
equilibrium. Results quoted in § 2 above imply that
when the perennial species persists, it converges
exponentially rapidly to an equilibrium state that has
exponentially decaying correlations, so if we consider
an L x L grid with L large, the fraction of sites not
occupied by perennials will be almost constant in
time. However, the density of vacant sites will not be
the fixed point £* but instead the equilibrium density
of vacant sites for the contact process of perennials. If
one pretends that the density of sites not occupied by
perennials is F independent of ¢ then for large L the
fraction of these gaps occupied by annuals will
(almost) satisfy

Pior=1—exp(—epl),

where ¢ is the mean number of seeds produced by each
plant. To explain (5.3), we note that at time ¢ there
are L*pF annuals each of which will send a seed to a
given open site with probability ~ ¢/L?, so if L is large
the number of seeds that land on a given open site
has approximately a Poisson distribution with mean
cp, and hence will be positive with probability
1 — exp( — epF).

Equation (5.3) is essentially (6) on p. 479 of
Crawley & May (1987). Let Y (x) = 1 — exp( — exF).
The absence of annuals is a stable situation (¥(0) = 0)
but we would like to know if they can persist at
a positive level, i.e. is there a solution of W (x) = x
with x > 0? Differentiating we see that Y/ (x) = ¢F

(5.3)
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exp( — exF) and Y (x) = — (¢FF)? exp( — ¢F) so Y is
increasing and concave. Imitating the proof of (4.3}, it
is easy to see that there is a non-trivial solution if and
only if ¢’(0) > 1, that is, ¢ > 1/F, which is the
conclusion on p. 479 of Crawley & May with the fixed
point £ * replaced by the density of vacant sites F in
the perennial contact process equilibrium.

The analysis above is based on the assumption that
annuals can disperse their seeds uniformly across the
entire system under study. By using ideas from the last
section, one can obtain the same conclusions under the
more palatable assumption that dispersal occurs over
a large distance. That is, instead of model feature 10
described on p. 338 we can assume:

10’. Each annual plant independently produces k
seeds with probability p, and if the annual is at x these
seeds are sent to sites chosen at random according to a
distribution of the form ¢,g((x — y)/r)/r?, where ¢ is
constant chosen to make the sum of the probabilities
equal to 1.

Theorem. Let ¢ = Zkp, be the mean number of sceds
produced by an annual plant and F the fraction of
vacant sites in the perennial equilibrium. If ¢ > 1/F
and r is sufficiently large then coexistence occurs. That
is, there is a non-trivial translation invariant station-
ary distribution in which both types are present.
Conversely, if ¢ < 1/F and r is sufficiently large then
the annuals die out. That is, if we start from an initial
state with infinitely many annuals and perennials, the
probability of having an annual at x goes to 0 as
=00, (5.4)

For a proof of this result, see Durrett & Schinazi

(1992).

Section summary. In this section, we have presented an
analysis of the competition of annuals and perennials
due to Crawley & May (1987). They assumed that
annual seeds were dispersed uniformly across the
entire system and used mcan ficld reasoning. Using
interacting particle systems we have shown that the
same conclusions hold for non-uniform dispersal func-
tions that are sufficiently spread out.

6. CONTINUOUS TIME MODELS

The results in the last two sections, and indeed much
of the theory of interacting particle systems, become
simpler if time is continuous rather than discrete (i.e.
time is indexed by the non-negative real numbers
rather than by the non-negative integers). We will
devote this section to a discussion of continuous time
models. Suppose first that we are simulating a system
on {0,1, . .., L — 1} with some boundary conditions.
In discrete time we go from time ¢ to time ¢+ 1 by
setting &, 1(x) = { with probability p,(x,&,), with the
choices being made independently for each x. In
continuous time, we change one site at a time: if the
current state is &, we pick a site x at random, and
change its state to ¢ with probability p(x,&), and
repeat the process, with ¢, changes corresponding to
one unit of time, where ¢ is a constant that describes
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the overall rate at which transitions are occuring. The
main difference then is that we update one site at a
time rather than all sites at once. In the terminology
of the theory of cellular automata we use asynchro-
nous rather than synchronous updating. Asynchro-
nous updating makes it easier to prove theorems since
the state of the system changes gradually rather than
abruptly. From a modelling point of view asynchro-
nous updating is simpler as we do not need ‘collision
rules’ to decide what should happen when several
events try to influence a site at once.

We begin our explanation of continuous time
processes by formulating the basic contact process in
continuous time. This model was mentioned in our
discussion of Barkham & Hance’s work in §3: (i)
particles die at rate y, give birth at rate f; (i) a
particle born at x is sent to a y chosen at random from
the 2d nearest neighbours; (iii) if y is occupied the
birth is suppressed. Here, we say something happens
at rate 7 if the probability of an occurrence between
times ¢t and ¢ + & is ~ rh, that is, the probability when
divided by 7% converges to 1 as # — 0. When the rate is
a constant 7, as the death rates and birth rates are in
the basic contact process, the times # between succes-
sive occurrences of the event are independent and
have an exponential distribution with parameter 7,
that is P(4, > () = e~ "

To simulate the continuous time process when
f =7y (the only interesting case since the system dies
out when f < y) we use the general recipe above with
¢ = f, and transition probabilities py(x,&) = /B, when
E(x) = 1; and py(x,&) = n(x,€)/2d when &(x) = 0 and
n(x,&) neighbours of x are occupied in . This recipe is
based on the idea that each site is independently
trying to change at rate f§, so to make deaths happen
at rate 7y, we kill the particle with probability y/f and
leave it alive otherwise. Likewise, only vacant sites
with all neighbours occupied experience births at rate
B, so to get the right rate we have to do nothing with a
probability equal to the fraction of vacant sites. This
is easily implemented in a computer simulation by
picking a neighbour at random and making the site
occupied if the neighbour chosen is.

The competition model of the last section can be
generalized to include long-range dispersal and for-
mulated in continuous time. The state at time ¢ is &,
Z'—{0,1,2} and the system evolves as follows: (i)
particles of type ¢ dic at rate y; and give birth at rate
B:; (i1) a particle of type ¢ born at x is sent to a y with a
probability proportional to ¢((x — y)/r)/r? where ¢ is
a fixed function and ¢, is a proportionality constant
chosen to make the sum of the probabilities equal to 1;
(iii) if &,(y) = &,(x) then the birth is suppressed.

To analyse this system we begin by observing that
the 25 do not feel the presence of the ls and are
themselves a long range contact process. As in § 5, we
will begin by considering the system in which Is are
absent, so we will drop the subscript 2s and refer to
the process as the long range contact process. If we
pretend that adjacent sites are independent then the
fraction of sites occupied by 2s at time ¢, u, will satisfy

w = —yu, + Bl — w)u,. (6.1)
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The first term comes from particles dying at rate y. To
see the second, think about the computer formulation
of the process. When we pick a vacant site, we pick
one of its neighbours at random and a birth occurs if it
is occupied. Events occur at rate f and a birth occurs
if the site is vacant and the chosen neighbour is
occupied, an event of probability (1 — u)u,.

Now, u,= p (i.e. constant in space and time) is
a solution of equation (6.1) if and only if — yp +
Bp(1 — p) =0, so there are two solutions: p = 0 and
p = (B —7v)/B, with the latter being positive only
when f > y. In order for the process not to die out, it
is trivially necessary that the particles give birth at a
faster rate than they die. The next result due to
Bramson e/ al. (1989) shows that this condition is
asymptotically sharp as r — o0 .

Theorem. Suppose > y. If r is large then the long-
range contact process has a stationary distribution
in which the density of occupied sites is close to

(B—7)B. (6.2)

Comparing the last result with (4.4) shows one
immediate advantage: we now have an explicit ex-
pression for the equilibrium density. This will pay off
in an explicit condition for the coexistence region for
the competition model.

Theorem. Suppose that Sy >y, and p; + fa— s
< P1ys/Pe. If 7 is large then the competition model has
a non-trivial stationary distribution in which 2s have
density close to (B3 — y2)P2 and 1s have density close

to
By
T — 11— Ba—72) )| B1
B2
To explain the formula for the equilibrium density of

Is, we note that if v, is the density of sites occupied by
Is at time ¢ then reasoning as we did for (6.1)

(6.3)

v = — 1, — Boviu, + ﬁlvt(l — U —v,). (6.4)

The first term comes from deaths at rate y,, the second
from 2s giving birth onto sites occupied by s, and the
third from Is giving birth onto sites not occupied by 1s
or 2s. If we suppose that the 2s are in equilibrium,
that is, u, = (By — y2)/B2, and ask when vy, =0 is a
solution, we find the trivial root ¢ = 0 and a second
root with

B

Solving we find the formula given in (5.3), which is
positive if and only if y; + s — y2 < f172/Be.

The conditions for coexistence are hardly intuitive
but it is easy to see that they have the right
monotonicity properties in the parameters. That is,
increasing f8; or 7y, or decreasing y, or f; makes it
easier for the 1s to survive. Although the answer in
(6.3) is somewhat messy, it is much simpler than the
analogous answer in discrete time. We leave it as a
challenge for the reader to derive the discrete time
analogue of (6.4) and find the conditions for coexis-

—y1—<ﬁ2—y2>+ﬁ1<ﬁ~a>=o.
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Figure 12. Voter model duality.

tence that come from the equation. If you can solve
this problem, let us know. The function (5.3) is from
Durrett & Swindle (1991). A complete convergence
theorem (i.e. a result analogous to (2.6)) was proved
for this model in Durrett & Moller (1991).

Section summary. In this section we introduced inter-
acting particle systems in ‘continuous time’. In this
formulation, only one site changes at a time, and we
do not neced the collision rules that discrete time
models need to decide what happens when several
effects try to influence a site simultaneously. An
additional bonus is that when we reformulate the
long-range limit results of the § 5 in continuous time
we get explicit formulas for the limiting coexisting
region.

7. SYMMETRIC COMPETITION PROCESSES

In this section we will consider a model that is

appropriate for the competition of different genets of

the same species of plant or several species of the same
type of plant. We begin by describing a much simpler
system called the voter model introduced by Holley &
Liggett (1975) that is a spatial version of the Wright-
Fisher model from genetics. (For information on the
Wright-Fisher model, sce Kingman (1980, 1982),
Donnelly (1984), Tavaré (1984) and Feldman
(1989).) In the voter model, the state at time ¢ is
E:Z'—{1,2, ..., k. The name voter model refers to
the fact that one can think of 1,2, . . ., k¥ as indicating
the preference of the voter at x among the k candi-
dates in an election. With this interpretation in mind,
the evolution can be formulated as follows: the state of
x at time ¢ + 1 is equal to the state of x at time ¢ with
probability 1 —y and with probability y is equal to
that state (at time ¢— 1) of a randomly chosen
neighbour. Here the neighbourhood can be any finite
irreducible set .4". That is, any point x in Z¢ can be
reached from 0 by a path xy = O,xy, . . ., x, = y so that
forl<m<n, x,— %, 1 € 4. This means that it is
possible for any voter to influence any other through
some chain of events.

In the genetics literature, the Wright-Fisher model
is usually considered on a finite set {1, . . ., N} with no
spatial structure. Time ¢ is thought of as generation ¢
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and each individual at time ¢+ 1 chooses a parent
at random from the previous generation. The voter
model is then a version of the Wright-Fisher model in
which the spatial distribution plays a role in determin-
ing the possible genetic lines. The spatial version of the
Wright-Fisher model is usually called the stepping
stone model. See Kimura (1953), Kimura & Weiss
(1964), Rohlf & Schnell (1971), Felsenstein (1975),
Sawyer (1976, 1977, 1979), and Cox & Griffeath
(1986, 1987, 1990).

Because the transitions in the voter model make
sites equal, it is natural to ask if the system will
approach consensus as ¢ — oo . That is, will we have
P (x) =¢(y)) > 1 as t—> o0 for all x and y? The
answer to the last question is ‘yes’ in d = 1,2 and ‘no’
in d = 3. To explain the reason for this answer we will
introduce dual processes X* that trace the origin of
the opinion at x at time £. We start with X3 = x and
work backwards in time. If X*' = y and the individual
at y at time ¢ — s chose to imitate z from generation
{—s—1 then we set X%, =z. (Here z=y with
probability 1 — 7 and is a randomly chosen neighbor
with probability y.) This definition guarantees that
the genetic type of the individual at x at time ¢ is the
same as that of X at time ¢ — 5. Figure 12 shows a
picture of the dual process for {0,1, . . ., 9}. The left
edge of the picture represents time 15, the right edge
time 0. To avoid edge effects we have used periodic
boundary conditions. That is, the top and bottom sites
in the figure both represent 0, so when a jump to the
left of O occurs the particle reappears at the top of the
picture (see time 8) or when a jump to the right from
9 occurs the particle reappears at the bottom (see time
15). Notice that the voters at 5, 6, 7, 8 and O trace
their opinion back to that of 8 at time 0, whereas the
other voters trace their opinions back to 9.

The process X}, 0<s<{ is what is called a
random walk as the step taken at time s, X}/, — X,
is independent of the first s steps. If one thinks about
the evolution of two of these processes, X;* and X
then it is easy to see that they move independently
until they hit (i.e. occupy the same site) and then stay
together after that. Because of this, the collection { X"
0 < s <t} is called a coalescing random walk. When
two particles hit they coalesce to one. Well known
results about random walk imply that two indepen-
dent random walkers will hit with probability one in
d = 1,2 but can avoid each other for all time with
positive probability in d = 3. To see how this implies
the result given we notice that

P(E(x) # Ey)) < P(XX # X) -0

as t— 00 in

d=12. (7.1)

To show that consensus need not be approached in
d = 3, we take k = 2 and start with an initial configu-
ration &§ in which sites are independently 1 or 2 with
probabilities 6 and 1 — 8. Now two sites x and y will
have different opinions at time ¢ if and only if they
trace their opinions back to different sites at time 0
and find different opinions there so

P(E(x) # El(y)) = 20(1 — O)P(X £ XP') 50

as t— o0 in d=3. (7.2)
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Figure 13. One-dimensional voter model, times 0-239.

The density of sites with opinion 1,

P(&l(x) = 1) = P(&(XM) = 1) = 0, (7.3)
for all ¢. The last equation generalizes easily to
PEx) =1  forall  xed)=E@O"), (7.4)

where N is the number of particles at time ¢ in the
coalescing random walk starting with one particle on
each site in 4 at time 0. Because the number of points
in a coalescing random walk only decreases, the right-
hand side of the last equation increases to a limit as
{ — o0 . Because all finite dimensional distributions can
be written in terms of the ones in (7.4) it follows that
£9 converges to a limiting stationary distribution v, in
which 1s have density 0. Holley & Liggett (1975) have
shown that the v, are the only interesting stationary
distributions. That is, all the stationary distributions
are convex linear combinations of the vy. The reader
should note that while the contact process has only
one non-trivial stationary distribution, the voter
model has a one parameter family of stationary
distributions. This occurs because in the voter model
the average density of sites in state | is preserved by
the time evolution.

To help explain the theoretical results we have just
stated, we turn to computer simulations. In all the
cases we will examine, A" is the set of nearest
neighbours of 0. Our next two figures give a space-
time picture of the voter model with x = 2 starting
from an initial state in which sites are independently
0 or 1 with probability 1/2. Here we are looking at
an interval {0,1, . . ., 319} with periodic boundary
conditions. That is, 319 is a neighbour of 0. Figure 13
shows the system from time 0 to time 239. It should be
clear from the picture that the intervals on which
opinions are constant are getting longer. Figure 14
shows the system from time 1200 to time 1439. At this
time there are four large intervals of sites with the
same opinion, and the ‘boundaries’ between these
intervals (which are not precisely defined) move like
random walks. Because random walks move about \/f
in time ¢, it should not surprise you to learn that if we
let 7, be the first time that all the voters in {0,1, . . .,
N — 1} have the same opinion, then

Ety~ (Gy)N?, (7.5)
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Figure 14. One-dimensional voter model, times 1200-1439.

as N— o0 where ay ~ by means that the ratio ay/
by — 1. The time required is inversely proportional to
7 as our voters keep their opinion for an average of 1/y
steps before they look at a neighbour. Cox (1988) has
proved (7.5) and calculated that if we start from all
sites having different opinions then the constant
C; = 1/6. In our simulation, y = 2/3 (the particle at x
picks an opinion from x — 1, x and x + | at random),
and N = 320 so Ety = 17066. The reason for Cox’s
choice of the initial condition in which all sites are
different is that in this case the time to reach consensus
is the same as the time it takes a coalescing random
walk starting with all sites occupied to reduce to one
particle. The coalescing random walk problem is
much easier to study. In particular, by considering the
time it takes the particles at 0 and N/2 to hit, we see
that about N 2 units of time will be required or to be
precise Ety > (1/8y) N2

Figures 15 and 16 give a look at the two-dimen-
sional voter model at times 250 and 2000 starting
from an initial state in which each site was randomly
assigned a symbol from a list of 50 possibilities. The
message in these pictures is that in two dimensions the
clustering occurs very slowly. Cox & Griffeath (1986)
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Figure 15. Two-dimensional voter model at time 250.
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Figure 16. Two-dimensional voter model at time 2000.

and Bramson e/ al. (1988) have proved some very
interesting mathematical results about how the clus-
tering occurs in two dimensions. Again, Cox (1988)
has studied the time to reach consensus, T, for the
voter model on {0,1, ., N — 1} with periodic
boundary conditions starting from all sites different
and shown that in d = 2

Ety~ (2/ny) N?log N. (7.6)

In our simulation, y =1/2 and N=90 so Ety=
46407. To explain why the answer is proportional to
N?log N, we note that the difference of two random
walks starting at (0,0) and (N/2,N/2) is a random
walk that will take about N 2 steps to get close to (0,0).
The extra log N comes from the fact each site that the
random walk has hit before time N2 has been visited
about log N times, so the total number of sites visited
by time N?is only of order N%jlog N and we have to
wait until time N?log N so that the random walk has
visited a positive fraction of the sites and hence has a
positive probability of having hit (0,0).

Our final picture in figure 17 shows a two-dimen-
sional slice through a three-dimensional voter model
on {0,1, . .., 44}® with periodic boundary conditions at
time 250. This should be a fairly good approximation
of the limiting equilibrium state. Note that in contrast
to the picture of the two-dimensional voter model at
time 250, here the typical cluster of sites with the same
opinion consists of fewer than 10 sites. Again, Cox
(1988) has studied the asymptotic behaviour of the
consensus time Ty starting from all sites different and
found that in d = 3

Ety ~ (Cyfy) N, (7.7)

where C, in an explicitly computable constant that
only depends on the dimension. The reason for the N¢
is that a random walk in three dimensions only visits
each site that it has hit some constant number of times
by time N so by that time one walk will have visited
a positive fraction of the sites in the space and hence
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Figure 17. One plane from the three-dimensional voter
model at time 250.

two independent random walks will have a positive
probability to have hit.

Our symmetric competition model is a hybrid of the
voter model and the contact process. The state at time
tis £:29—=1{0,1, . . ., k} and we think of 0 as vacant
and I, . . ., k as indicating different genets of the same
species, or different species of the same type of plant.
With these interpretations in mind the dynamics are
formulated as follows:

1. Each particle dies with probability y and sur-
vives with probability 1 — y.

2. If the particle at x survives and y is one of the
neighbours of x, then with probability A, a new
particle of the same type as x is sent to y. The birth
events for different ys and from different xs are
independent.

3. If the particle at y survives it retains control of
the site. If there is no particle at y or the particle at y
dies, then the new state is chosen at random from the
propagules sent to y. If there is no survivor at y and no
propagules are sent to y then y is vacant.

If we ignore the different types and look only at
whether the site is occupied or not then we get a
contact process, so clearly nothing interesting will
happen unless that contact process survives. We will
suppose this for (6,8) and (6.9), which for simplicity
will be stated only for the case k = 2. By generalizing
the proofs in Neuhauser’s (1990) thesis one can show

Theorem. In dimensions d < 2, for any initial configu-
ration, we have

P(E(x) = 1,4(y) =2) >0

so all stationary distributions are trivial.

for all xyeZ"

(7.8)

Theorem. In dimensions d = 3, there is a one-para-
meter family of stationary distributions vy, 0€ [0,1],
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Figure 18. Symmetric competition model in one dimension,
times 0-239.

and all translation-invariant stationary distributions
are convex combinations of the vy (7.9)

As in the voter model, the dichotomy between the
behaviour in d < 2 and d = 3 comes from the fact that
two independent random walks will hit with probabi-
lity 1 in the first case and but may avoid each other
for all time in the second. The stationary distributions
are constructed by starting the system from an initial
configuration in which the &y(x) are independent with
Péy(x) =1)=0 and P (&(x)=2)=1—-6. The
proofs of (7.8) and (7.9) are based on the same
strategy used for the voter model — we compute the
state of x at time ¢ by working backwards in time, but
the resulting ‘dual process’ is very complicated.

Figures 18 and 19 show a simulation of the
competition model in one dimension with A = 0.6 and
7 = 0.25. Except for the vacant sites, the pictures look
much like the pictures of the voter model in figures 13
and 14. Figures 20 and 21 show the competition
model in two dimensions in which each site is initially
assigned a randomly chosen character from a list of 50
possibilities. Again these pictures look much like those
of the two-dimensional voter model in figures 15 and
16.

Figure 19. Symmetric competition model in one dimension,
times 1200-1439.

Phil. Trans. R. Soc. Lond. B (1994)

R. Durrett and S. A. Levin 345

peafts)
IO+

£

T
T
1
i

F258 o
B, 5
Lo i o s
e /117 333 - P = @ B ~. ) 5o €
g s REK. o ol i N
(S  E A AT LTI STIIIes (5
Sans/ ) A e BAI . T e
03900 CARAAA //////// ss& N \\\ N \\ v 3N v vy 4
-+ YR LA /7733 v vv NN N\ \vvvvv vvvvv 4
R AN ga,\ A LTI SNSRI R
FEYIS N vvvv N W NN\ v vvvy v v wv vvo&&& 4
i ¥ AN AR e v N i
. §53g3 §~:::;_*.§"oa
NP BT S S

s

Figurc 20. Two-dimensional symmetric competition model
at time 250.

Section summary. In this section we introduced the voter
model (which is useful in genetics) and a related class
of symmetric competition models. In both cases
clustering occurs in dimensions d < 2, i.e., the proba-
bility of seeing one type at x and a different type at y
goes to 0 for any x and y, while coexistence is possible
in dimensions d > 3, that is, there is a non-trivial
stationary distribution in which both types are
present.

8. INGHE’S COMPETITION MODEL

In this section we will discuss a model of the
competition of different genets of a fixed perennial due
to Inghe (1989). We begin by describing the model in
Inghe’s own words. We have removed Inghe’s justifi-
cations of the model to shorten its description and we
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Figure 21. Two-dimensional symmetric competition model
at time 2000.
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Figure 22. Fraction of the initial 60 genets surviving to time
{ and fraction of sites occupied at time ¢ for Inghe’s

competition model with A=0.25 and single site deaths with
probability y=0.325.

have rewritten some of the rules to more clearly
specify the dynamics.

1. Simulations are carried out in a universe of 3600
sites (cells), arranged in a square of 60 rows and 60
columns. Each site can be empty or occupied by
exactly one ramet. We think of each cell as being
2 x 2 cm? so the universe is 1.2 x 1.2 m2

2. Sites are assumed to be placed in a square
lattice.

3. To avoid edge effects, the universe has wrap-
around margins, so that the upper row and the
bottom row are neighbours of each other, and the
rightmost column and the leftmost column are neigh-
bours of each other.

4. Each site has a neighbourhood of 12 sites (to be
precise, A" = {y:|ly|; < 2}, see the table of probabili-
ties below). For each site ¢ in the neighbourhood, there
is a certain probability P, for a propagule to be sent
there, and providing it is the only propagule sent
there, to colonize the site. If more than one propagule
competes for colonizing an empty site, the actual
probability for a ramet in position / to colonize the
empty place, P; is given by

P 12
peg—(1-0-n)
Z PZ i=1
i=1

where P;, 1 =1,2,3, . . ., 12 are values from the 12
neighbouring positions if the position is occupied and
0 otherwise. The expression in parentheses is the
probability that some ramet in the neighbourhood
colonizes the empty site. The expression in front of it is
the proportion of the probability assigned to the ramet
in position /. The probabilities P, are given by the
following table
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0.1
025 04 0.25
01 04 x 04 0.,
025 0.4 0.25
0.1

which are intended to represent a clonal herb growing
in ‘phalanx mode’, i.e. with most of the daughter
ramets placed very near the original ramet.

5. Death of ramets is caused by randomly choosing
squares of areas 4 in a grid of non-overlapping squares
covering the universe and killing all ramets present
within them. Edge effects are averted by letting the
position of the grid vary randomly in both spatial
dimensions between generations. The size of squares
(measured as side length in cell units 4), and total
number of cells affected in each generation (L) are the
two parameters varied between simulation runs.

6. A simulation starts by ‘sowing’ 50 genets, each
consisting of one ramet, at random over the universe,
which is then exposed to death events according to
(5). This is called generation 0. The following genera-
tions each consist of an episode of clonal growth (4)
followed by an episode of death (5).

Inghe investigated this model for a wvariety of
combinations of values of 4 and L (see table on p. 261
to Inghe’s paper) and made three runs of 250
generations for each combination of parameter values.
Based on these simulations Inghe estimated the
number of ramets ir equilibrium (see figure 4 on page
263). As one should expect the number of ramets in
equilibrium decreases when L increases, and becomes
0 when L is too large. That is, there is a critical value
of L at which the process goes extinct. The figure also
shows the less intuitive fact that the critical value of L
(the total area disturbed) decreases as the size of the
disturbances increases.

Inghe also investigated the number of ramets and
genets versus time for several parameter values. To
understand the graphs in figure 5 on p. 264 of his
paper, we have performed analogous simulations for
the competition model described in the last section.
This is a version of Inghe’s model in which births
occur from x to each of its nearest neighbours with
probability A, and individual sites are made vacant
with probability y. On an N x N lattice this corres-
ponds to taking 4 = 1 and L = N% in Inghe’s model,
with two differences: (i) we have modified the birth
probabilities to be uniform over the nearest neigh-
bours, and (ii) in our case we flip a coin for each cell
to see if it is disturbed rather than disturbing a fixed
number of cells L. We have modified Inghe’s model
primarily to make it simple to simulate, but also to
make the point that the qualitative properties of the
system do not depend on the details of the birth and
death mechanisms.

Figure 22 gives a graph of the number of ramets
and genets versus time for the model with A=0.25,
y=0.325, and N=60, which corresponds roughly to
A=1 and L=1170 in Inghe’s scheme. The non-
increasing curve gives the fraction of the 60 original
genets that remain at time {. The wiggly curve gives
the fraction of sites that are occupied by a ramet of
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some type. The graph we obtain is similar to the first
two in figure 5 on p. 264 of Inghe (1989) and performs
as we would expect from theory. Since we start with
only 50 plants in a grid of 3600 sites, it takes a while
for the plants to expand throughout the space, but
soon after they do, we see only small fluctuations in
the number of ramets away from the equilibrium
level. The number of genets decreases quickly from 50
to 17. The next table gives the number of genets
versus time. At intermediate times, the number of
genets is constant. For example at times 13 to 21 there
are 19 genets.

time 0 1 2 3 4 5 6 7
genets 50 36 30 27 26 24 23 22

time 9 11 12 22 27
genets 21 20 19 18 17

The initial rapid decrease corresponds to the fact that
some of the original plants start family lines that die
out. In the long flat region in the graph the clusters of
the various genetic types are not in equilibrium but
are growing and fighting for territory. As time goes on
we start to lose types due to competition. The next
table describes how the number of types drops from 17
to I:

time 203 233 270 393 499 510 640
genets 16 15 14 13 12 11 10

time 1649 2283 2345 3385 3408
genets 9 8 7 6 5
time 7068 7578 13898 16875
genets 4 3 2 1

By analogy with results of Sawyer (1979) and Bram-
son & Griffeath (1980), we expect that (for the two-
dimensional system under consideration) the number
of genets at time ¢ will decay to 0 like C(log ¢)/t where
C is a constant that depends on the number of
particles that escape dying out in the first phase.
One of the most interesting ideas in Inghe’s paper is
to investigate how the behaviour of the process
changes when disturbances affect more then one site
at once, so we have looked at a variation of our
competition model in which deaths can affect more
than one site at once. One can, and Inghe did,
investigate disturbances that are 2 x 2, 3x 3, 4 x4 and
so on. Some of the most interesting behaviour occurs
when the disturbances are large, so we have looked at
a model in which there are three disturbances at each
time step that are 15x 15 squares and then births
occur from each site to its nearest neighbours with
probability A=0.55. In Inghe’s scheme this corres-
ponds to A=15 and L=675, but we have chosen our
three squares at random from all possible 15x 15
squares rather than from a randomly translated
sublattice of nonoverlapping squares. Figure 23 shows
a graph of the number of ramets and genets versus
time for our model on a 60x 60 lattice. Again, the
non-increasing curve gives the fraction of the 60
original genets that remain at time / and the wiggly
curve gives the fraction of sites that are occupied by a
ramet of some type. The oscillatory behaviour in the

Phil. Trans. R. Soc. Lond. B (1994)

R. Durrett and S. A. Levin 347

1

0.8

0.6

fraction occupied

g

original fraction surviving

fraction of sites

0 100 200
time
Figure 23. Fraction of the initial 60 genets surviving to time
{ and fraction of sites occupied at time ¢ for Inghe’s

competition model with A=0.55 and three 15x 15 death
events on a 60 x 60 lattice.

number of ramets versus time that occurs is compar-
able to that in the last graph in figure 5 on p. 264 of
Inghe’s paper. These oscillations are a ‘finite size
effect’. That is, the disturbance squares have a length
that is 1/4 the system size so occasionally the place-
ment of squares at successive times will be very
effective in decimating the population. Figure 24
shows a simulation of the system on a 120 x 120 and
displays much less oscillation. If we were to simulate
the system on a 240 x 240 grid then the oscillations

1
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2 06
=
o
=
g
° I
& 04 fraction occupied
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| r\f"\ﬂv//\,b 3 /\/\” "‘“/\J/ \'V»\‘ 2
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Figure 24. Fraction of the initial 60 genets surviving to time
¢t and fraction of sites occupied at time ¢ for Inghe’s

competition model with A=0.55 and three 15x 15 death
events on a 120 x 120 lattice.
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would be reduced even further and the graph would
look much like figure 22.

Section summary. In this section we described a model
due to Inghe (1989) which describes the competi-
tion of genets of a given species. This model is a
discrete time analogue of the symmetric competition
model in the previous section and like those models
has behaviour closely related to that of the voter
model.

9. SUMMARY

The analysis of pattern formation has long been one
of the unifying themes in mathematical biology. In
ecology, the importance of such analysis has stimu-
lated much recent activity because of the need to
relate phenomena across scales, and to interpret
patterns on one scale in terms of processes on other
scales.

Traditionally, most models of pattern formation
have been continuous in space and time, reliant on
diffusion-reaction systems. Such models have shaped
our understanding of how pattern forms, but are
inadequate for investigating phenomena that have
localized stochastic events, or treat spatial influences
that are non-local. Extensions (see Levin & Segel
1985) can address some of these problems; but a
fundamentally distinct approach, through interacting
particle systems, is ideally suited for investigating
many phenomena. These are the focus of attention in
this paper.

The models we have described have the following
general features. Space is represented by a grid of
‘sites’, which in most cases is the d-dimensional integer
lattice. Each site can be in a finite set of states: 0
(vacant) or i=1, . . ., Kk — 1 indicating the presence of
one plant of type ¢. When k=2 (i.e. we are dealing
with the spread of a single species) the models can
encompass a wide variety of death and asexual birth
mechanisms, but all the systems have the following
general features. If the birth probabilities are not large
enough the system always dies out, but if the birth
probabilities are large enough there is a non-trivial
equilibrium state, which is typically unique and is the
limiting state whenever the system avoids extinction.
The parameter values at which the transition from
‘dying out’ to ‘surviving’ occurs are almost impossible
to compute theoretically but can easily be estimated
from computer simulations.

When x> 3, attention focuses on conditions for the
K — 1 species to coexist in equilibrium. Again, analyti-
cal results are hard to obtain, but become possible if
one is willing to make the assumption that offspring
are displaced a large distance, measured on the lattice,
from their parents. Calculations were carried out for
two or more species that are (i) part of a successional
sequence, or (ii) compete on an equal footing, but
these computations generalize easily to a variety of
other systems (e.g. the model in Caswell’s (1978)
paper on predator-mediated coexistence). In the
analysis of these systems we saw that continuous time
processes, while taking some sophistication to formu-
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late, were actually ecasier to analyse and did not
require collision rules that discrete time systems need
to determine what happens when several events try to
influence a site simultaneously.

One of the attractions of interacting particle system
models is that they can easily take into account spatial
and temporal inhomogenities. However, as these
models only try to capture the ‘essential’ features of
the interactions and do not try to accurately model
the microscopic dynamics, one cannot expect to
obtain quantitative predictions but only seck to
understand how properties of the system change in
response to changes in the model, and to infer from
this what aspects of a system are responsible for its
observed qualitative behaviour.
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Figure 13. One-dimensional voter model, times 0-239.
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Figure 14. One-dimensional voter model, times 1200-1439.
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Figure 18. Symmetric competition model in one dimension,
times 0-239.
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Figure 19. Symmetric competition model in one dimension,
times 1200-1439.
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