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Preface. These lectures were written for the 1993 St. Flour Probability Summer
School. Their aim is to introduce the reader to the mathematical techniques involved in
proving results about interacting particle systems. Readers who are interested instead in
using these models for biological applications should instead consult Durrett and Levin
(1993).

In order that our survey is both broad and has some coherence, we have chosen to
concentrate on the problem of proving the existence of nontrivial stationary distributions
for interacting particle systems. This choice is dictated at least in part by the fact that
we want to make propaganda for a general method of solving this problem invented in
joint work with Maury Bramson (1988): comparison with oriented percolation. Personal
motives aside, however, the question of the existence of nontrivial stationary distributions
is the first that must be answered in the discussion of any model.

Our survey begins with an overview that describes most of the models we will consider
and states the main results we will prove, so that the reader can get a sense of the forest
before we start investigating the individual trees in detail. In Section 2 we lay the founda-
tions for the work that follows by proving an existence theorem for particle systems with
translation invariant finite range interactions and introducing some of the basic properties
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of the resulting processes. In Section 3 we give a second construction that applies to a
special class of “additive” models, that makes connections with percolation processes and
that allows us to define dual processes for these models.

The general method mentioned above makes its appearance in Section 4 (with its
proofs hidden away in the appendix) and allows us to prove a very general result about the
existence of stationary distributions for attractive systems with state space {0,1}°. The
comparison results in Section 4 are the key to our treatment of the threshold contact and
voter models in Section 5, the cyclic systems in Section 6, the long range contact process
in Section 7, and the predator prey system in 9.

In Section 7 we explore the first of two methods for simplifying interacting particle
systems: assuming that the range of interaction is large. In Section 8 we meet the second:
superimposing particle motion at a fast rate. The second simplification leads to a connec-
tion with reaction diffusion equations which we exploit in Section 9 to prove the existence
of phase transitions for predator prey systems.

The quick sketch of the contents of these lectures in the last three paragraphs will be
developed more fully in the overview. Turning to other formalities, I would like to thank
the organizers of the summer school for this opportunity to speak and write about my
favorite subject. Many of the results presented here were developed with the support of
the National Science Foundation and the Army Research Office through the Mathematical
Science Institute at Cornell University. During the Spring semester of 1993, I gave 10
one and a half hour lectures to practice for the summer school and to force myself to get
the writing done on time. You should be grateful to the eight people who attended this
dress rehersal: Hassan Allouba, Scott Arouh, Itai Benjamini, Carol Bezuidenhout, Elena
Bobrovnikova, Sungchul Lee, Gang Ma, and Yuan-Chung Sheu, since their suffering has
lessened yours.

Although it is not yet the end of the movie, [ would like to thank the supporting cast
now: Tom Liggett, who introduced me to this subject; Maury Bramson, the co-discoverer
of the comparison method and long range limits, to whom I turn when my problems get
too hard; David Griffeath, my electronic colleague who introduced me (and the rest of
the world) to the beautiful world of the Greenberg Hastings and cyclic cellular automata;
Claudia Neuhauser, my former student who constantly teachs me how to write; and Ted
Cox, with whom I have written some of my best papers. The field of interacting particle
systems has grown considerably since Liggett’s 488 page book was published in 1985, so
it is inevitable that more is left out than is covered in these notes. The most overlooked
researcher in this treatment is Roberto Schonmann whose many results on the contact
process, bootstrap percolation, and metastability in the Ising model did not fit into our
plot.
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1. Overview

In an interacting particle system, there is a countable set of spatial locations S called
sites. In almost all of our applications S = Z¢, the set of points in d dimensional space
with integer coordinates. Each site can be in one of a finite set of states F, so the state
of the system at time t is §; : S — F with {,(z) giving the state of . To describe the
evolution of these models, we specify an interaction neighborhood

N = {20,21,“.2&} C Zd
with zp = 0 and define flip rates

Ci(l‘,{) = gl(f(m + ZU))&(I + 21), . “75(‘7: + Zk))

In words, the state of z flips to i at rate ¢,(z,£) when the state of the process is {. In
symbols, if {,(z) # ¢ then

Pllrs(z) = il€, =)

S

—>C,‘((L‘,f) as s — 0

The formula for c; indicates that our interaction is finite range, i.e., the flip rates depend
only on the state of £ and of a finite number of neighbors; and translation inveriant, i.e.,
the rules applied at z are just a translation of those applied at 0.

To explain what we have in mind when making these definitions, we now describe
two famous concrete examples. In this section and throughout these lectures (with the
exception of Sections 2 and 3) we will suppose that

N={z:|=zl, <r}

Here r > 1 is the range of the interaction and |z||, is the usual L? norm on R?. That is,
lzll, = (=% + ...+ 25)/? when 1 < p < oo and ||z||eo = sup; |zi|. In most of our models
the flip rates are based on the number of neighbors in state ¢, so we introduce the notation:

nie, ) ={zeN &z +2) =i}

where |A] is the number of points in A.

Example 1.1. The basic contact process. To model the spread of a plant species we
think of each site £ as representing a square area in space with £;(z) = 0 if that area is
vacant and £,(z) = 1 if there is a plant there, and we formulate the dynamics as follows:

co(z,€) =46 ifé(z)=1
c1(z, &) = Any(z,§) ifé(z)=0

In words, plants die at rate § independent of the state of their neighbors, while births at
vacant sites occur at a rate proportional to the number of occupied neighbors. Note that
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flipping to ¢ has no effect when £(z) = ¢ so the value of ¢i(z,£) on {£(z) =i} is irrelevant
and we could delete the qualifying phrases “if £(z) = 1” and “if £(z) = 0” if we wanted to.

Example 1.2. The basic voter model. This time we think of the sites in Z? as
representing an array of houses each of which is occupied by one individual who can be
in favor of (§,(z) = 1) or against ({,(z) = 0) a particular issue or candidate. Qur simple
minded voters change their opinion to ¢ at a rate that is equal to the number of neighbors
with that opinion. That is,

C.‘(I, 6) = n;(z,{)

The first question to be addressed for these models is:
Do the rates specify a unique Markov process?

There is something to be proved since there are infinitely many sites and hence no first
jump, but for our finite range translation invariant models, a result of Harris (1972) allows
us to easily show that the answer is Yes. (See Section 2.) The main question we will be
interested in is:

When do interacting particle systems have a nontrivial stationary distributions?

To make this question precise we need a few definitions. The state space of our Markov
process is F'S| the set of all functions £ : § — F. We let F = all subsets of F' and equip
F3 with the usual product o-field F5, which is generated by the finite dimensional sets

{f(yl) = il»"'y{(yk) = lk}

So any measure 7 on F5 can be described by giving its finite dimensional distributions

m(€(n) =11,...,&(yx) = 1)

As in the theory of Markov chains, 7 is said to be a stationary distribution for the process
if when we start from an initial state ¢, with distribution = (i.e., 7(A) = P(§ € A) for
A € F5) then £ has distribution = for all ¢ > 0. Since our dynamics are translation
invariant, we will have a special interest in stationary distributions that are translation
invariant, i.e., ones in which the probabilities 7(é(z + 1) = 11,...,&(z + y&) = #x) do not
depend upon z.

To explain the term “nontrivial” we note that in Example 1.1 the “all 0” state ({(x) =
0) and in Example 1.2 for any ¢ the all i state are absorbing states. That is, once the process
enters these states it cannot leave them. If S were finite this fact (and enough irreducibility,
which is present in Examples 1.1 and 1.2) would imply that all stationary distributions were
trivial, i.e., concentrated on absorbing states. However, when S is infinite this argument
fails and indeed, as the next few results show it is possible to have a nontrivial stationary
distributions.

Theorem 1. Consider the basic contact process with N = {z : ||z, < r} with r > 1. If
AlNV] £ § then there is only the trivial stationary distribution. If §/A < 6, then there is a
nontrivial translation invariant stationary distribution.



Figure 1.1. Nearest neighbor contact process in d = 1 with A = 2.
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The first result is easy to see. If the contact process has k particles then the number drops
to k — 1 at rate 6k and increases to k + 1 at rate < AN with the upper bound achieved
when all particles are isolated (i.e., no two particles are neighbors). The reader should
attempt to prove the converse before we hit it with our sledgehammer in Section 4. By a
simple comparison that you will learn about in Section 2, it is enough to prove the result
when N = {z : |lz|l; = 1} and d = 1. A simulation of this case with A = 2 is given in
Figure 1.1. A result of Holley and Liggett (1978) implies that in this situation there is
a nontrivial stationary distribution. In our simulation we have started with the interval
[180,540] occupied at time O at the top of the page. As time runs down the page from 0
to 720, it is clear that the region occupied by particles is growing linearly, as predicted by
a result of Durrett (1980).

Turning to the voter model, the classic paper of Holley and Liggett (1975) tells us
that

Theorem 2A. Clustering occurs in d < 2. That is, for any & and z,y € Z? we have
P(&i(x) # &i(y)) = 0 ast — oo

Theorem 2B. Let £f denote the process starting from an initial state in which the events
{¢8(z) = 1} are independent and have probability §. Ind > 3 ast — oo, £f = €2, a
translation invariant stationary distribution in which P(¢%,(z) = 1) = 4.

Here => denotes weak convergence, which in this setting is just convergence of finite di-
mensional distributions. That is, for any z;,...zm € Z? and ¢1,...,im € {1,2...,&} we
have

P(EJ(z1) =t1,...£(zm) = im) = P (21) = i1, . . €0 (Tm) = im)

We will say that coezistence occurs if there is a translation invariant stationary dis-
tribution in which each of the possible states in F' has positive density. Theorems 2A and
2B say that in the voter model coexistence is possible in d > 3 but not in d < 2. We
will see in Section 3 that this is a consequence of the fact that if we take two independent
random walks with jumps uniformly distributed on A then they will hit with probability
1in d < 2 but with probability < 1in d > 3.

Figure 1.2 gives a simulation of a voter model with five opinions on {0,1,...,119}%
Here and in the next six simulations in this section, we use periodic boundary conditions.
That is, sites on the top row are neighbors of those on the bottom row, and those on the
left edge are neighbors of those on the right edge. We started at time 0 by assigning a
randomly chosen opinion to each site. Figure 1.2 shows the state at time 500 suggesting
that the clustering asserted in Theorem 2A occurs very slowly. Results of Cox {1988) imply
that the expected time for our system to reach consensus is about

41n(5/4) - % (120)? 1n120 = 39,173

The conclusions just derived for the voter depend on the fact that the flip rates are
linear. Nonlinear flip rates can produce quite different behavior:
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Figure 1.2. Five opinion two dimensional voter model at time 500
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Example 1.3. The threshold voter model. Cox and Durrett (1991) introduced a
modification of the voter model in which

' _ 1 af Tl.'(:t’é) 2 4
ci(z,8) = {0 ;f ni(z,§) <8

In words, these voters change their opinion at rate 1 if at least § neighbors disagree with
them. This change in the rules changes the behavior of the model drastically.
We start with the case § = 1:

Theorem 3A.If d=1and A = {-1,1} then clustering occurs.

Theorem 3B. In all other cases (recall we supposed that N = {z : {z{|, < r} with
T > 1) we have coexistence. That is, there is a nontrivial translation invariant stationary
distribution g12 in which 1’s and 2’s each have density 1/2.

Here as in many other cases, the one dimensional nearest neighbor case is an exception.
Cox and Durrett (1991) proved Theorem 3A and that coexistence occurs in some cases
(e.g., d = 1 and r > 7) but the sharp Theorem 3B is due to Liggett (1992). Note that in the
threshold voter model coexistence occurs in all but one case, while in the basic voter model
coexistence occurs only in d > 3. A second difference is that when coexistence occurs
the basic voter model has a one parameter family of nontrivial stationary distributions
constructed in Theorem 2B but we believe

Conjecture 3C. When coexistence occurs in the threshold one voter model there is a
unique spatially ergodic translation invariant stationary distribution in which 1’s and 2's
have positive density.

Here, we say that = on F'S is spatially ergodic if under = the family of random variables
{¢(z) : = € Z%} is an ergodic stationary sequence, i.e., the o-field of events invariant
under all spatial shifts is trivial. We need the assumption of spatial ergodicity to rule out
nontrivial convex combinations

apy +buy + (1 — a—b)pye

where y; is the point mass on the all ¢ state, and p,2 is the measure constructed in Theorem
3B. In general, the set of translation invariant stationary distributions for an interacting
particle system is a convex set and in most examples, the extreme points of the set are
the stationary distributions that are spatially ergodic. However, there is no general result
that shows this is true. See Problem 7 on page 178 of Liggett (1985).

While the threshold 1 case is fairly well understood, there are many open problems
concerning higher thresholds. To illustrate these we observe that computer simulations
suggest

Conjecture 3D. For the Moore neighborhood N = {z : ||z{lc = 1} in d = 2 the threshold
voter model has the following behaviors
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Figure 1.4. Threshold 3 voter model, Moore neighborhood
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coexistence 6
clustering ¢
fixation (]

Here, fization means that each sites flips only a finite number of times. To see that the
last line is a reasonable guess note that an octagon of 1’s cannot flip to 0 since each 1 has
at most 4 neighbors that are 0
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001100
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We will prove the result about fixation for # > 5 and coexistence for § = 1 in Section
5. The other conclusions are open problems. In support of our conjectures we introduce
Figures 1.3 and 1.4 which give simulations at time 50 of the case § = 2 on {0,1,...,89}2
and § =3 on {0,1,...,179}? starting from product measure with density 1/2.

Our next two systems model the competition of biological species. We begin with

Example 1.4. The multitype contact process. The set of states is F' = {0,1,...,«},
where 0 indicates a vacant site and i > 0 indicates a site occupied by one plant of type :.
The flip rates are linear

Co(zvf) = 66(:)
Ci(xwé.) = ’\ini(xvf) if E(I) =0

Here and in what follows the rates we do not mention are 0. Suppose for simplicity that
k = 2. Neuhauser (1992) has shown

Theorem 4A. Suppose §; = § and \; > A;. If § is translation invariant and has a
positive density of 1’s then P(£,(z) = 2) — 0.

In words, the species with the higher birth rate wins out (“survival of the fittest”). The
following stronger result should be true but Neuhauser’s proof relies heavily on the as-
sumption that é§; = é,.

Conjecture 4B. Suppose A1 /6; > Az2/62. If § contains infinitely many 1’s then P(£(z) =
2) = 0.

When A; = A; and §; = &2, Neuhauser showed that the multitype contact process
behaves like the voter model.

Theorem 4C. Clustering occurs for translation invariant initial states in d < 2. That is,
if £ is translation invariant, then for any z,y € Z%, and 1 <i < j < & we have

P(4(z) = i,&(y) = ) = O as t = oo
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Theorem 4D. Let £/ denote the process starting from an initial state in which the events
{¢8(z) = i} are independent and have probability §; with f; =1—6;. Ind > 3, as t — oo,
€8 = ¢° | a translation invariant stationary distribution in which

, 1-— hen: =0
P == {3 et

where p is the equilibrium density of occupied sites in the one type contact process.

The last result is a little disturbing for biological applications. It says that if species
compete on an equal footing then coexistence is not possible in d = 2 even if the birth and
death rates are exactly the same. (This situation may sound unlikely to occur in nature
but it occurs, for example, if we look at the competition of genets genetically identical
individuals of the same species.) Somewhat surprisingly, if species 2 dominates species 1,
we get coexistence for an open set of parameter values.

Example 1.5. Successional dynamics. We suppose that the set of states at each site
are 0 = grass, 1 = a bush, 2 = a tree and we formulate the dynamics as

co(z,€) = b¢(z,0)
Cl(zvﬁ) = Aln'l(zv {) lf f(l‘) =0
ca(z,€) = dona(z,€) ifé(z) <1

The title of this example and its formulation are based on the observation that if an area
of land is cleared by a fire, then regowth will occur in three stages: first grass appears
then small bushes and finally trees, with each species growing up through and replacing
the previous one. With this in mind, we allow each type to give birth onto sites occupied
by lower numbered types. As in the threshold voter model, the one dimensional nearest
neighbor case is an exception.

Theorem 5A. Coexistence is not possible in the one dimensional nearest neighbor case,

ie,d=1,N={-1,1}.

Conjecture 5B. In all other cases (recall we supposed that &' = {z : ||z[|, £ r} with
r > 1) we have coexistence for an open set of values (61, A1, 62, Az).

Figure 1.5 shows a simulation of the nearest neighbor model on {0,1,...,89}% with pa-
rameters A; = 5/4, 6 = 1, Az = 1.9/4, and 6; = 1 run until time 100, which presumably
represents the equilibrium state. Sites in state 1 are gray; those in state 2 are black.
Proving that coexistence occurs in the two dimensional nearest neighbor case of this
model seems to be a difficult problem, since computer simulations indicate that the open
set referred to in Conjecture 5B is rather small. However, if we assume that the range
of interaction is large, we can get very accurate results about the coexistence region. Let

Bi = M|V}



Figure 1.5. Two dimensional nearest neighbor succesional dyanmics, 8 = 5, B=19



111

Theorem 5C. Suppose that

B2~ b6
* = >6 + —
() B - ﬂz 1+ B2 5
If r is large then coexistence occurs.
Theorem 5D. Suppose that
) B — b
— < b +
Br- 3, <o Bz - 5

If r is large then coexistence is impossible.

Theorems 5A and 5C are due to Durrett and Swindle (1991), while the converse in 5D is
due to Durrett and Schinazi (1993). To explain the condition in Theorems 5C and 5D,
we begin by observing that if we assumed that u(t) = P(£:(z) = 2) does not depend on z
and the states of neighboring sites were independent, then writing y ~ z to denote “y is a
neighbor of z”

du
) 5= —862P(&4(z) = 2) + ;AQP(61($) <2,6(x)=2)

= ~6u+ fu(l — u)

where the first equality is true in general and the second follows from our assumptions and
the fact that 87 = |A]A;. Dropping the —B2u? term

-6
B < (B -
so if 8, > P2 all solutions tend to 0 exponentially fast. If 6; < B2 and we let u* =
(ﬂg -— (52)/B2 then
>0 for0<u<u®

—byu+ fpu(l - u) { <0 foru>u*

soif u(0) > 0, u(t) — u™ as t — co.
Applying the reasoning that led to (1.1) to v(t) = P(£(x) = 1) we see that

(1.2) Z—’t’ = -6 P(E(z) =1) = Y A P(b(e) = LE(y) = 2)
+ Z MP(&(z) =0,6(y) =1)

= =§v— frvu+ (1l —u—vv
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where again the first equality is true in general and the second follows from our assumptions
and the fact that 8; = |[M|A;. To analyze (1.2), we note that if the 2’s are in equilibrium
and the density of 1’s is very small, then

u=(f2~62)/0 (1—u—v)=xb6/P

é
1’s are born at rate = g; - 2.y
Pz
-6
1’s die at rate = (51 + ;- ﬂzﬂ 2) v
2

So if () holds a small density of 1’s will grow in time, while if we reverse the inequality in
{*) and use (1 — u — v) < {B; — 62)/F, then the birth rate always exceeds the death rate
and v(t) — 0.

The practice of calculating how densities evolve when we suppose that adjacent sites
are independent is called mean field theory. Theorems 5C and 5D are one instance of the
general principle that when the range of interaction is large mean field calculations are
almost correct. A second method of making mean field calculations correct, which leads
to connections with nonlinear partial differential equations, is to introduce particle motion
at a fast rate.

Example 1.6. Predator prey systems. In this model we think of 0 = vacant, 1 =
occupied by a fish, and 2 = occupied by a shark and we have the following flip rates

i(2,€) = Bz, €)/2d i€ E(z) =0
cfz, &) = Panz(z,€)/2d i é(z)=1

& if ¢(z) = 1
co(a,€) = {52 + (1ma, 6)/2d) if E(s) = 2

In words, fish die at rate §; and are born at vacant sites at a rate proportional to the
number of fish at neighboring sites. So in the absence of sharks, the fish are a contact
process.

Sharks die of natural causes at rate 6, and kill a neighboring shark at rate v/2d.
The birth rate for sharks may look a little strange at first: fish turn into sharks at rate
proportional to the number of shark neighbors. This is not what happens in the ocean but
it does capture an essential feature of the interaction: when the density of fish is too low
then the sharks die faster than they give birth. A second justification of this mechanism is
that, as we will see in Section 9, in a suitable limit we get standard predator-prey equations.

Here n;(z,¢) = [{z € N : £(z + z) = i}| as usual, but for reasons that will become
clear in a moment we take S = €Z® and N' = {z : |z| = ¢} the nearest neighbors. We
use a small lattice so that we can introduce stirring at a fast rate, i.e., for each z,y € e2¢
with |z — y| = € we exchange the values at  and y at rate ¢72. That is, we change the
configuration from £ to £**¥ defined by

£%z) =), €¥y) =¢&(2), V() =L(z)if 2 £y
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The combination of the space scale of € and the time scale of e~ means that the individual
values will perform Brownian motions in the limit ¢ — 0. The fast stirring keeps the states
of neighboring sites independent, so using mean field reasoning leads to the following result
due to DeMasi, Ferrari and Lebowitz (1986).

Theorem 6A. Suppose £5(z), = € €Z*, are independent and let uf(t,z) = P(&(z) = ).
If u§(0,x) = gi(x) is continuous then as € — 0, u{(¢, z} converges to u;{{,z) the bounded
solution of

Ou
s W‘:Au;-%ﬂﬂu(l—‘ul —~ uz) = fruyuy — S1uy
1.3

Ou

Wz = Aug + faujuz — dauq ~ 7"%

with 4;(0,z) = gi(2).

Here the Au, terms reflect the fact that in the limit the individual values are performing
Brownian motions run at rate 2. The other terms can be seen by using the reasoning that
led to (1.1) and (1.2).

If we suppose that the initial functions g;(z) are constant then this is true at later
times u(t, z) = v;(t) and the v; satisfy

(14) (81~ 6) = Brvr — (51 + o))
% = va(~82 + fov1 — 7v2)

Here we have rearranged the right hand side to show that it is the standard predator-
prey equations with limited growth. (See for example Hirsch and Smale (1974) p. 263.)
To determine the conditions for coexistence, we start by finding the fixed points of the
dynamical systems, i.e., points {p1, p3} so that v;(t) = p; is a solution of (1.4). There are
three

(i) p1 = p2 = 0. No sharks or fish, the trivial equilibrium.

(i1) We have a solution with p, = 0 and py = (81 — &)/8 if B1 > B2. This forumla is the
same as the one in the last example because in the absence of sharks, fish are a contact
process.

(iii) There is a fixed point with p; = ¢; > 0 if and only if

Bi—é b2
(1.5) __[31 >ﬂ2

(which implies §; > 8;). We do not have an intuitive explanation for the last condition.
It is simply what results when we solve the two equations in two unknowns.
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Figure 1.6. Predator prey model 8; = 8 = 3,6, =6 =1,v=1
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By exploiting the connection between the particle system and the partial differential
equation given in Theorem 64, we can prove

Theorem 6B. If (1.5) holds then for small € coexistence occurs.

It would be nice to prove coexistence results without fast stirring. Figure 1.6 shows a
simulation of the system on {0,1,...,79}? at time 50 with §; = 3, = 3,6, =6, =1,7=1
and no stirring. Again sites in state 1 are gray; those in state 2 are black.

Example 1.7. Epidemic model. In this example, we think of Z? as representing
an array of houses each of which is occupied by one individual who can be (0) susceptible
= healthy but capable of getting the disease, (1) infected with the disease, or (2) immune
to further infection. The flip rates are

ci(z,8) = dny(z,8) if€(z)=0
c(z,€) =6 iff(z) =1
co(z,8)=a ffz)=2

As usual, the rates we did not mention are 0. In words, a susceptible individual gets
infected at a rate proportional to the number of infected neighbors. Infected individuals
become removed at rate §. Here 1/§ is the mean duration of the disease and to obtain
the Markov property we have assumed that the duration of the disease has an exponential
distribution. If we want to model the short term behavior of a measles or flu epiemic then
we set a = 0 since recovered individuals are immune to the disease. If we want to examine
longer time properties then immune individuals will die (or move out of town) and new
susceptibles will be born (or move into town) so to keep a fixed population size of one
individual per site, we combine the two transitions into one.

To describe the conditions for coexistence we begin with case o = 0 and consider
the behavior of the model starting from one infected individual at 0 in the midst of an
otherwise susceptible population. Let 5, = {z : &(z) = 1} be the set of the infected
individuals at time ¢ and let 7 = inf{t : 5, = 0}. We will have 5, = @ for all £ > 7 so we
say the infection dies out at time 7. Let §. = inf{6 : P(7 = oo) = 0}. The faster people
recover the harder it is for the epidemic to propagate so we have P(r = oco) = 0 for all
§ > é..

If we restrict our attention to the nearest neighbor case, then results of Cox and
Durrett (1988) describe the asymptotic behavior of the epidemic when § < §, and 7 = oo.
Building on those results Durrett and Neuhauser (1991) have shown

Theorem 7. Suppose d =2 and N = {z : |z| = 1}. If § < §. and « > 0 then coexistence
occurs.

Zhang has generalized the results of Cox and Durrett (1988) to finite range interactions.
Presumably one can also prove the result of Durrett and Neuhauser (1991) in that level of
generality but no one has had the courage to try to write out all the details.
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Closely related to the epidemic model is

Example 1.8. Greenberg Hastings Model. In this model, we think of having a neuron
at each z € Z¢ that is connected to each of its neighbors. The states of each neuron are
F=/{0,1,...,k—1} where 1 is excited, 2,...,x — 1 are a sequence of recovery states, and
0 indicates a fully rested neuron that is capable of being excited. These interpretations
motivate the following flip rates

ca(z,8)=1 ifé(z)=0and ni(z,8) >80
ci{z,§)=1 Hi#landf(z)=1-1

Here arithmetic is done modulo & so 0 —1 = x — 1. The second rule says that once excited,
the neuron progresses through the recovery states at rate 1 until it is fully rested; the first
that a rested neuron becomes excited at rate 1 if the number of its neighbors that are
excited is at least the threshold 8. The next result, due to Durrett (1992), gives a regime
in which this model has (somewhat boring) stationary distributions.

Theorem 8A. Let ¢ > 0 and suppose § < (1 — €)JV|/2x. If r is large then there is a
stationary measure close to the uniform product measure.

Here the uniform product measure is the one in which the coordinates £(z) are independent
and P{£(z) = i} = 1/x. Based on the analogy with the epidemic model where if § < é.
there is a coexistence for any a > 0, we expect that

Conjecture 8B. There is a constant a > 0 so that if § < a|V| then coexistence occurs
for any «.

Computer simulations indicate that in this regime the excitation sustains itself by produc-
ing moving fronts. See Figure 1.7 for a simulation of the system with /' = {z : ||z|l < 2},
threshold 8 = 3, and x = 8. Excited states are black, rested sites are white, recovering
sites are appropriate shades of gray.

The analogue of Conjecture 8B has been proved by Durrett and Griffeath (1993) for
the Greenberg Hastings cellular automaton in which ¢, 41(z) = €u(z) + 1 if €,(z) > 0 or
£n(z) = 0 and ni(z,€n) 2 6; €nt1(z) = €a(z) otherwise. See Figure 1.8 for a simulation of
the cellular automaton with the same color scheme and parameters: N = {z : jjz)lc < 2},
threshold § = 3, and « = 8 run until it has become periodic with period 8. For more on
the cellular automaton consult Fisch, Gravner and Griffeath (1991), (1992), (1993), and
Gravner and Griffeath (1993).
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Figure 1.7. Greenberg Hastings model. N = {z: [lz]le < 2},0=3,xk=8
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Figure 1.8. Greenberg Hastings cellular automaton. N = {z : ||z]lec < 2},8=3, k=8
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2. Construction, Basic Properties

To construct an interacting particle system from given translation invariant finite flip
rates

C,'(:t,f) = gi('ﬁ(‘r + 20)36(3 + 21)’ cee 7£(z + zk))

based on a neighborhood set N' = {z,21,...,2,} we can, by changing the time scale,
assume that c;(z,£) < 1. For each z € Z¢ and i € F, let {T?* : n > 1} be the arrival
times of independent rate 1 Poisson processes (i.e., if we set Ty ' = 0 then the increments
TZ' — TZ", are independent and have an exponential distribution with mean 1) and let
UZ+* be independent and uniform on (0,1). At time ¢t = T site z will flip to state i
if US* < ¢i(z,€,-) and stay unchanged otherwise. To see that this recipe produces the
desired flip rates recall the thinnning property of the Poisson process: if we keep the points
from {T%" :n > 1} that have UZ** < p then the result is a Poisson process with rate p.

Since there are infinitely many Poisson processes, and hence no first arrival, we have
to show that we can use our recipe to compute the time evolution. To do this, we use an
argument of Harris (1972). Let to be a small positive number to be chosen later. We draw
an unoriented arc between z and y if y — = € A and for some i, T}"' < ty. The presence
of an arc between z and y indicates that a Poisson arrival has caused z to look at y to
see if it should flip or caused y to look at z. Conversely, if there is no arc between z and
y then neither site has looked at the other. The last observation implies that the sites in
two different components of the resulting random graph have not influenced each other by
time to and hence their evolutions can be computed separately. To finish the construction
then it suffices to show

(2.1) Theorem. If 3 is small enough then with probability one, all the connected com-
ponents of our random graph are finite.

For then in each component there is a first flip and we can compute the effects of the
changes sequentially. This allows us to construct the process up to time to but i is
independent of the initial configuration, so iterating we can construct the process for all
time.

PROOF OF (2.1): Let N* = {z,,..., 2k, ~21,..., —2x } be the set of possible displacements
along edges of the graph. (In this sect:on alone we will allow A to be a general finite set
not just {z : ||z}|, < r}.) We say that yo,y1,...yn is a path of length n if ym —ym—1 € N*
when 0 < m < n. We call a path 3elf-avoidiny ify; £ yj when 0 < ¢ < j < n. Let
R = max{|z]|: 2z € N}. (Here |z| = ||z]|;.) We claim that

(a) If 0 is connected to some point with |z| > M then there is a self-avoiding path of length
> M/R starting at 0.

To see this note that if there is a path from 0 to z, then by removing loops we can make
it self-avoiding. Since each step along the path moves us a distance < R, there must be at
least |z]/R such steps. The next ingredient in the proof is

(b) If ,y, z,w are distinct, the presence of edges from z to y and from z to w are inde-
pendent events.



120

To see this note that the presence of an edge from z to y is determined by the Poisson
processes Ti* and TY* with ¢ € F. From (b) it is easy to see

(c) Let N = |N*| and & = |F|. The probability of a self avoiding path of length 2n — 1
starting at a given point z is at most

N2n—1(1 — C—Z:cto )n

The first factor is the number of paths of length 2n — 1 and hence an upper bound on the
number of self-avoiding paths. To see the second factor note that the presence of the edges
(z0421),(22,23),-..(22n—2, 22n—1) are independent events that have probability 1 — e~ 2xto
since the probability of no arrival by time to in one of the 2x Poisson processes T>* and
T3 is e~ 2510,

If we pick tp small enough then N%(1 — e~2%%) < 1/2, so the probability of a self-
avoiding path of length 2n — 1 decreases to 0 exponentially fast, and it follows from (a)
that with probability 1 the cluster containing any given point z is finite. a

An immediate consequence of the construction is
(2.2) Corollary. If { is translation invariant then & is.

ProoF: The family of Poisson processes is translation invariant, so if the initial state is,
then so is the result of our computation. a

It should also be clear from the construction that £, is a Markov process, i.e., if we
know the state at time s, information about ¢, for r < s is irrelevant for computing the
evolution for ¢t > s. Being a Markov process there is an associated family of operators
defined by

TLf(§) = Eef(&)

where E¢ denotes the expected value starting from § = £. The Markov property of &
implies that the T; form a semigroup. That is, TsT¢ = Ts4:. If you are not familiar with
semi-groups don’t worry. We will only use the most basic results that can be found in
Chapter 1 of Dynkin (1965) or in Chapter ? of Revuz and Yor (1991), and we will only
use those facts in this section. The first thing we want to prove is

(2.3) Corollary. T, is a Feller semigroup, i.e., if f is continuous with respect to the
product topology on F¥ then T,f is continuous.

PROOF: Note that our construction defines on the same probability space the process
starting from any initial configuration. If ¢ < ¢, then proof of (2.1) shows that up to time
to, Z% breaks up into a collection of finite non-interacting islands. From the last fact it
follows easily that if £} — &, (which means that for each fixed z, £J'(z) — &o(z)) then
£r — £, almost surely. If f is continuous it follows that f(¢) — f(£;) almost surely. Since
FS is compact in the product topology, any continuous function is necessarily bounded,
and it follows from the bounded convergence theorem that Ef(£}') — Ef(&). This proves
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the result for ¢ < to. Using the semigroup property Ty, = TsTt, it follows that the result
holds for t < 2y, ¢ < 3tq, and hence for all ¢. O

Our next step is to compute the generator of the semigroup. Let £ denote the
configuration ¢ flipped to ¢ at z. That is,

Mz) =i £%'(y) = €(y) otherwise

Suppose f(£) only depends on the values of finitely many coordinates and let

Lf= ) ez, (f(€7) - £(6)

t€Zd ieF

The sum converges since only finitely many terms are nonzero. Our next result says that
L is the generator of Ty.

=Lf(£)

t=0

(24) 2750

If you have seen the generator of a Markov process with a discrete state space the formula
should not be surprising. The proof of (2.4) is much like the proof for that case so we will
only give a quick sketch.

PROOF: Suppose f only depends on the values of ¢ in [~ L, L]® and recall we have defined
R = max{|z;| : z; € N'}. If ¢ is small then with high probability there is at most one site
z € [~L - 2R, L + 2R]? and one value of { € F with T** < t. By considering the various
possible values of z and i and noting that the probability that & = £ changes to £5% s
~ tei(z, £), the result follows easily. a

For the rest of this section, we will restrict our attention to the case F = {0,1}, in
which case we think of 1 = occupied by a particle and 0 = vacant. Since we think of 1’s
are particles we call ¢;(z,£) the birth rates and call co(z, &) the death rates . We say that
the birth rates ¢;(z, ) are increasing if

&(y) < {(y) for all y # z and &(z) = ((z) = O implies ¢,(z, &) < ei(z,()
We say that death rates co(z, &) are decreasing if
&(y) < ((y) for all y # z and £(x) = ¢{(z) = 1 implies ¢;(z,€) > c1(=,()

A process with increasing birth rates and decreasing death rates is said to be attractive.
The last term comes from analogies with the Ising model in statistical mechanics. This
assumption is not very attractive for biological systems since there the death rate usu-
ally increases due to crowding, but the attractive property is what we need to prove the
following useful result.
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(2.5) Theorem. For an attractive process, if we are given initial configurations with
&o(z) < (o(z) for all z then the processes defined by our construction have &,(z) < ((z)
for all z and t.

PROOF: Intuitively this is true since each flip preserves the inequality. To check this
suppose that ,_(y) = 0 and a birth event T¥'! occurs at time s. If (,_(y) = 1 then {,(y) =
1 and the inequality will certainly hold after the flip. If (,—(y) = 0 and the inequality
holds before the flip, then since our birth rates are increasing c(y,£s-) < ¢(y,{s—). By
considering the possible values of UJ" se see that in all cases the inequality holds after the
flip.

value of UY"* change in £ change in ¢

[0,¢(y,€,2)) flips to 1 flips to 1
(e(y,€a=)s ey, Co-)) stays 0 flips to 1

[e(y, ¢s=), 1) stays 0 stays 0

A similar argument applies if £,_(y) = 1 and a death event T%°® occurs at time s.

To turn the intuitive argument in the last paragraph into a proof, suppose that the
inequality fails at some point z at some time ¢ < ¢;. Let C, be the connected component
containing z for the random graph defined in the proof of (3.1), and let s > 0 be the first
time the property fails at some point y € C;. By the definition of s the inequality holds
on C, before time s. Since C, contains all the neighbors of any site in C; that flips by time
ty it follow from the argument in the last paragraph that the inequality will hold until
the next flip after time s. Since C, is a finite set, the next flip will occur at a time > s,
contradicting the defintion of s and showing that the inequality must hold up to time tg.
Iterating the last conclusion we see that the result holds for all time. |

To explain our interest in (2.2), (2.4), and (2.5) we will now prove that

(2.6) Theorem. If A|V| < § then the contact process has no nontrivial stationary distri-
bution.

ProoF: Consider the contact process starting from all sites occupied, i.e., suppose £3(z) =
1 for all z. It follows from (2.2) that P(£!(z) = 1) is independent of z, so writing y ~
for “y is a neighbor of " and using £T¢f = T,Lf we have

LPE(E) = 1) = ~P(E() = 1) + T AP(E=) = 0,1 () = )

y~z

< —6P(&i(z) = 1) + AWIP(& () = 1)

If A|N| < & then the last inequality implies that P(£}(z) = 1) — 0 as ¢ — oo. Now any
initial configuration has &(z) < 1 = £}(z) for all z, so by (2.5), we have £,(z) < £ (z)
for all t and z and it follows that P(£,(z) = 1) — 0 for any initial configuration. If we
pick o to have a stationary distribution then P(£;(x) = 1) is independent of ¢, so the last
conclusion implies this probability is 0 and the result follows. 0



123

The last argument shows that if we start an attractive process with zll sites occupied
and find P(¢}(z) = 1) — 0 then there is no nontrivial stationary distribution. Our next
result proves the converse. Recall that = denotes weak convergence, which in this setting
is just convergence of finite dimensional distribution.

(2.7) Theorem. As t — oo, ¢! = £1.. The limit is a stationary distribution which is
stochastically larger than any other stationary distribution and called the upper invariant
measure.

PROOF: The key to the proof is the following observation:
(2.8) Lemma. For any set A C Z¢, t —» P(£}(z) = 0 for all z € A) is increasing.

PROOF: Let (p = £!. Clearly, £3(z) 2 {o() for all z so (2.5) implies that for all ¢ and z,
€} (x) > (u(x). Since {; has the same distribution as ¢, it follows that

P(¢i(z) =0forall z € A) < P(¢!, (z) =0 for all = € A) m|
Let ¢(A) = P(é(z) = Oforallz € A) and B = {zi,...,Zm} Using the inclusion

exclusion formula on the events E; = {£,(z) = 0} on A U {z;}, we can express any finite
dimensional distribution in terms of the ¢(C).

1—-P({(z) =0for all z € A,(z) = 1 for ail z € B) = P(UL, E;)

=Y $(AU{z:}) - ) (AU {zi,z;)) + ...+ (-1)"F $(AU B)
i=1

i<y
So (2.8) implies convergence of all finite dimensional distributions. a

The fact that £L_ is a stationary distribution follows from a general result.

(2.9) Lemma. Suppose the Markov process X has a Feller semigroup and X; = X, then
(the distribution of) X is a stationary distribution.

ProoOF: Recall that if X has distribution u then the probability measure pT; defined by

/(#Tr)(dx)f(z) = /;t(dx)Tzf(x) = /#(dz)Ezf(X:)

for all bounded continuous functions f gives the distribution of X, when Xy has distribution
#. The key to the proof of (2.9) is the following general fact:

(2.10) If T} is a Feller semigroup and p, = p then p,Ty = puT,.

To prove (2.10) we note that T, f is bounded and continuous
tim [ ua(@)Tef(2)
[ datese) = [utyan)sa)

lim [T @)
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where the second inequality follows from the fact that Tif is continuous and p, = p.
To prove (2.9) now, let u, be the distribution of X, and note that the Markov property
implies p, Ty = pg4¢. The right hand side converges to y, and by (2.10) the left hand side
converges to puTy, so uTy = u, i.e., u is a stationary distribution. g

Finally we have to explain and show the claim “¢l is stochastically larger than any
other stationary distribution #.” By stochastically larger we mean that if f is any increasing
function which depends on only finitely many cooordinates then

(2.11) Ef(€L) > / £(&)dn(€)

Here f is increasing means that if £(z) < {(z) for all = then f({(z)) < f(¢(z)). To prove
the claim let (o have distribution 7. Clearly, £3(z) > (o(z) for all z so (3.5) implies that
€i(z) = (i(z) for all ¢t and z. Now if f is increasing

Ef(6) > Ef(¢) = / F(€)dn(€)

since 7 is a stationary distribution. If f depends on only finitely many coordinates then
it is continuous and

Ef(&) — Ef(£s)

Combining the last two conclusions, proves our claim and completes the proof of (3.7). O

(2.12) Remark. A result of Holley implies that since £, is stochastically larger than =,
we can define random variables £ and ¢ with these distributions on the same probability
space so that {(z) > ((z).

Later we will need a variation of (2.9). The next result and (3.15) are not needed
until Section 5, so I suggest that you wait until later to read the rest of this section.

(2.13) Theorem. Suppose the Markov process X has a compact state space A and a Feller
semigroup T;. Let u, be the distribution of X, and v, the Cesaro average defined by

w(4) = 1 [ )

If tx — oo and vy, = v then v is a stationary distribution.

(2.14) Corollary. Since the set of probability measures on A is compact in the weak
topology, this implies in particular that stationary distributions exist.

PROOF: Since psT = pyyr we have

1 [ 1 [
v, Tr = E/ psTrds = Z;/ pads
0 r

1 T+t 1 r
=‘/tk+_/ u,ds———/ peds
A tx Jo
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The two error terms on the right hand side have each total mass r/t; and hence converge
weakly to 0. Since vy, = v it follows that 14, T = v. On the other hand it follows from
(3.10) that v, T = vT, so we have vT, = v as desired. O

In Section 5, we will also need the following result:
(2.15) Theorem. The upper invariant measure £. is spatially ergodic.
PROOF: We begin with the observation that
(2.16) for each t, £} is spatially ergodic.

To prove (2.16) we let V= = ({T2% n > 1},{UZ ,n > 1}, =0,...,k —1). {V*,z € Z%}
are i.i.d. and £(z) is a function of the V; so the result follows from a generalization of
(1.3) in Chapter 6 of Durrett (1992). In words, functions of ergodic sequences are ergodic.

To let t — oo, we note that the proof of (2.8) shows ¢! is stochastically larger than
¢l so (2.12) implies that we can construct the two processes on the same space so that
£(z) > €L (z) for all z. Let f be an increasing function that depends on only finitely
many coordinates. The ergodic theorem implies that as L — oo

1
1 . (@)= Ef(&)
L+ b ziflzlleo <L

1
T € (2) = B(f(¢)IT)
(2L +1)¢ I:HESL

The last result and our comparison imply that E(f(£x)|T) < E f(é:) where T is the o-field
of shift invariant events. Letting ¢ ~— co we have E{f(£x)|T) < Ef(£c) and since the left
hand side has expected value Ef(£s), it follows that

(2.17) E(f(€)lT) = Ef(§w)  ass.

At this point we have shown that (2.17) holds for increasing functions that depends on only
finitely many coordinates. Now every function on {0,1}* is a difference of two increasing
functions so (2.17) holds for any function of finitely many coordinates. Taking limits and
using the inequality

E|E(X - Y|T)| < E(X - Y||T) = E|X ~ Y

shows that (2.17) holds for all bounded f so I is trivial. ]
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3. Percolation Substructures, Duality

In this section we introduce a variation of the construction used in Section 2, due to
Harris (1976) and Griffeath (1979), which applies to a special class of models with state
space {0,1}° and leads to a “duality relationship.” For these purposes it is convenient to
write our systems as set valued processes in which the state at time ¢ is the set of sites
occupied by 1's. We begin with

Example 3.1. The basic contact process. We let A be a finite set of neighbors of 0,
say that y is a neighbor of z if y — z € N, and formulate the dynamics as follows:

(i) Particles die at rate 1.
(i1) A particle is born at a vacant site z at rate X times the number of occupied neighbors.

To construct the process we introduce independent Poisson processes {UZ,n > 1} with
rate 1 and {T%¥,n > 1} with rate A for each z,y € Z¢ with y — z € N. At the space
time points (z,UZ) we write a § to indicate that a death will occur if  is occupied, and
we draw an arrow from (y,T2Y) to (z,T*¥) to indicate that if y is occupied then there
will be a birth from y to z.

Given the Poisson processes and forgetting about the special marks, we could construct
the process using the algorithm described in the last section. We introduce the special
marks to make contact with percolation: we imagine fluid entering the bottom of the
picture at the points in £ and flowing up the structure. The §’s are dams, the arrows are
pipes that allow the fluid to flow in the direction of the arrow, and §; is the set of sites
that are wet at time £.

An example of the percolation substructure and the corresponding realization of &,
starting from &; = {0,1} is given in Figure 3.1. The thick lines indicate the sites that are
occupied. To be able to define the dual process, we need an explicit recipe for constructing
£, from the picture. We say that there is a path from (z,0) to (y,t) if there is a sequence

of times sp = 0 < s; < $3 < 8p < sp41 =t and spatial locations z¢ = z,21,...,Zp = ¥ 50
that
(i) for i =1,2,...,n there is an arrow from z;_; to z; at time s;

(ii) the vertical segments {z;} x (si, si+1), ¢ = 0,1,...n do not contain any 6's.

(Exercise: Find a path from (2,0) to (3,t) in Figure 3.1.) Intutitively the arrows are births
that will occur if there are no §’s in the intervals in (ii), so to define the process starting
from £ = A we let

(3.1) & = {y: for some z € A there is a path from (z,0) to (y,t)}

It should be clear from the definitions that £ is the contact process with one small
modification: because of the open intervals in (ii) and the strict inequality in 5, < sp41 = ¢,
the process we have constructed is left continuous. For example, if there is a death at =
at time ¢, the particle will not be dead at time t but it will be dead at time ¢t + ¢ when €
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-

Figure 3.2. Dual of the contact process
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is small.

Although left continuous versions of Markov processes are not the traditional ones, we
will tolerate them in this section since our main goal is to define the dual process and derive
the duality relation (3.2), which is a statement about the one dimensional distributions.
(Note that there are only countably many jumps so the left and right continuous versions
are equal almost surely at any fixed t.) To construct the dual process starting from time
t, we say that there is a path down from (y,t) to (z,t — r) if there is a sequence of times
3¢ =0 < 81 < 83 < $p < Spy1 = r and spatial locations zg = y,£1,...,2n = z so that

(i) for 1 = 1,2,...,n there is an arrow from z, to z;—; at time ¢ — s;
(i1) the vertical segments {z;} X (¢ — si+1,t — 5;), 1 = 0,1,...n do not contain any é's.

That is, we have to avoid §’s as before but this time we move across arrows in a direction
opposite to their orientation. {Exercise: Find a path down from (3,t) to (2,0) in Figure
3.1)

The last definition is chosen so that there is a path from (z,0) to (y,t) if and only if
there is a path down from (y,¢) to (z,0) and hence if we define

(3.2) £BY) — {2 for some y € B there is a path down from (y,t) to (z,t — )}

then {£AN B # 0} = {ANEPY £ §}. With a little more thought one sees that for any
0<s<t

(3-3) {eAnB#0} = {2 néB0 20} = (4néP 2 0)

Figure 3.2 shows a picture of the dual process 55(0)“). To work with the dual, it is
useful to define a process £2 so that for each ¢, {£2;0 < s < t} has the same distribution as
{ESB’” : 0 < s < t}. Comparing the definition of the original process and the dual shows
that we can do this by reversing the direction of the arrows in the original percolation
substructure and then applying the original definition. From this observation it should be
clear that if ¢/ is a contact process with neighborhood set A" then f B is a contact process
with neighborhood set ~A = {~z : z € N'}. So if we use our favorite neighborhood
N = {z: |z|p £ r} then the contact process is self-dual, i.e., {€B,t > 0} and {¢B,t > 0}
have the same distribution.

Example 3.2. The voter model. Recall that our simple minded voters have two
opinions 0 or 1, and that a voter at = changes her opinion at a rate equal to the number
of neighbors (i.e., y with y — = € A/) with the opposite opinion. To make the percolation
substructure we let {UZ¥ : n > 1} be independent Poisson processes with rate 1 when
z,y € Z* with y — z € A, we draw an arrow from (y, UZ¥) to (z,UZ¥) and write a § at
(z,UZ¥). We define paths as before and use the paths to define a set valued process in
which the state at time ¢ is the set of sites with opinion 1. Writing 1 for occupied and 0 for
vacant and thinking about the defintion it is easy to see that the effect of an “arrow-delta”
from y to z is as follows:
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Figure 3.4. Dual of the voter model
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before after
x y X y
§ 66— 0 0 0 0
X 9 1 0 0 0
0 1 1 1
1 1 1 1

In words, because of the é at x, z will occupied after the “arrow-delta” if and only if y
is occupied. From the table {or from the verbal description) we see that the effect of an
“arrow-delta” from y to z is to force the voter at z to imitate the voter at y, so the process
defined by (3.1) is the voter model. Figure 3.3 gives an example of the construction with
& = {—1,0}. Again the thick lines indicate occupied sites.

The motivation for this construction is that it allows us to define a dual process which
in the case of the voter model is quite simple. Since dual paths cannot continue through
§’s and can only move across arrows in a direction opposite their orientation, it is easy to
check that éﬁ"”‘) is always a single site $%'!, which has the interpretation that the voter
at z at time ¢ has the same opinion of the voter at S¥* at time t —s. See Figure 3.4 which
shows éf.""‘) for z = —1 and z = 2. In words, S sits at a site y until t —s = U}** for
some z, indicating the voter at y imitated the one at z, at which time S7** jumps from y
to z. From the last description it should be clear that S is a continuous time random
walk that for each w € N jumps from y to y + w at rate 1.

To determine the behavior of the dual starting from more than one point, we note
that it is constructed from a percolation structure with independent Poisson processes
{Uz¥ : n > 1} for z,y € Z¢ with y — z € N at which time we draw an arrow from
(z,UZ¥) to (y,UZ¥) and write a § at (z,UZ¥). From the definition it is easy to see that
a “delta-arrows” from z to y has the following effect

before after
X y x y
§ — ——— 0 0 0 0
* y 1 0 0 1
0 1 0 1
1 1 0 1

The § at  makes it vacant while the arrow from z to y will make y occupied if there was a
particle at y or at z. These are the transitions of a coalescing random waik. Particles move
independently until they hit and then move together after that. The duality relationship
(3.3) between the voter model and coalescing random walks leads easily to the results of
Holley and Liggett (1975). These conclusions are true quite generally but we will state them
only for our favorite neighborhoods {z : [|z]|, < r} with r > 1. To make the statements
here match Theorems 2A and 2B in Section 1, we revert to coordinate notation: &(z) =1
if and only if z € &;.

Theorem 3.1. Clustering occurs in d < 2. That is, for any {o and z,y € Z? we have

P(&y(z) # &(y)) = 0ast — o0
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Theorem 3.2. Let ¢! denote the process starting from an initial state in which the events
{€8(z) = 1} are independent and have probability . Ind > 3 ast — oo, &/ = ¢4, a
translation invariant stationary distribution in which P({.(z) = 1) = 6.

PRrRoOOF OoF THEOREM 3.1. From our discussion of the dual it should be clear that

P(&(z) # E(y)) < P(SE £ 59y

since if the two sites = and y trace their opinions back to the same site at time 0 then
they will certainly be equal at time t. Now the difference .S'_(,z") - SSy") is a random walk
stopped when it hits 0, and the random walk has jumps that have mean 0 and finite
variance. Such random walks are recurrent, and since ours is also an irreducible Markov

chain, it will eventually hit 0. Since 0 is an absorbing state for S_(,I’t) — Sﬁ”"’ it follows
that P(sz’t) # S,(y’t)) — 0 and the proof is complete. a

Remark. The reader should not misinterpret Theorem 3.1 as saying that the voter model
is boring in d < 2. Cox and Griffeath (1986) have proved a number of interesting results
about the clustering in d = 2, which is rather exotic since two dimensional random walk
is just barely recurrent.

PROOF OF THEOREM 3.2. From the proof of (2.8) we see that it is enough to prove the
convergence of P(£; N B = ) for each B. To treat these probabilities we observe that

P(6,0 B = 0) = E{(1 - )&}

since by duality there are no particles in B at time ¢ if and only if none of the sites in ESB")

is occupied at time 0, an event with probability (1 — 9)|éfs'l)l. To analyze the right hand
side we note that ésB‘t) has the same distribution as EF constructed from the percolation
substructure that has the directions of all the arrows reversed. Since £F is a coalescing

random walk, [étB| is a decreasing function of ¢ and has a limit. Since 0 < (1 — 9)|éP| <1
it follows from the bounded convergence theorem that

‘li'n;o E{(1- 0)‘5-'(8")]} exists
and the proof is complete. O
Since the £f are translation invariant (by (2.2)), it follows that the limits £Z, are.
Pze&)=P(S/" €&)=6
for all t so P(z € £2)) = 0. Holley and Liggett (1975) showed that the ¢2, are spatially
ergodic and give all the stationary distributions for the voter model. That is, all stationary

distributions are a convex combination of the (distributions of the) £2,. For proofs of this
result see the original paper by Holley and Liggett (1975) or Chapter V of Liggett (1985).
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Using duality we can prove a convergence theorem due to Harris (1976) for a gen-
eral class of processes that contains the contact process as a special case. We begin by
introducing the models we will consider.

Additive processes. For each finite A ¢ Z¢ and ¢ € Z* we introduce independent
Poisson processes {T>4,n > 1} and {UZ%,n > 1} with rates A(A) and 6(4). (To have a
finite range interaction, we only allow finitely many of the rates to be nonzero.) At times
T4 we draw arrows from z + z to z for all z € A and there will be a birth if some site in
z + A is occupied. At times U,‘,"'A we write a 6 at z, draw arrows from = + z to z for all
z € A, and there will be a death at z unless some point in z + A is occupied. The process
is then obtained from the percolation substructure by using (3.1). In the new notation our
two examples may be written as (the rates we do not mention are 0):

The contact process. A(4) = A if A = {z} with z € N; §(8) = 1.

The voter model. §(A) =1if A= {z} withz e V.

It should be clear that for any additive process the birth rates are increasing and the death
rates are decreasing so these systems are attractive. To see that additive processes are a
fairly small subclass of the attractive models, we will now consider

Example 3.3. Nonlinear Contact Processes. In these systems the flip rates are

CU(‘Z’E) =1
a(z,§) =b{y e N :{(z +y) =1}])
where 5(0) = 0. To get the desired death rates we set §(§) = 1 and 6(A) = 0 otherwise.

To see what birth rates we can create we begin with the special case
(i) d = 1, N = {—1,1}. In this situation we must have

A{ID=x{-1H)=a A{L,-1})=a
and the other A(4) = 0, so §(1) = a; + a; and b(2) = 2a, + ay which is possible with
a1,az > 0 if and only if
B(1) < B(2) < 26(1)
The extreme case b(2) = 2b(1) is the basic contact process, the other extreme b(2) = b(1) =
b is called the threshold contact process because the birth rate is b if there is at least one

occupied neighbor. An example of a system not covered by this construction is the sezual
reproduction model which has 6(1) = 0 and b(2) = A.

(ii) Suppose |[V| = 4 and think about N = {-2,-1,1,2} ind=1or N = {z : ||z|; =1}
in d = 2. (The geometry of the set A does not enter into the decision as to whether or not
a system is additive.) In this case A(A) = a; if A C A with |A| = ¢ (and 0 otherwise) so

(1) = a1 +3az +3a3 + a4

b(2) = 2a; + 5az + 4az + a4

6(3) = 3(11 + 6(22 + 4(13 + a4

b(4) = 40,1 + 6&2 -+ 4(13 + as
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To see the equation of b(2) say, note that any two element subset of A touches 2 of the
singleton subsets of AV, all but one of the 6 two element subsets, all 4 of the three element
subsets, and the four element subset. Subtracting the equations gives

and taking differences again

ar = b(4) - 5(3)

az = (b(3) — b(2)) - (b(4) — &(3))

as = (b(2) — b(1)) = 2(5(3) — &(2)) + (5(4) - &(3))

ag = ((b(1) = b(0)) — 3(b(2) — b(1)) + 3(6(3) — 5(2)) — (b(4) — b(3))

The process is additive if and only if these quantities are nonnegative. These conditions
are monotonicity and convexity properties of the sequence of birth rates b(z). A result
for general neighborhoods can be found in Harris (1976), see (6.4) on page 184. The
conclusions we would like the reader to draw from this computation are that (i) the additive
processes are a small subset of the attractive processes but (ii) when we consider nonlinear
contact processes with |A/| = 4 additive processes are a four dimensional subset of the four
dimensional set of models.

Harris’ convergence theorem for additive processes. Before getting started we
need to introduce a technical condition. Let ¢? denote the process starting from a single
particle at the origin. We say ¢, is irreducible if for any z and t > 0 P(z € £;) > 0. Recall
that in Section 2, we let £} denote the process starting from &} = Z* and showed that for
any attractive process ¢! = £1,, a translation invariant stationary distribution.

Theorem 3.3. Suppose §; is an irreducible additive process with (@) > 0. If & is
translation invariant and assigns 0 probability to the empty configuration then ¢, = £L
as t — oo.

Corollary. ¢}, is the only translation invariant stationary distribution that assigns 0
probability to the empty configuration.

Remarks. The condition §(8) = 0 eliminates the voter model for which the conclusion of
Theorem 3.3 is always false. Qur result is only for translation invariant initial distributions.
With a lot more work one can prove a complete convergence theorem:

Theorem 3.4 Suppose ¢, is an irreducible additive process with §(8) > 0. Then for any
A7
£} = P(r” < 00)8p + P(r* = 00)El,
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where 8¢ denotes the pointmass on the emptyset and we are using £L, to denote its distri-
bution.

In words, if the process does not die out, then at large times it looks like the process
starting from all 1’s. This implies that all stationary distributions have the form 865 +{1 —
6)¢l,. For the contact process, this result is due to Bezuidenhout and Grimmett (1990).
To prove this in the general case you will need to consult Bezuidenhout and Gray (1993).

PrOOF OF THEOREM 3.3. To begin we note that the duality equation (3.3) implies

P(EINB #0) = P(EPY nel #0)
= P(£? #0) — P(7% = o0)

as t — 0o. As in the proof of Theorem 3.2, the argument in (2.8) shows that it is enough
to prove P(£ N B # 0) — P(#8 = o0). Half of this is very easy. By duality and the fact
that & c Z¢

P(&NB#0) = P& NEPY £0) < P(77 > 1)

SO
limsup P(§, N B # @) < P(#8 = o0)
t—oo

To prove the other direction, we let ¢y be the constant in (2.1) and observe that (3.3)
implies
P4, N B #0) = P(£, N 558.1—0—10) 0)

To get the right hand side to converge to P(#¥ = oo) we need to show that when éﬁ Bittto) #
# then it will intersect £;, with high probability. The first step in doing this is to show
that when EEB‘H%) # 0, it will contain a large number of points with high probability. To
do this, let

A= STIAIAA) + 8(4))
A

be the rate at which an isolated particle gives birth to a new particle and let @ = (1 —
e~%®e~A be a lower bound on the probability that in one unit of time an isolated particle
is killed and does not give birth. Now for any K

Pt <#B <t+1)>aXP(0 < |EPH) < K)
To see this note that the events that each particle is killed by a § are independent, and write
the statement that no particle gives birth in terms of Poisson processes in the percolation
substructure. Since P(t < #% < t+1) = 0 as t — oo, and @ is a positive constant, it
follows that
(3.4) P(0 < [EPH ) < K) -0

To complete the proof now it suffices to show
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(3.5) Lemma. If ¢ > 0 then we can pick K large enough so that if [4] > K then
P(b, N A =0) < 3e.

For then it follows that from (3.5) and (3.4) that

liminf P(é, NE™H £0) > (1 - 3¢) litmian(lffB"“”)l > K)
>(1-3¢)P(78 > t)
Remark. For the conclusion in (3.5) it is important that we let the process run for a
positive amount of time. The initial configuration £, that is 2Z with probability 1/2 and

2Z + 1 with probability 1/2 is translation invariant but P(£ N {2,4,...,2K}) = 1/2 for
all K.

PROOF OF (3.5): For this proof it is convenient to use the coordinate representation
of the process, i.e., &(z) = 1 if z is occupied at time ¢ and 0 otherwise. Let u be
the distribution of £ (i.e., the induced measure on {0,1}°) and use P; to denote the
probability law for £ when £, = £. Our assumption of irreducibility and attractiveness
imply that Pe(¢:,(z) = 1) > 0 unless £ = 0, an event that by assumption has probability
0, so

(3.6) For any € > 0 there is a p < 1 so that
p({€ : Pe(io(z) =0) > p}) <€

Here we need translation invariance to conclude that the left hand side does not
depend on z. The second ingredient is to note repeated use of Holder’s inequality gives

E(X, -+ Xy) < (BIXDYE - (BIXEDE
which in turn implies
(3.7) Let X, ..., Xk be random variables so that 0 < X; < 1 and P(X; > p) < e. Then
E(Xy--Xp)<pF+e

Pick J so that p/ < e. Our proof of the next result explains why we chose the time
to. The result is valid for any time ¢, see Holley (1972).

(3.8) Given e > 0 and J, we can pick I so that if B C Z¢ with |B] = J and ||z — ¢l > 2L
whenever z,y € B with z # y then

E { ITa- &o(z))} — [ {Be(l - €ul2))}| < €

z€B z€B

PrROOF OF (3.8): First we compute the value of each &,,(z) with £ € B by using an
independent copy of the percolation substructure P,. The second step is to combine



136

all these independent substructures to make a new one P,y by taking T4 and U4
from P, if and only if y + A C D(z,L) = {z : ||z — z]lcoc < L} and then using another
independent percolation substructure P* to fill in the missing Poisson processes. Let R
be the largest value of ||z]lo for a point in some set A with A(A4) or 6(A) > 0. R is the
range of the interaction. If the cluster containing = in P, defined in the proof of (2.1) lies
inside D(z, L — R) then it is identical with the cluster containing z in Py and the values
computed for £, are the same. Since the states of z in the processes on P, are independent,
it follows from the proof of (2.1) that if L is large the random variables 1 — £, (z) on Pau
are equal with high probability to independent random variables and (3.8) follows. O

To complete the proof of (3.5) now, we observe that

(83.9) If B C Z¢ with |B| = J and if ||z — y||e > 2L whenever z,y € B with z # y then

Pltun() = 0forall 2 & B) = [ u(dt) Be [J(1 - €u (=)

z€B

<et /u(df) T] Be(1 - & (e)) <2 + 5} <3¢

T€EB

by (3.8), (3.6), (3.7), and the choice of J. To get from the last result to the desired
conclusion we let K = (4L +1)?J and observe that if |A| > K we can find a subset B with
|B} = J that sastisfies the hypotheses of (3.9). a

Example 3.4. Multitype contact processes, defined in Section 1, have state space
{0,1,x — 1} where 0 indicates a vacant site and : > 0 indicates a site occupied by one
plant of type ¢, and have flip rates that are linear:

col, &) = b¢(x)
ci(z,€) = Mini(z,€) ifgz) =0

When A; = X and é; = §, this process can be studied by using a duality that is a hybrid
of the one for the contact process and for the voter model. The first step is to construct
the process as we did the contact process. We introduce independent Poisson processes
{UZ,n > 1} with rate § and {T?¥ n > 1} with rate ) for each z,y € Z¢ with y —z € N.
As before, we write a § at (¢, UZ) to indicate that a death will occur if  is occupied by a
particle of either type, and we draw an arrow from (y, T>¥) to (z, T2¥) to indicate that if
z is vacant and y is occupied then there will be a birth from y to z.

If we define the dual process as in (3.2) then reasoning as before we see that z will
él((r),l)

be occupied at time t if and only if some site in is occupied in &. The dual

for the mutlitype contact process is the set Ef{r)‘t) plus an ordering of that set with the
interpretation that the type of z is that of the first occupied site in the ordering. For
example in the realization drawn in Figure 3.2, the ordering is 1 > 2 > —2

The first site in éﬁ“”" in this ordering is called the distinguished particle. Results of
Neuhauser (1992) show that the movements of the distinguished particle are enough like
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those of a random walk to conclude that in d < 2 the distinguished particles for the duals
of two different sites will eventually be equal for large t. This is the key idea in proving
Theorems 4C and 4D in Section 1. In the two type case, when §; = §; and A} < A, we
can augment the construction above with Poisson processes of arrows that only allow the
births of 2’s and an easy argument gives Theorem 4A. However such an approach will
never give us Conjecture 4B.
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4. A Comparison Theorem

In this section we will introduce a comparison theorem that is very useful in proving
the existence of nontrivial translation invariant stationary distributions. At this point we
have to ask for the reader’s patience: the result given in Theorem 4.3 is powerful but you
will need to see a few applications to understand how it works.

Our general method for proving the existence of stationary distributions is to compare
the process of interest with oriented percolation, so our first step is to introduce oriented
percolation and state some of its basic properties, the proofs of which are hidden away in
the appendix. Let

Lo={{(z,n) € Z*: z 4+ niseven,n >0}

and make Lo into a graph by drawing oriented edges from (z,n) to (¢ + 1,n 4+ 1} and
from (z,n) to (z — 1,n + 1). Given random variables w(z,n) that indicate whether the
sites are open (1) or closed (0), we say that (y,n) can be reached from (z,m) and write
(z,m) — (y,n) if there is a sequence of points T = Z,,...,T, = y so that g — 24| =1
for m < k < n and w(zg,k) =1 for m < k < n. In the standard oriented percolation
model the variables w(z,n) are independent, but in almost all cases our comparisons will
introduce dependencies between the w(z,n), so we need a more general set-up. We say that
the w(z,n) are “M dependent with density at least 1 — 4" if whenever (z;,n;), 1 <21 <1
is a sequence with ||(zi,n;) — (zj,n;)|lec > M if ¢ # j then

(4.1) P(w(zi,ni) =0for 1 <i <) <Af

Note: Classical M-dependence would require that the w(zi,n;) considered above are in-
dependent. However the probability in (4.1) is the only one we need to control and hence
the only thing we assume.

Given an initial condition Wy C 2Z = {z : (z,0) € Lo}, we can define a process by

Wo = {y:(z,0) = (y,n) for some z € Wy}

In words, the sites W, are those that are wet at time n. To keep the terminology straight,
think of open sites as air spaces in a rock, and the sites in W, as the ones that the fluid
can reach (and hence wet) at level n. We use W to denote the process that resuits when
W = {0} and we let

Co = {(y,n): (0,0) = (y,n)}

be the set of all points in space-time that can be reached by a path from (0,0). (When
(0,0) is open Cp = Un(WS x {n}).) Co is called the cluster containing the origin. Figure
4.1 shows a simulation of the independent oriented percolation process in which sites are
open (indicated by black dots) with probability p = 0.6. Time goes up the page and lines
connect the points of C,.

When the cluster containing the origin is infinite, i.e., {|Co| = co} we say that perco-
lation occurs. Our first result shows that if the density of open sites is high enough then
percolation occurs. All that is important about the upper bound is that it is < 1 for small
~ and converges to 0 as v — 0.
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Figure 4.1

Theorem 4.1. If y < 674@M+1)? thep
P(ICo| < 00) < 551/M+1D* < 1 /90

In order to prove the existence of stationary distributions we need results about M
dependent oriented percolation starting from the initial configuration W in which the
events {z € W'}, z € 2Z are independent and have probability p. We will sometimes
call this a Bernoulli random set with density p. Taking p = 1 (i.e., all sites wet initially)
corresponds to computing the upper invariant measure for oriented percolation, but for
some of the proofs below we will need to allow p < 1. Note that the estimate on the liminf
is independent of p and is 1 minus the upper bound in Theorem 4.1.

Theorem 4.2. If p > 0 and vy < 674@M+1)7 ten
liminf P(0 € WP,) > 1 — 55y1/CM+1)" > 19/90

The last result shows that if the density of open sites in oriented percolation is suf-
ficiently high and if we start with from a Bernoulli random set with density p then the
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probability 0 is wet at time t does not go to 0. This result will allow us to prove in a
number of situations that if we start from a suitably chosen translation invariant initial
distribution, then the density of sites of type ¢ does not go to 0 and then using (2.7) or
(2.11) that a nontrivial translation invariant stationary distribution exists. The missing
link is provided by Theorem 4.3, which gives general conditions that guarantee a process
dominates oriented percolation. This is the result we warned the reader about at the
beginning of the section - it does not look pretty but it is very useful in a number of
situations.

Comparison Assumptions. We suppose given the following ingredients: a translation
invariant finite range process & : Z¢ — {0,1,...x — 1} that is constructed from the graph-
ical representation given in Section 2, an integer L, and a collection H of configurations
determined by the values of £ on [~ L, L]¢ with the following property:

if £ € H then there is an event G measurable with respect to the graphical representation
in [——koL,koL]d % [0,70T] and with P(G¢) > (1 — v) so that if & = £ then on G¢, {1 lies
in ozre, H and in 0_pp,, H.

Here (0,€)(z) = €(z +y) denotes the translation (or shift) of £ by y and oy H = {o,£ : { €
H}. If we let M = max{jo, ko} then the space time regions

Romn = (m2Ley,nT) + {[~koL, ko L}* x [0,50T]}
that correspond to points (m,n),(m',n') € £ with |[(m,n) - (m',n')]lc > M are disjoint.

For a concrete instance of the comparison assumptions consider the applications we
will make to the threshold contact process in Section 5 and to the basic contact process
in Section 7. In both cases k = 2, and H is the set of configurations with at least K 1’s
in [=L,L]%, ko = 4, and jp = 1. In words, we show that if there is a “pile” of at least K
particles in [~L, L] then with high probability there will be piles of at least K particles
in —2Le; +[~L,L}? and in 2Le; + [~ L, L] at time T, and the event that guarantees this
is measurable with respect to the graphical representation in [—4L,4L]? x [0, T]. Figure
4.2 below gives a picture of the event.

Using words inspired by the contact process example, our comparison assumptions
say that if we have a “pile of particles” in I,, = m2Le; + [—L,L]¢ at time nT (i.e.,
€nT € OmaLe, H) then with high probability we will have piles of particles in Im—; and
in I,y at time (n + 1)T, and the event that guarantees this is measurable with respect
to the graphical representation in Ry, n. If we think of drawing arrows from (m,n) to
(m+1,n+1) and to (m — 1,n + 1) whenever the good event in Ry n occurs then the
connection with oriented percolation should be clear.
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Figure 4.2

To formulate our theorem welet X, = {m : (m,n) € Lo,&nT € Om2Le, H}. Intuitively,
m € X, if there is a pile of particles in [,,, at time nT

Theorem 4.3. If the comparison assumptions hold then we can define random variables
w(z,n) so that X, dominates an M dependent oriented percolation process with initial
configuration Wy = X and density at least 1 — 4+, i.e., X, D W, for all n.

Again the details are hidden away in the appendix so that they can be digested after the
reader has seen that this is a useful result.

Our first indication that Theorems 4.1-4.3 are useful is a simple proof of a general
result about the existence of stationary distributions, which contains as a special case a
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number of earlier results. To formulate our result we will consider a fixed set of increasing
birth rates ¢1(z,€) and introduce death rates co(z, £) = ¢. We say that the birth rates are
robust if there is an ¢y > 0 so that there is a translation invariant stationary distribution
with a positive density of 1’s for € < €. Our next result gives a sufficient condition for
robustness. It may look a little strange at first but it has been formulated to be easy to
prove and to apply.

Theorem 4.4. Let f_tL‘" denote the process with no deaths, i.e., ¢ = 0, starting from
£*(z) = 1 for € {—L,L}¢, = 0 otherwise and modified so that no births are allowed
outside [—pL,pL]?. Suppose that we can pick p > 3 so that for any § > 0 we can pick L
and T < oo so that

P(ék*(z) =1forall z € [-3L,3L1%) > 1 -6
Then the birth rates are robust (and fertile).

Ignoring the undefined term in parentheses, this theorem says that if, in the absence
of deaths, the birth mechanism can triple the size of a cube [— L, L]? with high probability,
then there is a nontrivial translation invariant stationary distribution when the death rate
co(z,€) = € is small. The requirement that this can be done when the model is “modified
so that no births are allowed outside [—pL, pL]?” is a technical condition that is usually
satisfied with p = 3.

PROOF OF THEOREM 4.4: If welet K = p, J = 1land H = {£ : {(z) = 1forallz €
(=L, L)%}. then the hypotheses of Theorem 4.4 are that the comparison assumptions hold
for the system with ¢ = 0. However, once L and T are fixed it follows that for € < ¢,
the good event G¢ for the one configuration in H has probability at least 1 — 24, since the
probability a death occurs at some site in the space time box [—3L,3L]¢ x [0,T) is less
than é when ¢ is sufficiently small.

To construct our stationary distribution, we consider the process £} starting from
&(z) = 1 for all z. In this case Xy = 2Z so using Theorems 4.3 and 4.2 with p = 1, it
follows that if € < ¢y then

liminf P(£4,(0) = 1) > 19/20
n—oo.
Using (2.7) now it follows that there is a nontrivial stationary distribution. ]

We will now give three examples to shows that is easy to check the conditions of
Theorem 4.4.

Corollary 4.5. If we fix A = 1 in the contact process with neighborhood N = {z :
llzll, < r} where r > 1 then there is a nontrivial stationary distribution when the death
rate § < é.
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PRrROOF: Take p == 3 and L = 1. Since 1’s can never flip to 0 it is easy to see that
Jim P(£2*(z) = 1 for all z € [-3L,3L]%) = 1
so the hypotheses of Theorem 4.4 are satisfied. a

Example 4.1. One Dimensional Counting Rules. Suppose d = 1, N = {z : |z| < k},
and let
ni(z,8) = {z €N 1 §(z +2) = 1}

be the number of neighbors of z that are 1. We call a birth rate ¢,(z,¢) a counting rule
if it only depends on the number of 1’s in the neighborhood, i.e., ¢i(z,€) = b(ni(=,¢))
Clearly a counting rule birth rate is increasing if and only if j — (7) is nondecreasing.
Let jo = min{j : b; > 0} and call jo the order of the birth rate. The next result is due to
Mityugin.

Corollary 4.6. When d = 1 and VN = {j : |j| < k}, increasing counting rule birth rates
are robust if and only if their order j, < k.

PROOF: If jo > k then a string of at least k 4 1 consecutive 0’s can never flip back to
1 even if all the other sites are 1. If co(z,£) = € > 0 then such a string will eventually
be created and grow to cover the whole line, so there cannot be a nontrivial stationary
distribution.

If jo < k, we take p = 3 and choose L so that 2L + 1 > k. When ¢ = 0 the 1’s never
flip back to 0. The 0 at L + 1 has k neighbors that are 1 and hence flips to 1 at rate
b(k} > 8(jp) > 0. Once the 0 at L+ 1 flips to 1, the 0 at L +2 will flip to 1 at rate b(k}, so

lim P(£%*(z) =1forall z € [-3L,3L]) =1
T—oo
and the hypotheses of Theorem 4.4 are satisfied. ]

Things get more interesting in two dimensions.

Example 4.2. Two Dimensional Threshold Birth Rates. Suppose d = 2 and
N = {z : ||zlec = 1}, i.e,, in addition to the four nearest neighbors we use the four
diagonally adjacent points:

{ ("'111) (07 1) (111)
N={ (-1,0) (1,0)
(_11_1) (07~1) (1»_1)

This is sometimes called the Moore neighborhood in honor of one of the pioneers in the
field of cellular automata. Let n;(z,£&) = [{j € M : £(z) = 1} be the number of neighbors

in state 1 and let
1 ifny(z,8) 280

ci(z, &) = {0 if ny(z,8) <8
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This is called a threshold  since the birth rate 1 if there are at least 6 1’s in the neigh-
borhood then the birth rate is 1, and otherwise it is 0. From Theorem 4.4 we get easily
that

Corollary 4.7. Two dimensional threshold birth rates for the Moore neighborhood in two
dimension are robust if § < 3.

PROOF: Take p =3, L = 1, and draw a picture.

FoNJVIER R U
[ I N ]
B = = D
W= = =W
W N W

We start with the 3 x 3 square of 1’s occupied by 1’s. If § < 3 then the four sites marked
with 2’s have birth rate 1 and will eventually become occupied. Once they do, the eight
sites marked 3 have three occupied neighbors and will become occupied. Finally the four
sites marked 4 will become occupied. At this point we have shown how the process can fill
up [—2,2]?. Repeating the argument, it is easy to see that

Jim P(EE*?(z) = 1forall z € [-3,3])) =1
the hypothesis of Theorem 4.4 is satisfied and the result follows. a

In the last argument it was important that we used the Moore neighborhood, instead
of the usual nearest neighbors {z : |z| = 1}. If we use the nearest neighbors then, no
matter how big L, is if we start with [—L, L]? occupied nothing happens since any site
outside [—L, L]? has at most one occupied neighbor.

0 0000
0 0z 00
11111

Since births are impossible outside any rectangle containing the 1's in the initial config-
uration, it is clear that the threshold two birth rate for the nearest neighbors dies out
whenever the death rate is co(x,&) = € > 0. That is, if there are only finitely many 1's in
&g, then

P #£0)—0 ast— oo

Here & = 0 is short for £,(z) = 0 for all z. Note that the all 0’s state is absorbing so
t — P(& # 0) is decreasing. The opposite of dies out is survives. That is, if L is large
enough and we start with 1’s on [~ L, L]? then

llimP({l;‘é0)>0 ast — oo
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We say that a birth rate is fertile if it survives when co(z,€) = € and ¢ < €. As the
parenthetical phrase in Theorem 4.4 indicates, our sufficient conditions for robustness are
also sufficient for fertility.

Having two notions of what it means for birth rates to be large enough, fertility and
robustness, it is natural ask what is the relationship between these two notions:

1. Results of Bezuidenhout and Gray imply that increasing birth rates that are fertile are
also robust, but the two notions are not equivalent.

2. As we have shown the two dimensional threshold two system using the nearest neighbors
is not fertile. However, Bramson and Gray (1991) have shown that it is robust. Intuitively
the process cannot grow outside of a rectangle but it is good at filling in holes that develop
so it can have a nontrivial stationary distribution when € is small.

In the case of the Moore neighborhood in two dimensions, it is easy to see that the
threshold 4 system is not fertile but techniques of Bramson and Gray (1991) can be used to
show that it is robust. The threshold 5 system has finite configurations of 0’s that cannot
be filled in

oo
oo oo

0
00
00
0

so an easy argument shows that it is not robust. An interesting open problem is to look
at the neighborhoods A = {2z : ||z]|, < r} (or even just take p = oo) and find the largest
thresholds for which the threshold @ birth rule on that neighborhood is robust (resp.
fertile).

Further results. There are many other results proving the existence of phase transi-
tions for processes with state space {0,1}5. Gray and Griffeath (1982) proved a “stability
theorem for attractive nearest neighbor spin systems on Z” by the contour method, a re-
sult which was reproved by the methods of this section by Bramson and Durrett (1988).
Gray (1987) proved results for the one dimensional majority vote model. Chen (1992) used
ideas from bootstrap percolation to study a model with sexual reproduction. In general
the numerical bounds on critical values from this method are terrible but Durrett (1992c)
has shown that in some cases you can get good bounds.

Bramson and Neuhauser (1993) studied perturbations of one dimensional cellular au-
tomata. Their results are exciting because they apply to a number of examples that are
not attractive. An important special case is that if one considers the addition mod 2
automaton:

77n+l(x) = (Ma(z = 1) + 7a(z + 1)) (med 2)

and adds spontaneous deaths at a small rate ¢ then there is a stationary distribution close
to product measure with density 1/2. Figure 4.3 shows the cellular automaton starting
from a single 1 at 0, which generates a discrete version of the Sierpinski gasket. Figure 4.4
shows what happens when we introduce spontancous deaths at rate ¢ = 0.01. Note that
there are many more occupied sites in the model with extra deaths.
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Figure 4.4. Plus spontaneous deaths with probability 0.01
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5. Threshold Models
We begin by recalling a definition given in Section 1.

Example 5.1. The threshold voter model. The state space is {0,1}° and the flip
rates are

- _ 1 if ni(Ivé) 2 ¢
C:(l‘a 5) - {0 if Tl,‘(ny&) <4

Here, as usual, ni(z,€) = [{y € N : {(z +y) = ¢}| is the number of neighbors of type i and
we assume N = {y : |ly|l, < r} for some 1 <p<ocoandr>1.

Our first goal is to show that the behavior of the threshold 1 voter model is much
different from that of the basic voter model. We begin with one case in which the behavior
is the same.

Theorem 5.1. Suppose d = 1 and /' = {—1,1}. Then the threshold 1 voter model
clusters starting from any translation invariant initial state . That is, for any  # y we

have P(&(x) # £i(y)) — 0.

PRrOOF: To motivate the proof, take a look at Figure 5.1 which shows a simulation of the
system on {0,1,...,719} with periodic boundary conditions (i.e., 0 and 719 are neighbors).
The initial configuration at the top of the page is product measure with density 1/2. As
we go down the page from time 0 at the top to time 690 at the bottom, it should be clear
that intervals of sites with the same opinion can be destroyed but cannot be created. Thus
the number of intervals per unit distance will go to 0, i.e., the system clusters.

To turn the last paragraph into a proof, we define a process on 1/2 4+ Z so that

Culz) = [€(z — 1/2) — &z + 1/2)]

In words, there is a 1 at z if and only if £(z — 1/2) # £,(z +1/2). { is called the boundary
process of ¢ since the 1’s mark the boundaries between clusters of the voters with the same
opinion. To see how ( evolves consider the following picture

€ 1 1 0 1 1 0 0
¢ 0 1 1 0 1 0

z 1 15 2 25 3 35 4 45 5 55 6 65 7

Isolated 1’s in ¢ like the one at 5.5 perform random walks: the 1 at 5 flips to 0 at rate
one and when this occurs the boundary jumps from 5.5 to 4.5; similarly, the 0 at 6 flips
to 1 at rate one and when this occurs the boundary jumps from 5.5 to 6.5. When a 1 is
adjacent to another 1 (like those at 2.5 and 3.5) they annihilate at rate 1, since when the
0 at 3 flips to 1 the two boundaries disappear.

Let u(t) = P(¢,(z) = 1), which is independent of z since we have supposed that £ is
translation invariant. Since 1’s can be destroyed in ¢ but cannot be created, it should not
be surprising that u(t) — 0 as t — co. To prove this, we note that

du

(5.1) >

= —P(((z) = 1,{(z — 1) = 1) — P(C(z) = 1,(e(z + 1) =1)



Figure 5.1. One dimensional nearest neighbor threshold voter model.
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This can be proved by using ;id—tTg f = T.Lf or more intuitively by noting that the right
hand side gives the two ways that a 1 at z can be destroyed. The terms that involve a 1
moving to z or moving away from z cancel.
Translation invariance implies that the right hand side of (5.1) is
—2P((:(0.5) = 1,{:(-0.5) = 1) = —o(t)
The first step in proving u(t) — 0 is to show that if ¢ > 1
(5.2) v(t) > g(u(t — 1)) where g(z) > 0 when z > 0

To do this we note that if u(s) > 1/L where L is an integer then

(5.3) P((, has at least two I’sin (—L,L]) >

2L -1

for otherwise we get a contradiction

2L —2 1 4L -2
< = 91 ‘L1 -
2<2Lu(s)=E Y (f2)<1 IRy A Ry A

z€(~L,L] 2L -

Now if we have an initial configuration in which there are at least two 1’s in (—L, L] there is
a probability > €7 > 0 that no particles will enter (—L, L] before time 1, the two particles
closest to 0 will move to 0.5 and —0.5, and none of the other particles in (—L, L] will move.
Combining this observation with (5.3) proves (5.2). To complete the proof of Theorem 5.1
now, we observe that u(t) is decreasing so u(t) — u(co) > 0 as — 0. If u{co) > 0 then
for all ¢ we have

d
= = —v(t) < —g(u(e0)) <0
so integrating we find u(t) — —oo a contradiction. a

Remark. The argument above applies {o any one dimensional nearest neighbor system in
which ¢;(z, €) = f(ni(z,£)) with f(0) = 0, the so-called nonlinear voter models. In the case
of the basic voter model, i.e., f(2) = 2f(1) the boundary process is an annihilating random
walk. That is, particles perform independent random walks until they hit at which time
the two particles annihilate. Theorem 3.1 shows that for the basic voter model clustering
occurs for any initial configuration. Theorem 4 in Cox and Durrett shows that for the
threshold voter model clustering occurs for any initial configuration. We

Conjecture 5.1. In any one dimensional nearest neighbor nonlinear voter model cluster-
ing occurs for any initial configuration.

Our next goal is to show that coexistence is possible in the threshold 1 voter model
even in one dimension. To do this we will use some ideas from Liggett (1993) to compare
with
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Example 5.2. The threshold contact process. The state space is {0,1}° and the flip
rates are

A ing(z,€)>0
c1(17f)"{0 ifni($75)<9

Co(z’f) = 1
Here ¢1(z, &) is the same as in the threshold voter model but we have set ¢o(z,¢) = 1.

(5.4) Lemma. If the threshold 6 contact process with A = 1 has a nontrivial stationary
distribution then so does the threshold 8 voter model.

PRroOF: To construct the stationary distribution we will start the threshold voter model
£ from vy, product measure with density 1/2, and compare with the threshold contact
process ¢ to show that clustering does not occur.

The first step in doing this is to show that the upper invariant measure = for the
threshold voter model with A = 1 is stochastically smaller than vy, To do this we compare
the threshold contact process ¢ with the “independent flips process” 1, in which ¢;(z,n) =
1, i.e., each site flips at rate 1 independently of the others. Since sites in  flip to 1 at
rate one independent of what is around them, if we start { and n with (; = ne having
distribution = and construct the two processes using the recipe in Section 2 then (,(z) <
n¢(z) for all ¢ and z. This is true since 1’s flip to 0 at rate 1 in both processes while 0’s
flip to 1 at rate 1 always in 7, but at rate 1 in ¢ only if there are enough 1 neighbors. On
the graphical representation then we find that each flip preserves the inequality and the
result can be proved like (2.5).

Now since the sites in # flip independently it is easy to see that as ¢ — oo 7, converges
to v172. The inequality (;(z) < n¢(z) and the fact that {; always has distribution = imply
that 7 is stochastically smaller than »;;5. To prove this we observe that if f is increasing
and depends on only finitely many coordinates then E f((;) < E f(n:) and since any such
f is bounded and continuous letting ¢t — co gives

[ #(©ar < [ reyan

checking the definition we gave in (2.11).

Now the result of Holley in the remark (2.12) implies that we can define § with
distribution v/, and (o with distribution =, so that that &(z) > (o(z) for all z. Since
sites in ¢ flip to 0 at rate one, while those in £ only flip to 0 at rate one when there are
enough 0 neighbors, and the rates of flipping to 1 are the same, if we construct the two
processes using the recipe in Section 2 then ¢,(z) > (;(z) for all £ and ¢. To construct a
stationary distribution for £, let p, be the distribution of £;, form the Cesaro average

1 T
i = — dt
KT T /(; Hy

and let i, be the limit of a weakly convergent subsequence. It follows from (2.13) that fie,
is a stationary distribution. To see that it concentrates on configurations with infinitely
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many 1's we note that the inequality £,(z) > (i(z) implies that fie is larger than the
upper invariant measure w, which is spatially ergodic by (2.15) and hence concentrates
on configurations with infinitely many 1’s. To see that [i,, concentrates on configurations
with infinitely many 0’s, note that the initial distribution v/, and the threshold voter
model are symmetric under the interchange of 0’s and 1’s, so the limit measure fio is as
well. O

Liggett (1993) has shown

Theorem 5.2. Whend=1and N = {-2,-1,1,2} ord =2 and VN = {y : [ly]l = 1} the
threshold 1 contact process with A = 1 has a nontrivial stationary distribution.

Since enlarging the neighborhood N makes it easier for the threshold 1 contact process to
have a nontrivial stationary distribution, it follows from (5.4) and Theorem 5.2 that

Theorem 5.3. Suppose N = {z: ||z, < r} with 1 £ p € oo and r > 1. With the
exception of the one dimensional nearest neighbor case, the threshold one voter model
always has a nontrivial stationary distribution.

By another comparison argument Liggett shows that to prove Theorem 5.3 it is enough
to consider the case d = 1 and N = {-2,~1,1,2} ~ map Z? to Z by (z,y) — z + 2y and
notice that the image of the two dimensional threshold contact process dominates the one
dimensional one. A simulation of the case d = 1 and N = {-2,-1,1,2} given in Figure
5.2, which parallels the one for the nearest neighbor case in Figure 5.1, makes it clear
that Theorem 5.3 is true. However, the proof of Theorem 5.2 (which implies 5.3) requires
a tricky generalization of the result Holley and Liggett (1978) that the one dimensional
nearest neighbor contact process has A, < 2. Therefore we content ourselves to prove less
(and more).

Theorem 5.4. Suppose N = {y: ||y||, < r} with r > 1. For any threshold 6 if r > r¢(d, 6)
then there is a nontrivial stationary distribution for threshold 8 contact process with A =1
and hence also for the threshold & voter model.

PROOF: We will use the comparison theorem from Section 4. To do this, it is convenient
to suppose that ¢ has been constructed from a percolation substructure with rate 1 Poisson
processes {T'Z,n > 1} at which times we draw arrows from y + z to z for all y € A/, and
rate 1 Poisson processes {UZ,n > 1} at which times we write a § at z.

Exercise. This shows that the threshold contact process can be constructed from a
percolation substructure defined in Section 3. What is the dual process?

Suppose r = (2d + 2)L. To check the comparison assumptions, let H be the config-
urations that have at least § 1's in [—L, L]%. Let v > 0. If T is small enough then the
probability that U# > T for all of our 8 1s, is ¢ =97 > 1 — v/5. Now since r = (2d + 2)L,
the neighborhood of each site in I} = [L,3L] x [-L, L]*~! contains all the sites in [—L, L]



Figure 5.2. One dimensional threshold voter model, range two.
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(distances are largest for the L! norm and for the points (3L, L, ..., L) and (- L, L, ..., L)).
Now as long as there are at least 6 1’s in {— L, L]¢, each site in [L, 3L] will flip to 1 at rate 1.
If r and hence L is sufficiently large then with probability at least 1 ~v/5 at least 8 sites will
flip to 1 by time T. A similar remark applies to the sites in I_; = [-3L,~L] x [-L,L]471,
and our first estimate implies that in each case the probability one of our 8 1’s flips back
to 0 by time T is < /5.

The results in the last paragraph show that if we start with § 1’s in Iy = [-L,L)¢
then with probability at least 1 — « there will be at least 6 1's in J; and in I_; at time T.
Our good event is measurable with respect to the graphical representation in [—3L,3L]’1
so we have checked the comparison assumptions of Section 4 with ko = 3 and jo = 1. If
we start the threshold contact process with all sites occupied then Theorem 4.3 implies
our process dominates an oriented percolation starting with all sites wet, so Theorem 4.2
shows

li'{r_xgéf P(0 € X3,) > 19/20

Now 0 € X,, means that there are at least 6 1's in [—L,L]¢ at time 2nT and &a7 is
translation invariant so it follows that

o - 1
1‘,.“.&‘£f P(&2ar(0)=1) = hnn_}‘loréf CL+ 1) Z P(€3n1(2) = 1)
z€[-L,L}4
1 19
> 9.
AT R

To pass from this result to the whole sequence we notice that since a 1 survives for ¢ units
of time with probability e™, P(£2,74:(0) = 1) > e~ ' P(£2,7(0) = 1) . Combined with the
last result this implies

S e
l;rnlloxéff/o P(&,(0)=1)ds >0
and it follows from (2.13) that there is a nontrivial stationary distribution. o

The last result shows that if the threshold is small compared to the number of neigh-
bors then coezistence occurs in the threshold voter model, i.e. there is a stationary dis-
tribution that concentrates on configurations with infinitely 1’s and infinitely many 0’s.
Our next result due to Durrett and Steif (1993) shows that if the threshold is too large
the system fizates, i.e., with probability one each site changes its state only finitely many
times.

Theorem 5.5. Suppose N = {y: |ly|l, <r}. If 6 > (JA| — 1)/2 then the system fixates.

The borderline case in this result, § = (|[AV|+1)/2 (|V] is always odd), is called the majority
vote process, since you change your mind if you are in the minority in your neighborhood.

PROOF: Our proof is based on an idea of Grannan and Swindle. Let 8;4(t) be 1 if
&i(z) # €u(y), 0 otherwise, and define the energy at time ¢ to be

&= Z e—fllt+yl|252'y(t)
z,y:y~c€N
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where € > 0 is to be chosen later. Since 0 < & < oo, we can prove Theorem 5.5 by showing

(5.5) If @ > (|M] — 1)/2 and ¢ is small then a flip at = decreases the energy by at least
¥(z) > 0.

To prove (5.5) we note that if a = [{y € z+N : &(y) # &(z)}| and N = sup{||z||; : ¢ € N}
then the drop in energy due to a flip at z is at least

(5.6) e72ellzllz [mN gy _ e N(|V| - 1 - a))

since (i) the site r now agrees with the o sites it used to disagree with and now disagrees
with the other || — 1 — & neighbors and (ii) even in the worst case all the points in
{v € 2+ N : £(y) # &(z)} have ||z + yl2 < 2||z|]2 + N and the other points y € z + N
have ||z + y|l2 > 2[|z]|2 — N. In order for a flip to occur we must have a > 6 > (|[N] —1)/2
and hence |N| — 1 —a < @. Since the last two number are integers smaller than [N, (5.5)
follows from (5.6). Qa

Refinements of Theorem 5.4. Before we stated Theorem 5.3, we said “if the threshold is
small compared to the number of neighbors” then the threshold contact process with A =1
has a nontrivial stationary distribution (and hence there is coexistence in the threshold
voter model). What we would like to concentrate on now is:

How large can 6 be when the range is r?

The comparison theorem involves obnoxiously small constants (when M = 1 Theorems 4.1
and 4.2 require v < 671%%). So we cannot hope to get a nontrivial result for r = 10, or
even r = 10,000, but it is not unreasonable to look at how 8 behaves asymptotically with
r. The results were are about to give foreshadow the developments in the next section,
but are not needed for them, or for any subsequent section, and can be skipped without
loss.

Here and until the end of the section we suppose N = {z : ||z||, < r}, let N = |N],
and we investigate what happens for fixed p as r — oo First let’s see what we get when
we follow the proof of Theorem 5.4.

(5.7) There is a ¢, > 0 so that if § < ¢,/N and if r (and hence N) is large then the
threshold 8 contact process with A = 1 has a nontrivial translation invariant stationary
distribution.

PROOF: Taking T = v/58 gives =T = ¢=7/5 > 1 — v/5. Having fixed the time, the
number of sites in [L,3L] x (=L, L]*~! that flip to 1 by time T has a binomial distribution
with parameters n = (2L 4+ 1)? and p = 1 — e~T > 4/66 when 8 is large. If we let Z
be the number of sites in [L,3L] x [~L, L]?~! that flip to 1 by time T then Z has mean
> (2L+1)%/660 and variance < (2L +1)%v/68 so if we set (2L +1)3y/60 = 20 (sticklers for
details should take the smallest integer L so that > holds) Chebyshev’s inequality implies
that

(2L + 1)%~/66 < 2

< < —
P(Z<0)< o <3

-0
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as § — co. Now 62 = (2L + 1)4y/12 > ¢, N since » = (2d + 2)L and the result follows. O
By choosing a more intelligent block event we can get

(5.8) Thereis a c, > 0 so that if 6 < ¢,N and if r (and hence N) is large then the threshold
8 contact process with A = 1 has a nontrivial translation invariant stationary distribution.

PROOF: Let 8 = (2L +1)?/5 and let H be the configurations that have at least (2L +1)%/4
Usin [-L, L]%. If we pick r = (2d + 2)L then 8 > ¢, N for all r and as long as there are at
least 6 I’s in [—L,L]¢ the number of 1’s in {—L, L]* (or in [L,3L] x {—L, L]*"!), behaves
like a Markov chain that jumps k& — k + 1 at rate (2L + 1) — k and k — k — 1 at rate k.
Now when k < (2L + 1)?/3 this chain jumps at rate (2L + 1)? moving up with probability
at least 2/3 and down with probability at most 1/3. A comparison with asymmetric simple
random walk shows

i) with high probability it will take a long time (i.e., at least LD for some ¢ > 0) for
g
the total number of 1's in [~L, L}? to go below

(ii) we can pick a large time T (that is independent of L) so that if L is large then with
high probability the number of 1’s in [L,3L] x [-L, L]*"! and in [-3L, L] x [-L, L}*~}
at time T will be at least (2L + 1)4/4

We leave it to the reader to fill in the missing details since we know how to prove a sharp
result:

(5.9) Let ¢ < 1/4. If § < cN and if r (and hence N) is large then the threshold 8 contact
process with A = 1 has a nontrivial translation invariant stationary distribution.

Let ¢ > 1/4. If § > ¢N and if r (and hence N) is large then the threshold 8 contact process
with A = 1 has only the trivial stationary distribution.

The proof of the first conclusion is closely related to that of Theorem 6.1. For details and
the proof of the converse see Durrett (1992).
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6. Cyclic Models

As already suggested by our remarks on refinements in the last section, we can con-
siderably close the gap between Theorems 5.4 and 5.5 if we look at systems with large
range. The proof of our main result, Theorem 6.1, is no harder for a class of models that
includes a multicolor version of the threshold voter model, so we formulate the result in
that generality.

Example 6.1. Cyclic Color Model. The states of each site are {0,1,...,x — 1} and
the flip rates are
ci(z, ) = { 1 if {(z) = i — 1 and ni(z,€) > 6
0 otherwise

Here and throughout this section, arithemtic is done modulo x s0 0 —1 = k — 1. When
K = 2 the last definition reduces to the threshold voter model. The dynamics here were
invented by David Griffeath as a generalization of the voter model. The cyclic color model
is closely related to the hypercycle of evolutionary biology. See Eigen and Schuster (1979)
and Boerlijst and Hogeweg (1991).

Our main result also applies to two other examples

Example 6.2. Greenberg Hastings Model. The states of each site are {0,1,...,x—1}
and the flip rates are

alz, =1 if é(z) = 0 and ny(z,€) > 6

ci(z, &) =1 fé(z)=1-1
In words, we need an above threshold number of 1’s to make the transition from 0 — 1
but then the rest of the transitions happen at rate 1. When x« = 2 this reduces to the
threshold contact process with A = 1.

Example 6.3. Host Parasitoid Interactions. Insect parasitoids lay their eggs on or
in the bodies of other arthropods, and the parasitoid larvae kill their host as they feed
on it. Hassell, Comins, and May (1991) introduced a cellular automaton model for this
system. The corresponding particle system model has nine states {0,1,...8} and makes
transitions as follows:

a(z, &) =1 if £(z) = 0 and ny(z,£) > 6
ez, £) =1 if £(z) =3 and n5(z,£) > @
ci(z, &) =1 ifi#1,4and f(z)=1~-1

As they explain on page 256, the first transition corresponds to colonization of empty sites
(state 0) by the host, the second to a mature parasitoid (state 5) colonizing a mature host
(state 3), and the others to the aging and/or death of host and parasitoid.

To indicate what common features of the last three models are needed to apply The-
orem 6.1, we say that £ is a cyclic model if the states of each site are {0,1,...,x— 1} and
makes transitions as follows:

ci(z, &) =1  if &(z) =1 and nyy(z,€) 2 6
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Here g(7) € {0,1,...,k — 1} and we set 8; = 0 if the transition happens at rate 1 indepen-
dent of the states of the neighbors. Let 8 = max; 6;.

Theorem 6.1. Let ¢ > 0 and suppose 8 < (1 — €)|NV|/2k. If r > R, then there is a
stationary distribution close to the uniform product measure.

Recall that we suppose /' = {y : [|lyl|, < r} and that the uniform product measure is the
one in which the coordinates are independent and have P(£{(z) = i) = 1/x. When «x = 2
this says that for thresholds a|A/| with a < 1/4 there is coexistence for large . (This result
was stated in (5.9).) In contrast Theorem 5.4 says that when a > 1/2 the system fixates
for any r. We

Conjecture 6.1. When § = a|N] in the threshold voter model and 1/4 < a < 1/2,
clustering occurs for large r.

We will explain our reasons after we give the proof. Theorem 6.1 concentrates on the
behavior for large range. For results about the one dimensional cyclic color model, see
Bramson and Griffeath (1987) (1989), or for a treatment of the corresponding cellular
automaton, see Fisch (1990a), (1990b), (1991).

PROOF IN d = 1: Let a = §/|N|. By assumption a < (1 — €)/2x. Pick 8 € (0, ¢/4] so that
B = 1/p is an integer, pick p < 0 < 1/ so that (1 —28)p > (1 — €)/x, then pick r large
enough so that

2r
(1= B)p+ 5 2 (1= O
Let K = fr and note that BK = r. For each m € Z, we call [mK, (m + 1)K) a house.
We say that a house is good at time 0 if it contains at least o K sites in each of the states
0,1,...,5—1. We say that the interval [—r,7) is good at time 0 if all the houses it contains
are good. This will be our event H when we apply Theorem 4.3.

We have chosen our constants so that as long as each house in [—r,7) is reasonable
i.e., contains at least pK sites of each color, each site in {—r — I, 7 + K') will see at least
6 sites of each color. To check this, note that the worst case occurs when z € [r,r + K),
but even in this case all the sites in [K,r) are in its neighborhood and if all of the houses
in [K,r) are reasonable then the number of sites of a given color in z’s neighborhood will
be at least

(1-¢
2K

So as long as each house in [—r,) stays reasonable, the sites in [-r — I, r 4+ K) flip
from 7 to ¢ 4- 1 at rate 1 (here (x — 1)+ 1 = 0) and hence behave like independent Markov
chains. These “single site” Markov chains are irreducible on {0,1,...,x — 1} and hence
converge to the equilibirum distribution, which assigns probability 1/« to each state. Let
pi(2, ) be the transition probability of the single site Markov chain, let o' € (7,1/«) and

> (2r+1)>6
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pick S so that pg(0,i) = o' for all i. Let T = 2BS. By using a simple large deviations
result (see (6.2) below) it is easy to show that with high probability
(a) All the houses in [—r,7) stay reasonable until time T.

(b) The houses [r + (j — 1)K, r + jK) and [-r — jK, —r — (j — 1)K) will be good at
time jS and stay reasonable to time 7.

(c) All the houses in [r,3r) and [—3r, —r) will be good at time T'.

Figure 6.1 gives a picture of this expansion. The gray shaded area gives the space time
region occupied by reasonable houses.

b
i

e
14!1]»!; MHH
e
Hw‘«:: .

Figure 6.1

Since our good event is measurable with respect to the Poisson processes in {—3r, 3r) x
[0, T) we have verified the comparison assumptions with L =r, K =3, J = 1. If we start
our cyclic system from uniform product measure then X, is a Bernoulli set with density
p> 0. (pis close to 1 if L is large but we do not need that.) Applying Theorems 4.3 and
4.2 now it follows that
li"rriiOXéfP(O € X.) 2 19/20
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Arguing as in the end of the proof of Theorem 5.4 it is easy to improve this conclusion to

liminf P( all & colors are in [-7,7)) > 0

and it follows from (2.13) that there is anontrivial stationary distribution. By using an
improvement of Theorem 4.2 given in the appendix (see Theorem A.3)

(6.1) Lemma. If p > 0 and y < 6742M+1)? then

liminf P({-2K,...,2K}OW! #0)>1—ex
where e — 0 as K — oo

we can show that the stationary distribution we constructed concentrates on configurations
in which there are infinitely many sites in each state. ((6.1) shows directly that with
probability one each state appears somewhere in the configuration, but the distribution is
stationary so if there were only finitely many sites in some state we would have positive
probability of having 0 in that state a contradiction.)

By the arguments in the last paragraph it is enough to show that (a), (b), and (c)
hold. The first step is proving the large deviations estimate.

(6.2) Lemma. Let X;,... X, beiid. with P(X;=1)=p, P(X;=0)=1—p. Then
P(Xi4...4+ X <nlp—¢) <exp(—ein/2).

Remark. This result and its proof are standard but we need to know that the right hand
side does not depend on p.

Proof: If @ > 0 then
P(Xy+ ...+ Xo <n(p~€)) ™7 < (pe™ + (1 - p))"

Taking log’s, dividing by n, rearranging and then using log(1 + z) < z we have

1 -
;logP(Xl +...+Xn<n(p—¢)) <alp—c¢)+log(l+ple™™ - 1))
Salp—e)+ple™® ~1)=—ae+ple™* —1+a)
Nowe ™ —14+a=a?/2'—a/3!+... < a?/2for 0 < a < 1, so taking a = € and using

p <1 gives
P(Xi+...4 X, <n(p—¢) < exp(—e’n/2)

and completes the proof of (6.2). O

Let Z, be a copy of the single site Markov chain, let p,(i,7) = Pi(Z, = j), and observe
that pe(¢,7) = p:(0,7 — ). Until the first time some house in [~r,r) becomes unreasonable,
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the sites in each house in [-r,7) behave like independent copies of the single site Markov
chain so we consider a collection of K = rf independent copies of Z,; and let v; be the
number of “sites” in state ¢ at time 0. The expected number of sites in state j at time ¢ is
w;(t) = 3>, vip:(i, 7). To prove (a) we apply (6.2) with n = v; 2> oK to the sites that start
in state i to see that with probability at least 1 —exp(—€?0K/2), at least vi(pi(i,7) —¢€) of
the sites that start in state 7 will be in state j at time t. Taking e = (¢ — p) and summing
over 1 gives

> vipi i) —€) 2 oK Zp,(i,]‘) —Ke> (0 —e)K = pK

since )_vi = K and 3 ;p(i,7) = 3.;p:(0,j — i) = 1. So with probability at least 1 —
kexp(—e?a K/2), at least pK sites will be in state j at time t.

The last bound is for a fixed time but it is easy to extend it to cover the interval [0, T).
Let § = €®0/2, let J = exp(6K/2), and t; = k/J for 1 < k < JT. The probability that
the number of sites in state 7 is less than pA at some time t; is at most

kJT exp(—€e*0K/2) = xT exp(—8K/2)

The probability that two sites flip in some interval (tx_y,tx) is at most
K\, 3 -
JT 9 J 74 < K’Texp(—6K/2).

When we never have two flips in any interval, the state at each ¢ € (tx—1,tx) agrees with
the state at one of the two endpoints. Combining the last two estimates we have that the
probability a collection of K independent single site chains becomes unreasonable before
time T

< (k+ KT exp(—6K/2)

Since the sites in [—7, ) behave like independent single site chains until some house becomes
unreasonable, the probability of the event in (a) is at least

1—2B(k + K*)T exp(—6K/2)

The proof that the house [r,r + K) will be good at time S is similar but simpler. If
all the houses in [—r,r) stay reasonable until time S then each site in [r,r + K) always
sees an above threshold number of sites of each color and flips to the next color at rate 1.
We again consider a collection of I independent single site chains but this time starting
from an arbitrary initial configuration. The choice of S guarantees that ps(z,j) > ¢' so
applying (6.2) to K i.i.d. random variables with p = ¢' we conclude that the fraction of
sites in state j is at least o X' with probability at least 1 — x exp(—(¢’ — 0)?K/2). Once we
know that with high probability [r,r + K) is good at time S and all the houses in [—r,)
are reasonable at all times in [0, T), we can repeat the proof of (a) to conclude that the
house [r,7 + ) stays reasonable at all times in [S,7T]. This verifies (b) when j =1 but by
continuing in the same way we can prove the result for 2 < j < 2B. Now (b) implies that
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all the houses in [-3r + K, 3r — K) are reasonable at time T — S we can repeat the proof
that the house [r,r + K) is good at time S to conclude that all the houses in [~3r, 3r) are
good at time T and the proof is complete. m]

PROOF IN d > 1: Let By(z,r) = {y: ||z — y|l, < r}. The key to the proof is the following
fact, which basically says that large balls are almost flat.

(6.3) Lemma. Suppose A < 1/2. There are constants Ry, §, and My, so that if M > M,
and R > Ry then for z € By(0,(R + 8§)M).

|B2(0, RM) N By(z, M)| > A|Bp(z, M)|

PROOF: In one dimension we can take Ry = 1 and 6 = 1 — 2A. Turning to dimensions
d>1let Q= {z € R*: |z|l, <1} and let ¢ be its volume. To prove the result it is
convenient to scale space by 1/M and translate so that = /M sits at the origin. Any d —1
dimensional hyperplane through the origin divides @Q into two pieces with volume ¢/2. For
i=1,2,3 let A < A3 < A2 < A; < 1/2. By continuity, there is a § > 0 so that if a
hyperplane passes within a distance é of the origin then it divides @ into two pieces each
of which has volume at least ¢\;. Another application of continuity shows that if Ry is
large and D = B,(y,r) with r > Ry and By(y,r) N B2(0,A) # @ then the volume of DNQ
is at least ¢J,.

The last step is to argue that if M is large then the lattice behaves like the “continuum
limit” considered above. Pick € > 0 so that if D = B,(y,7) is as above then the volume of
By(y,r — €) N (1 — €)Q is always larger than gA;. Then pick My so that 1/My < € and if
M > M, then |B,(0, M)|/gM? < M3/A. Let X = (Z2¢/M)n DN Q. The first part of the
choice of My implies that if M > M, then

d
-1 1

By(y,r —e)NQ(1 ~€) CUzex = + [2_1\—4_’ m‘]

so M~4X| > ¢A; > A|Bp(0,M)|M~¢, by the second part of the choice of My and the

proof is complete. O

To use this lemma we pick A < 1/2 and p < 1/« so that Ap > a, use (6.3) to pick Ry,
A, My, and then pick M; > M, so that

(6.4) ApK?|By(0, My)| > a| B,(0, K(M; +d))| holds for large K

Let o € (p,1/x) and suppose that the range of interaction is 7 = K (M, + d). For z € Z¢
let
I.=[a1K,(z; + )K) x -+ - X [24K, (24 + 1)K)

and call I, a house. We say that a house is good at time 0 if it contains at least o K* sites
of each color. We say that & is good if all the houses I, z € B2(0, RoM;) are good. This
will be our event H when we apply Theorem 4.3.
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We have set things up so that as long as each house in B;(0, RoM1) is reasonable,
i.e. contains at least pKd sites of each color, each site in each house in B2(0, (R + 6)M;)
sees at least § sites of each color. To check this note if z € B,(0,(Ry + 6)M;) then all
the sites in any house I, with w € By(0, RoM,) N By(z, M) are within p-norm distance
r = (M +d)K of each site in I,. (To see note that {|z—w||, < M; so [|zK —wK||, < MK
and if we use 1 to denote a vector of 1’s then ||2K — (w + 1)K ||, < (M +d)K, withp=1
being the worst case.) By (6.3)

|B2(0, Ro My ) N By(z, M1)| 2 A|By(, My)|
Multiplying the last inequality by pK? and using the choice of M) and K in (6.4) that

pK 4| By(0, RoM1) N By(z, My)| > ApK®|Bp(z, M)
2 a|By(z, K(My + d)| = 6

Pick B so that Bé > 2R, and hence
By(z,(Ro + B6)My) D By(z,3Ro M)

Let ¢' € (0,1/k), choose S so that ps(0,:) > o' for all ¢, and let T = BS. Let D; =
B3(0,(Ro + 78)) (D is for disk) and 4 = D, — Dj_; (A is for annulus). By repeating the
one dimensional proof we can show that with high probability

(a) All the houses in Dy stay reasonable until time T.
(b) The houses in 4; will be good at time 7.5 and stay reasonable to time T
(c) All the houses in Dg D B(0,3R,) will be good at time T.

and the desired result follows from an application of Theorems 4.3 and 4.2 as before. O

We will now give the promised explanation of the conjecture for the case x = 2. First
consider the situation in d = 1 and for ease of exposition call the two states “yellow” and
“blue”. As our proof shows if we have a sufficiently large interval of sites in which two
colors occur with approximately equal frequency then the distribution of colors in this
region will quickly converge to a product measure with density 1/2 and the region will
expand, no matter what it encounters outside. For the region to expand we need § = a|N|
with a < 1/4 for if @ > 1/4 and all sites in [r, 2r) are yellow then the random region cannot
expand since the site at r will have about r/2 < a(2r + 1) blue sites in its neighborhood.
Applying the same reasoning to yellow sites in = € [br,7), who have about (2 — b)r /2 blue
sites in their neighborhood, we see that if (2 — )/2 < 2a, i.e. b > 2 = 4a then the yellow
sites in [br,7) will not flip to blue but since a < 1/2 the blue sites will flip to yellow at rate
one.

Similar reasoning applies to the system in d > 1 with 1/4 < a < 1/2 and shows that
a large enough ball of yellow sites will expand through a random region. The trouble with
turning this into a proof is that we cannot guarantee that the blob will always find itself in
competion with a random region. Indeed in a deterministic version of the threshold voter
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model in d = 1 (see Durrett and Steif (1993)) this naive picture is not correct since there
are “blockades” that in some circumstances will stop the advance of blobs. However, we
believe that this will not happen in random systems or in d > 1. In support of this claim,
we note that Andjel, Mountford, and Liggett (1992) have shown that clustering occurs in
d =1 when N = {-k,...,k} and § = k. The important special property of this example
is that if an interval of 1’s (or 0’s) is long enough only the site on either end can flip.
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7. Long Range Limits

In the last section, we saw that the cyclic color model and Greenberg Hastings models
simplified considerably when the range of interaction was large. In this section we show
that the contact process also simplifies in this way.

Example 7.1. The basic contact process. As usual the neighborhood is N = {z :
llz]l < r}. We will write the contact process as a set valued process with the state = the
set of sites occupied by particles and formulate the dynamics as follows:

(i) Each particle dies at rate 1, and gives birth at rate 8.
(ii) A particle born at z is sent to a site y chosen at random from z + V.
(iii) If y is vacant, it becomes occupied. If y is already occupied the birth has no effect.

If r is large and the contact process starts from a single occupied site then at least until
the number of particles is a significant fraction of |/}, the contact process will behave like
a branching random walk, i.e., the process that obeys (i) and (ii) but allows any number
of particles per site.

The total number of particles at time ¢ in a branching random walk is a branching
process — a Markov chain Z; in which transitions from k to k + 1 occur at rate k£ and
transitions k to k — 1 occur at rate k. Let T, = inf{t : Z, = y} and use P, to denote
the law of the branching process with Z; = z. Well known properties of the exponential
distribution imply that

Pk(Tk-H < Tk—l) = % for k>0

so Z; is a time change of an asymmetric random walk S, that, when k > 0, makes
transitions k — k + 1 with probability 8/(8+ 1) and k — k — 1 with probability 1/(8+1)
and has 0 as an absorbing state, i.e., once S, = 0 we will have S,, = 0 for all m > n.
Using this observation and well known formulas for simple random walk it follows that

P‘(T°<°°):{}/ﬂ :fgii

so the critical value of 3 for the survival of the branching process is 1.

The main result in this section is that as the range r — oo the critical value for survival
of the contact process converges to that of the branching process. Let 7° = inf{t : £} = 0}
where £? denotes the contact process starting from a single particle at the origin, i.e.,
€3 = {0}. Let 8. = inf{B: P(r° = o0) > 0}.

Theorem 7.1. Ast =00, fc 2 landif f>1

P egl) - 27
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Remark. Schonmann and Vares (1986) have shown that if we consider the basic contact
process in d dimensions with /' = {z : ||z{|; = 1} and we let 3 = 2dX then the conclusions
of Theorem 7.1 and (7.18) below hold.

PRrOOF: To begin we note that we can construct the contact process from a branching
random walk by suppressing births onto occupied sites. So we can define the contact
process and the branching random walk on the same space so that the branching random
walk always has more particles than the contaact process, and it follows that g, > 1 for all
r. To prove the rest of the result we note that taking A = Z% and B = {0} in the duality
equation (5.3) gives

P(E1N {0} #0) = PENZ4 £ 0) = P(r° > 1)
Letting t — co we have
(1.1) PO € ¢) = P(r° = o)
So to prove Theorem 8.1 it suffices to show that
(7.2) If B > 1 then P(r° = c0) — (8 - 1)/8
for this implies that limsup,_, ., 8. < 1. To prove (8.2) we scale space by dividing by r and
consider the contact process on Z?/r to facilitate taking the limit r — co. Qur approach
will be to use the comparison theorem, so we let Iy = k2Le; + [—L,L}* and consider a

modification of the contact process £, in which births are not allowed outside (—4L,4L).
The two key ingredients in the proof are

(7.3) Let 6 > 0. If we pick L large, set T = L%, and pick K large then for r > ro, EZ’ will
have at least K particles in I; and in I.; with probability at least 1 — § whenever  has
at least K particles in I

(7.4) Consider the process starting from £3 = {0}. If we pick S large then for r > ry 2 1o,
€% will have at least K particles in Iy with with probability at least ((p-1)/8)—-8

Once this is done (7.2) follows by using Theorem 4.3 to compare

Xp = {m:[€54nr N In| 2 K}
with a one-dependent oriented percolation with density > 1 — 6 and Theorem 4.1 to
conclude that the cluster containing (0,0) in the percolation model will be infinite with

probability at least 1 — 5561/°. For these two facts imply that

P(r° = 0) > ﬂ—;l- — &~ 55610
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PROOF OF (7.3): The starting point is the observation that if we let r — oo then the
contact process on Z?/r converges to a branching random walk 7, in which

(i) Each particle dies at rate 1, and gives birth at rate 3.
(ii) A particle born at z is sent to a point y chosen at random from {y : ||y — zf, < 1}.

This should be intutively clear since if we start with one particle at 0, fix 7 and let r — oo
then the probability of a collision (birth onto an occupied site) by time T goes to 0 as
r — 00, and the displacements of the individual particles converge to a uniform distribution
on {y : lull, < 1.

We will prove the convergence of the contact process on Z?/r to the branching random
walk later (see the “continuity argument” below). We have introduced this result now
to motivate the first step of the proof, which is to prove the analogue of (7.3) for the
branching random walk 7, which is given in (7.12) below. Let 77 denote the branching
random walk starting from nZ = {z}. To leave room for the limit r — co we consider 7; a
modification of ¥ in which particles that land outside (—4L 4+ 1,4L — 1)* are killed. Let
m(t,z, A) = E|i7 N A| be the mean number of particles in A at time ¢ for the modified
branching random walk starting with a single particle at z. We claim that

(7.5) m(t,z, A) = B~ P(WF € A)

where W7 is a random walk that starts at z, jumps at rate f, has jumps that are uniform
on {y : yll, < 1}, and is killed when it lands outside (—4L+1,4L~1). To check this claim
note that both sides of (7.5) satisfy the same differential equation: if A C (—4L+1,4L—1)¢

then dmit 2. A
22 it 2, 4) + /m(t,z,dy)v(A =)

where A—y = {z —y : € A} and v is the uniform probability measure on {y : ||yll, < 1}.
Let I = 2Le; + [—L 4+ 1,L —1]%, i.e. I, shrunk by a little bit. Donsker’s theorem
implies that if T = L? and /L — 6 € [-1,1)¢

(7.6) P(WF € I) — $(6)

where 1(8) = Py(B, € [-4,4]% for t <1, By € 2e; +[~1, 1]%) and B, is a constant multiple
of d-dimensional Brownian motion. #(8) > 0 and is continuous, so a simple argument
(suppose not and extract a convergent subsequence) shows

.. . . ' .
(7.7) hgr_lg:f 16[1—n[£L]‘ P(Wrel})| = oe[l-xlli:1]d Y(0) > 0.

It follows from (7.5)—(7.7) that we can pick L large enough so that

. — 1
(7.8) ze{l-nlf,L]J EjgFnlj| > 2.

Let 7 denote the modified branching random walk with 7§ = A. (7.8) implies

(7.9) El7f n L] 2 2|4
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while an obvious comparison and a well known fact about branching processes (see Athreya
and Ney (1972) for this and other facts about branching processes we will use) implies

(7.10) var(5 N I}) < El7§ 0 I]* < Elp3f* = Cr < oo

Combining the last two conclusions and using Chebyshev’s inequality it follows that if
A C [~L,L]? has |A| = K then

var(|Zf4 N I}|) _ K sup,var(|Z2% N I}|)
QA - k)2 = K?

(7.11) PN <K)< = %

From the last result it follows that
(7.12) If 6 > 0 and K is large then for any A C [~ L, L]? with |4| = K.

P(lif n I < K) < 6/10

Continnity Argument. (7.12) shows that if A C Ip has |A| = K then with high
probability r‘)? will have at least K particles in I_; and in I;. The next step is to prove
the corresponding result for the contact process. To avoid some technicalities we will give
the details only for the case in which &' = {z : ||z]lcc € r} and then indicate the extension
to p < oo in a remark after the proof.

Let &2 be a modification of the contact process with €& = A in which births outside
(—4L,4L)* are not allowed. We begin by observing that the number of births up to time ¢
in the contact process, Vi, is dominated by a branching process V, in which births occur at
rate A and deaths occur at rate 0. If |A| = K then EV, = KeP! < o0, so our comparison
and Chebyshev's inequality imply
KefT

5 0

(7.13) P(Vp > 'Y < P(Vp > 73 <

since T is fixed and r — oco.

Let Gy = {V; < r1/3}. Here G is for good event and the subscript indicates it is the
first of several we will consider. When G, occurs, the probability of having a birth land
on an occupied site (a “collision”) is

(7.14) <o TP
- (2r +1)4

since there are at most +1/3 births and even if all the particles are in {z : ||z]|c < 1} (on
Z4/r) each birth has probability at most r!/3/(2r + 1)¢ of landing on an occupied site.
Let G be the event that there are no collisions by time ¢.

To deal with the spatial location of particles, we will create a coupling of the displace-
ments of the particles in the branching random walk to those of particles in the contact
process. To couple the displacements we observe that if U is uniform on {y : |lyljc < 1}
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and m.(z) is the closest point in Z/rd to z (with some convention for breaking ties) then
UT = n.(U(1 + 1/2r)) is uniform on N /r.

Now if the U; are the displacements of particles in the branching random walk, we will
use the U/ for the displacements in the contact process. When our good events G and G,
occur, we have G3 = all of the points in the contact process £ are within /3 /r (in || ||oo)
of their counterparts in the branching process nt. Passing to the truncated processes and
noting that the branching particles are required to stay in (—4L+1,4L~1)%for0 < s < T,
while the contact process particles are required to stay in (—4L,4L)?, it follows that on
G3 we have |£8 0 I;| 2 |74 N I;| Combining the last observation with (7.12) gives (7.3). O

Remark. If p < oo then U™ = m,((1 + 1/2r)U) is not uniform on A /r but is within C/r
of uniform in the total variation norm. In the last paragraph of the proof we then have
P(lU:i =U!||oo > 1/r) < C/r, which since there are at most r!/? transitions on Gy, is good
enough for the proof.

PROOF OF (7.4): By the continuity argument it is enough to show that we can pick S
so that n% will have at least K particles in I, with probability at least ((8 — 1)/8) — é/2.
However, this follows from

(7.16) If 2, is the event that the branching process does not die out, then for any L > 0
and K < oo,
P(ln{ N [=L, L] < K, Qo) = 0

Indeed as Asmussen and Kaplan (1976) have shown (see Theorem 2 on p. 5)

(7.17) There is a constant ¢ > 0 so that

d
—(B=1)1],0 ~1_ d (2L +1)
Vie N [~L,L]* > W (EnaTilE
where W = limy_.oo e "B~ n%1 > 0 a.s. on Qs
This completes the proof of (7.4) and hence of (7.2). o

The argument just used on the long range contact process can also be applied to

Example 7.2. Succesional dynamics. We suppose that the set of states at each site
are 0 = grass, 1 = a bush, 2 = a tree and formulate the dynamics as

co(,€) = 8¢
al(z,§) = Ainy(z)  ifci(z) =0
ca(x,€) = Mna(z) i ei(z) <1
The title of this example and its formulation are based on the observation that if an area

of land is cleared by a fire, then regowth will occur in three stages: first grass appears
then small bushes and finally trees, with each species growing up through and replacing
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the previous one. With this in mind, we allow each type to give birth onto sites occupied
by lower numbered types.

Theorem 7.2. Let 5; = XN, Suppose that 8z > §; and

(%) ﬂl'%>51+ﬂ2'ﬁ2ﬂ—262

If r is large then there is a nontrivial translation invariant stationary distribution in which
all three types have positive density.

SKETCH OF PROOF: The fact that the 2's do not feel the presence of the 1’s implies that the
set of sites occupied by 2’s is a contact process. To construct a stationary distribution we
start with the 2’s in their upper invariant measure and we put 1’s at all sites not occupied
by 1's to get a process £}2. This is the analogue of starting an attractive system from
all 1’s and a result of Durrett and Moller imples that as t — oo, ¢}? = €12 a translation
invariant stationary distribution.

To prove that £12 is nontrivial we will prove an analogue of (7.3). The first step is to
prove the following result about the long range contact process (which is here considered
as a subset of Z¢)

(7.18) If > 1and z # y thenas r —»

2
P(z,y€&l)— (—‘i;—l)

In words, the equilibrium distribution converges to a product measure as r — co. Of course,
the last conclusion only says that the sites are asymptotically pairwise independent, but
the argument can easily be generalized to a finite number of z’s.

PROOF: By duality (see the proof of (7.1))
P(z,y €€l )= P(r" = 00, 7¥ = 0)

Our comparison of the contact process with a branching process at the beginning of the
proof of Theorem 8.1 shows that P(r% = o0) < (8 — 1)/ for all r. If we pick K and L as
in (7.3) and then pick S large as in (7.4) then for » > r; we have

%+62P(r‘>5)

> P(lén[-L,L)| > K) > é.g_l _s

Our choice of K and L and the comparison with oriented percolation shows that

P(IEEN[-L,L)| > K, 7* < o) < 556'/°
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Combining the last two estimates shows
[P(r* = 00) — P(7% > §)| < § + 556'/°

With this in hand the desired result follows easily since continuity argument shows that
for any fixed S asr — o

P(r* > S,7¥ > ) — P(n% # 0)° o

Turning now to the heart of the proof we will again scale space by dividing by r and
consider the contact process on Z¢/r to facilitate taking the limit. The approach we will
take is a combination of that of Durrett and Swindle (1991) and Durrett and Schinazi
(1993). We will concentrate on explaining the main ideas and refer the reader to those
papers for the details. Pick p > (8; — 62)/ B2 so that

(%) Bi(1—p) > by + Pap

By dividing space into cubes of side §r then using (7.18) and the weak law one can prove
that with high probability all sites in our space time box have at most pJA| neighbors
in state 2. (Recall that the set of 2’s at any time is distributed according to the upper
invariant measure.) This means that a single 1 will have births that land on an occupied
site at rate > f§;(1 — p) while it dies at rate §; and is smothered by a 2 at rate < f,p.

The inequality (%) implies that a single particle gives birth faster than it dies. If we
start with a fixed number of 1’s then in the limit r — oo the 1’s dominate a supercritical
branching random walk. If this fixed number K is large and L and T = L? are chosen
appropriately then for large r a truncated version of the process which is not allowed to
give birth outside (—4L,4L)? will with high probability have at least K particles in I; and
in I_; whenver the initial configuration has at least K particles in Iy.

The last result is an analogue of (8.3) but there is one problem. The event that
&(z) = 2, which is the same as the survival of the dual contact process of 2’s starting from
(z,t), does not have a finite range of dependence. To avoid this problem we adopt the
more liberal viewpoint that z is occupied by a 2 at time ¢ if the dual process escapes from
a certain space-time box. If the box is large enough the liberalization of the definition does
not increase the density of 2's by enough to violate (+*), we can verify the comparison
assumptions of Theorem 4.3 and the desired result follows from Theorem 8.2.
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8. Rapid Stirring Limits

The point of this section is that if we take a fixed interacting particle system, scale
space by € and “stir” the particles at rate ¢=? then as ¢ — 0 the particle system converges
to the solution of a reaction diffusion equation. To be precise, we consider processes
£ eZ? - {0,1,...,k — 1} that evolve as follows

(i) there are translation invariant finite range flip rates
C.'(.’E, E) = hl(&(z)v f(.’l: +ey; )1 ERER) f(I + €yN))

(i) rapid stirring: for each z,y € €Z¢ with ||z — y||; = € we exchange the values at = and
y at rate e~2. That is, we change the configuration from £ to £**¥ where

¥y)=4(=) ) =&y) ) =€(2) zF .y

The reader should note that in (i) changing € scales the lattice but does not change the
interaction between the sites. In (ii) we superimpose stirring in such a way that the
individual values will be moving according to Brownian motions (run at rate 2) in the
limit. The motivation for modifying the system in this way comes from the following
mean field limit theorem of De Masi, Ferrari, and Lebowitz (1986). The derivation of such
“hydrodynamic limits” has become a major enterprise (see e.g., Spohn (1991) or DeMasi
and Presutti (1992)) but this particular result is rather easy to establish.

Theorem 8.1. Suppose £(z) are independent and let uf(t,z) = P({(z) = 9). If
u$(0,z) = gi(z) is continuous then as ¢ — 0, uf({,z) — ui(t,z) the bounded solution
of

(8.1) Ou; [0t = Aui + fi(u)  ui(0,2) = gi(z)

where

(8.2) filu) = < ci(0,E)Lg0y2i) >u — Z < ¢j(0,8)L(g(0)=i) >u
%

and < ¢(£) >, denotes the expected value of #(£) under the product measure in which
state j has density u;j, i.., when £(z) are i.i.d. with P({(z) = j) = u;.

Theorem 8.1 is easy to understand. The stirring mechanism (i.e., (ii)) has product
measures as its stationary distributions. See Griffeath (1979), Section I11.10. When e is
small, stirring operates at a fast rate and keeps the system close to a product measure.
The rate of change of the densities can then be computed assuming adjacent sites are
independent. To help explain the somewhat ugly formula in (8.2) we will now consider
two concrete examples.

Example 8.1. The basic contact process. In this case co{z,¢) = 1 and ¢1(z,€) =
Any(z, €) where ni(z,€) = [{y € N : {(z + y) = ¢} is the number of neighbors in state 2.
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We claim that when |M| = N the equation in (9.1) becomes (we do not need an equation
forug =1 —uy)

5u1/6t = Aul —uy + N/\(l - ul)ul

To see the second term on the right hand side the equation, we note that particles die at
rate 1 independent of the state of neighbors. For the third, we note that if we assume
all sites are independent then the probability z is vacant and y € z + A is occupied
is (1 — uy)u;. Each such pair produces a new particle at rate A and there are N such
pairs, so the total rate at which new particles are created (assuming that adjacent sites
are independent) is NA(1 — up)u;.

The equation in the last example is just the mean field equation for the contact process
that we have seen several times before. To see something new we look at

Example 8.2. The threshold one voter model. In this case
c(z,6) =1 ifniz,6) 21

and if we assume |A| = N then the limiting equation is (again we do not need an equation
forug =1—1uy)

Bu, [t = Auy —ug(1 —ul) + (1 —w)(1 = (1 —w)")

To see this note that if all sites are independent then the probability z is occupied and at
least one neighbor is vacant is (1 — u{¥) and this is the rate at which 1’s are destroyed.
Intercahnging the roles of vacant and occupied in the last sentence gives the third term.

Having explained the formula in (8.2) we turn now to a result that extends Theorem
8.1 by showing that the particle system itself, not just its expected values are close to the
p-d.e. To motivate the statement we note that the states of the sites in the model become
independent in the limit ¢ = 0 and the number of sites per unit volume becomes large so
it should not be surprising that in the limit £;(z) becomes deterministic.

Theorem 8.2. Let ¢#(z) be a smooth function with compact support. As e — 0
et Z (Yl (n=i) — /¢(l/)u-‘(t,y)dy
yE€eZ?
in probability.

Although the indicator function of a bounded open set G is not continuous, this should be
thought of as saying that

DY 1(er(y>=x)—*/cuu'(tvy)dy

y€eZiNG
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or more intuitively that the fraction of sites near y that are in state ¢ converges to u;(t,y).
The result for an open set G is also true, but is a little more difficult to prove precisely
because 1 is not continuous.

Theorem 8.2 provides a link between the particle system with fast stirring that we will
exploit in the next lecture to prove the existence of stationary distributions for a predator
prey model with fast stirring. Once Theorem 8.1 is established, the proof of Theorem 8.2
is easy: compute second moments and use Chebyshev’s inequality. So we will concentrate
on the proof of Theorem 8.1. The ideas behind the proof are simple: we will give an
explicit construction of the process that allows us to define a dual processes by asking
the question: “What is the state of z at time t?” and working backwards in time. The
answer to this question can be determined by looking at the states of the sites in the “dual
process” I7''(s) at time t — s. The particles in I7!(s) move according to stirring at a fast
rate and give birth to new particles at rate

ct = st;ch,—(z, €)

We will show that for small e the dual process is almost a branching random walk and
converges to a branching Brownian motion as € — 0. The proof of the last result leads
easily to the conclusion that two dual processes I7'*(s) and I¥*(s) are asymptotically inde-
pendent which gives the asymptotic independence of the sites in the parrticle systems. The
convergence of the dual process to branching Brownian motion leads in a straightforward
way to the convergence of the uf(t,z) to limits u;(t,z) and the asymptotic independence
of adjacent sites implies that the u,(t, z) satisfy the limiting equations.

a. The dual process. The first step in the proof is to construct the process from a
number of Poisson processes, all of which are assumed to be independent. The construction
is similar in spirit to the one in Section 3 but it is convenient to do the details in a slightly
different way. For each z € €29, let {T,n > 1}, be a Poisson process with rate ¢* and let
{UZ,n > 1} be a sequence of independent random variables that are uniform on (0, 1). At
time T? we compute the flip rates r; = ¢;(z, £(T7)) and use UZ to determine what (if any)
flip should occur at z at time TZ. To be precise we let p; = ZiSi rifctfori=0,...,k—1
with p_; = 0 and flip to i if UZ € (pi—1,p:i). f UZ € (px—1,1) no flip occurs. To move the
particles around, we let {SZ'¥,n > 1} be Poisson processes with rate ¢~ when z,y € Z*
with ||z — y||s = ¢, and we declare that at time SZ¥ the values at z and y are exchanged.

The dual process I**(s) is naturally defined only for 0 € s < t but for a number
of reasons, it is convenient to assume that the Poisson processes and uniform random
variables in the construction are defined for negative times and define I7+(s) for all s > 0.
Let N' = {ey;,...,eyn} be the set of neighbors of 0. The dual process makes transitions
as follows:

If y € I7*(s) and TY =t — 5 then we add all the points of y + N to IF(s).
If y € I**(s) and S¥* =t — s then we move the particle at y to z.

For a picture of (a rather unlikely sample path for) the dual when d = 1 and A = {-1,0,1}
see Figure 8.1
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Figure 8.1

It is easy to see that we can compute the state of z at time ¢t by knowing the states of the
y in IZ!(s) at time ¢ — s. We start with the values in J7*(s) at time t — s and work up to
time ¢. At S arrivals we perform the indicated stirrings. When an arrival T} occurs at a
point of the dual, we look at the value of the process on y + A, compute the flip rates r;,
and use UZ to determine what (if any) flip should occur.

To prepare for the proof of the convergence of u{(t, z) we will now give a more detailed
description of I®!(s). Let X%(0) = z, let R! be the smallest value of s so that we have a
T arrival at X%(s) at time t — s, and set X(s) = ey; + X%(s) for 1 < i < N. Finally, we
set u! = 0 to indicate that 0 is the mother of the N particles created at time R}. Passing
now to the inductive step of the definition, suppose that we have defined the process up
to time R™ with m > 1. The mN + 1 existing particles move as dictated by stirring
until B!, the first time s > R™ that a T arrival occurs at the location of one of our
moving particles X¥(s) and then we set X"V +i(s) = ey; + X¥(s) for 1 £ i < N, and
pu™*t1 = k. The new particles may be created at the locations of existing particles. If so we
say that a collision occurs and call the new particle fictitious. We will prove later that the
probability of a collision tends to 0 as € — 0, but for proving the convergence of ui(t, z),
it is convenient to allow the fictitious particles to move and give birth like other particles,
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so for each 7n > 1 we define an independent copy of the graphical representation which we
use for the births and movement of the mth particle if it is fictitious. By definition all the
offspring of fictitious particles are also fictitious.

b. The dual process is almost a branching random walk. The point of intro-
ducing fictitious particles is that £y = mN + 1 for t € [Rf,, Ri,,,) defines a branching
process in which each particle gives birth to N additional particles at rate ¢*. Our next
goal is to show that if € is small then I7!(s) is almost a branching random walk in which
particles jump to a randomly chosen neighbor at rate 2de~2 and give birth as above. To do
this we will couple X* to independent random walks Y,* that start at the same location at
time Bk = the birth time of X*, and jump to a randomly chosen neighbor at rate 2de™2

We say XF is crowded at time s if for some j # k | X7(s) — X¥(s)|i < e When
X¥ is not crowded, we define the displacements of ¥* to be equal to those of X*. When
X¥ is crowded we use independent Poisson processes to determine the jumps of Y. To
estimate the difference between X¥ and Y*, we need to estimate the amount of time X}
is crowded. Let j £k, VE = Xf(s) X}(s) and W¢ be a random walk that jumps to a
randomly chosen neighbor at rate 4de~?. (Notice that V¢ is the difference of two random
walks and hence jumps at rate 4de?. The transition probabilities of V¢ differ slightly from
those of W¢ when ||z]|; = €. Here y denotes any point # —z with |jy|; =

9

jumps from z to rate in V rate in W
-z e? 0
0 0 2¢72
z+y 2¢72 2672

From the last table it should be clear that ||W¢||; is stochastically smaller than |V |[;, i.e.,
the two random variables can be constructed on the same space so that [[W¢lli < [[VSlls
for all s. To check this note that all the transition of V and W can be coupled except
those in the first two lines of the table, but there ||W]||; jumps from 1 to 0 at rate €2
while ||V{]; jumps from 1 to 1 at rate €2/2.

From the last comparison of ||V|[; and ||[W||; it follows that for any integer M > 1,
oMe = |{s <t : ||V € Me}] is stochastically smaller than wM¢ = |{s < ¢ : [[W¢]; <
Me}|. Well known asymptotic results for random walks imply that when te™ “2>2

CMie d>3

(8.3) Ew}'c < { CM? log(te™?) d=2
CMett/? d=1

2 M

To see this note that wM¢ has the same distribution as € and the last line is equal
to CMe*(te 2)1/2,

Let x*(¢) be the amount of time X is crowded in [0,¢]. It is easy to see that

Wye-2

(8.4) E(x*)|K, = K) < KEw{
(8.5) EK, = exp(vt) where v = ¢*N
(8.6) E(x{ (1)) < exp(vt)Ew}
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To estimate the difference between XX(s) and Y*(s) we observe that if x¥(¢) = r then
the number of “independent jumps” in the ith coordinate of ¥* that occur in [0,t] has
a Poisson distribution with mean € 27. Let Al.(s) be the net effect of the independent
jumps on coordinate i up to time s. Recalling that changes in the ith coordinate of Y,
have mean 0 and variance €2, it follows that EA}(s) = 0 and

(8.7) E(AY(s)?) = Exi(s)

Since Al (s) is a martingale, Kolmogorov's inequality implies

(85) E (Igagc A"y(s)ﬁ) < 4B(AL (1)

Using Markov’s inequality (i.e., if X > 0 then P(X > z) < EX"/z") then (8.8), (8.7),
(8.6), and (8.3) (noting that the worst case is d = 1) gives

] i S 3 -6 P2 < Cetylf?
(8.9) P (orgf%(t|Ay(s)| >e ) <eE (olef%(z Ay (s) ) < Ce*t'/* exp(vt)

Here and in what follows C dentores a constant whose value is unimportant and that will
change from line to line. The arguments leading to the last inequality also apply to A% (t),
the net effect of jumps in [0,] while X* is crowded, so

(8.10) P (Orgagt [1XE(s) = YE() oo > 25'3) < Cett/? exp(vt)

The estimate in (8.10) shows that the X* are close to independent random walks.
To see that with high probability no collisions occur, we pick M large enough so that
llzlls € M for all z € A and repeat the derivation of (8.6) with € replaced by Me to
conclude that the expected number of births from X while there is some other X/ in
X¥ + N is smaller than

(8.11) Cet'/? exp(vt)

(8.5) and Markov’s inequality imply that

(8.12) P(K, > K) € K™ 'exp(vt)

When K; € K, (8.11) implies that the expected number of collisions is smaller than
(8.13) KCet'/? exp(vt)

Combining the last two results and setting &' = ¢~° shows that the probability of a
collision is smaller than

(8.14) Ced(1 + )12 exp(ut)
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Having shown that collisions are unlikely we no longer have to worry about the labels
p, that tell us the mother of the N particles created at time RS, since this will be clear from
the evolution of the dual. A more significant consequence of the results in this subsection
is that dual processes for different sites are asymptotically independent. To argue this, we
say the two duals collide if a particle in one dual gives birth when crowded by a particle in
the other one. The arguments leading to (8.14) show that with high probability two duals
do not collide, and (8.10) implies that the movements of all the particles can be coupled
to independent random walks.

c. Convergence of u{(t,z). The next step is to show that as ¢ — 0 the branching
random walk Y converges to a branching Brownian motion Z. To do this we use Sko-
rokhod’s trick to embed the ith component of the kth walk, Y*' in a a Brownian motion
Z&'. Using some standard estimates (see Durrett and Neuhauser for details) it follows
that

(8.15) P (&xaict IY5(s) — Z¥(s)]|oo > 4€® for some k < K) < KCe*(1+1)

To compute the state of z at time ¢, we need not only the dual process IZ7'!(s), s < ¢ but
also the labels uf and the uniform random variables UZ. However, the uniform random
variables are independent of the dual process and, as we pointed out in a remark after
(8.14), the pf are only needed when a collision occurs.

As we will now explain, the results in the last paragraph make it easy to show that
ut(t,z) — ug(t,z) as € — 0. Here and in what follows we will use a and b to denote
possible states of the sites to ease the burden on the middle of the alphabet. The first
step is to describe u,(t,z). Let Z, be a branching Brownian motion starting with a single
particle at z and let X; be the number of particles at time ¢. For 0 < k < K,, we let (o(k)
be independent and = a with probability ¢,(ZF). Once the {; are defined, we work up
the space time set {ZF ,} x {s}. The values of (,(k), the state of Zf_, at time s, stay
constant as long as only stirring occurs. When N + 1 branches Z}_,, ZkN+1 ...Zt(fjl)N
come together (corresponding to a birth in the dual), we compute the flip rate at Zi_,
assuming it is in state (,(¢) and its neighbors are in states {,(kN +j),1 < j < N. We
generate an independent random variable uniform on (0, 1) to determine what (if any) flip
should occur at Z;_,. After we decide if we should change (,(1), we can ignore (,(kN +j)
for 1 £ j £ N. When we reach time ¢t we will only be looking at the value at {;(0). We
call this value, the result of the computation and let u,(¢,z) = P(¢(0) = a).

The description in the last paragraph is much like the one given earlier for the dual
with one exception: the uniform random variables come from an auxiliary i.i.d. sequence
instead of being read off the graphical representation. When there are no collisions in the
dual, then the family structure of the influence set and the branching Brownian motion
are the same. In this case if the inputs (o(k) and the uniform random variables used are
the same, the two computations have the same result. We have supposed that the initial
functions ¢3(z) are continuous so (2.19) implies that as ¢ — 0,

)

max |¢y(X£(1) — #u(Z*(1)] = 0
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where the maximum is taken over particles alive at time ¢. The last observation implies
that we can with high probability arrange for all the inputs to be the same and it follows
that uf(¢,z) — u,.(t,z). The last proof extends trivially to show that if z. — z then
uf(t,ze) — uq(t,z). At the end of subsection b, we observed that the influence sets from
different points are asymptotically independent. Combining that observation with the
proofs in this subsection implies that if z, — z then

N
(8.16) P(&i(ze +ey;) = ¢;,0 < < N) = [ ug;(t,2)
j=0

We are interested in statements that allow z. — z since this form of the conclusion implies
that convergence occurs uniformly on compact sets.

d. The limit satisfles the p.d.e. The first step is to write the limiting equation in
integral form.

(8.17) Lemma. Suppose f,,0 < a < k are continuous and g,,0 < a < & are bounded and
continuous. The following statements are equivalent:
(1) The functions u.(t,z) are a classical solution of

Oug
ot

i.e., the indicated derivatives exist and are continuous.
(ii) The functions u,(¢, ) are bounded and satisfy

= Aug — fa(u) ua(oaz) = gﬂ(‘r)

uq(t, z) = /pt(r,y)ga(y)der/o dS/ps(r,y)fu(U(t—s,y))dy

where p;(z,y) is the transition probability for Brownian motion run at rate 2.

Proof: (i) implies that Z¢ = ua(t~s, B,)— [, fa(u(t —r, By))dr is a bounded martingale,
so Z§ = EZ} and (ii) follows from Fubini’s theorem. To prove the converse, we begin
by observing that if (ii) holds then u,(¢,z) has the necessary derivatives and Z{ is a
martingale, so (i) follows from Ité’s formula. o

To get (ii) we will use the integration by parts formula. Let S{ be the semigroup for
the stirred particle system and Ty be the semigroup for pure stirring. The integration by
parts formula implies that for nice functions ¥ we have

(8.18) SEb(€) = TEp(E) + / ds S¢_,LTEH(€)

where L is the generator for the particle system with no stirring. We use (8.18) with
¥z,0(€) = 1if €(z) = a and 0 otherwise. Now for this choice of ¥

(8.19) Tstbea(€) =D P52, ¥)ty,a(€)
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where pé(z,y) is the transition probability of a random walk that jumps from y to z at
rate €72/2 if ||ly — z|l1 = ¢. Now if es(y,€) = hs(€(y + €yo), - - -, €(y + €eyn)) then

N
(8.20) Lpya =~ hug(a,bry. . bn)bya || Botess b
b

j=1
N
+ Z ha(bOv bly Py bN)‘tby,bo H ¢y+‘ijbi
b j=1
where the sums are over by,...,by € {0,1,...,k — 1}. Substituting (8.19) and (8.20) into
(8.18) gives

(8.21) P({i(a) =a) = Zpt(z ¥)9a(y

t
+/0 dssz(z,yw{—Zhbo(a,bh.. b by a( €5 ,)me, (&)
y b

=1

j=1

N
+ 3 halbo,bis b )y bo(is) [ ] wym,.b,(e:_,)}
]

The local central limit theorem implies

(8:22) > letpa(z, y) = p5(z,y)] — 0

y

as € — 0. As we observed at the end of subsection ¢,

N N
Edycoioy) [ bvrens e (€iog) = [[ ves(t —5,9)

j=1 j=0

and this convergence occurs uniformly on compact sets. Using (8.21), (8.22), and the
dominated convergence theorem, gives

(8.23) ua(t,r)=/p:(z,y)gu(y)dy

¢ N
+/ ds/dyp,u,y){—Zhbo<a,b1,...,bN)ua(t—s,y)Hub,.(t—s,y)
0 b

i=1

N
+Zhﬂ(bo,b1,...,bN)Ubo(t—S,y)HUbj(t—S,y)}
b

i=1
The term in braces is

(9-24) - Z < Cb(076)1{€(0)=a) > u(t—s,y) +< Ca(oy 5) Du(t—ay)= fa(u(t -3, y))
b#a

Combining this with (8.17) gives the conclusion of Theorem 8.1.
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9. Predator Prey Systems

In this section we will show that if you “know enough” about the limiting p.d.e. in
Theorem 8.1 then you can prove results about the existence of stationary distributions for
the system with fast stirring. For our approach, what you need to know about the p.d.e. is
the following:

(*) There are constants A; < a; < b; < By, L, and T so that if u;(0,z) € (A4;, B;) when
z € [-L, L)? then u;(z,T) € (as,b;) when z € [-3L,3L]%.

Theorem 9.1. If (x) holds then there is a nontrivial translation invariant stationary
distribution for the process with fast stirring.

As the reader can probably guess, (*) and Theorem 9.2 combine to produce a block event
that turns one “pile of particles” into two and has high probability when ¢ is small and then
the result follows from our comparison theorem. The details are somewhat technical so we
refer the reader to Section 3 of Durrett and Neuhauser (1993) and turn to the problem of
checking that (%) holds in one particular example. For other applications of this technique
see Durrett and Neuhauser (1993) or Durrett and Swindle (1993).

Example 9.1. Predator Prey Systems. The state at time ¢ is £§ : €Z¢ — {0,1,2}.
We think of 0 as vacant, 1 and 2 as occupied by a fish and shark respectively. As usual,
ni(z, £) is the number of neighbors of z (i.e., y with ||y — z||; = €) that are in state 7. The
system changes states at the following rates:

ez, €) = Binu(z, §)/2d if €(c) =0
co(z,€) = & if ¢(z) =1
c2(z,€) = Bana(z, &)/2d ifé(z)=1

co(z,€) = &2 +yna(z,§)/2d if{(z) =2

The first two rates say that fish repopulate vacant sites at a rate proportional to the
number of fish at neighboring sites and die at rate §;. That is, in the absence of sharks,
the fish are a contact process. The third rate says that sharks reproduce when they eat
fish. This transition is a little strange from a biological point of view, but it has the
desirable property that sharks will die out when the density of fish is too small. The last
rate says that sharks die at rate §; when they are isolated and the rate increases linearly
with crowding. Finally, the sharks and fish swim around: for each pair of neighbors z and
y stirring occurs at rate ¢~2, i.e., the values at z and y are exchanged. Applying Theorem
8.1 gives

Theorem 9.2. Suppose that £§(z), = € €Z? are independent and u{(t,z) = P({i(z) =)
fori=1,2. If u{(0,z) = ¢:(z), which is continuous, then as ¢ — 0, u{(t,z) — ui(t,z) the
bounded solution of

Ouy
ot
OUQ

ot

= Auy + By (1 — vy — uz) — faugug — d1uy
9.1)
= Aug + foruyuy — ug(dy + yuz)
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with u.-(O,a:) = ¢i(z).

As in the two examples in Section 8, the reaction terms are computed by assuming that

adjacent sites are independent. To get fu;(1 — u; — u3) for example we note that if z is

vacant and neighbor y is occupied by a fish, an event of probability (1 — u; — uz)u; when

sites are independent, births from y to z occur at rate §;/2d and there are 2d such pairs.
When the initial functions ¢;(z) are constant, ui(t, z) = vi(t) and the v;’s satisfy

o =v1((f1 — 61) — Brvr — (b1 + F2)va)
9.2) &
d_: = vp(—62 + fav1 — v2)
~— - <

Figure 9.1
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Here we have re-arranged the right hand side to show that the system is the standard
predator—prey equations for species with limited growth. (See e.g., page 263 of Hirsch and
Smale (1974).) Before we plunge into the details of analyzing (9.2), the reader should look
at Figure 9.1, which gives some solutions of (9.2) with

5123761=17 )82=3?62:17 ‘},:1

In this case, as we will prove later, there is a fixed point at (8/21,3/21) that is globally
attracting.

The first step in understanding (9.1) is to look at (9.2) and ask: “What are the fixed
points, i.e., solutions of the form v;(t) = p;?” It is easy to solve for the p;. There is always
the trivial solution p; = pz = 0. In the absence of sharks the fish are a contact process.
So if B; > & there is a solution p; = (8 — &1)/B1, p2 = 0. If we impose the stronger
condition

(9.3) (61— 61)/B1 > 62/ 62
there is exactly one solution with p, > 0:
oy = (B1 = 81)7 + 82(Bi + B2) _ (81— 61)B2 — 625
YT T By + BBy + ) 2= Bir+ B+ BB

The condition f; > &, is an obvious necessary condition for the fish to survive in the
absence of sharks. The condition {9.3) is not so intuitive but turns out to be sufficient for
the existence of nontrivial stationary distributions for small e.

Theorem 9.3. Suppose that (§; —6,)/B1 > 62/P2 holds. If € is small there is a nontrivial
translation invariant stationary distribution in which the density of sites of type i is close
to p;.

In view of Theorem 9.1 it suffices to prove (), which is a consequence of the following
convergence theorem.

Theorem 9.4. Suppose that (8; — 6,)/B1 > 62/fB: holds and the u; solve (9.1) for
continuous nonnegative ¢;(z) with ¢;(z) + ¢2(z) < 1 and ¢;(z;) > O for some z;. Then
there is a ¢ > 0 so that ast — oo,

sup |ui(t,z) — pil = 0.
Izl <ot

PRrROOF: The proof is based on a simple idea due to Redheffer, Redlinger, and Walter
(1988): the existence of a convex strict Lyapunov function for the dynamical system (10.2)
plus two technical conditions we will identify in the proof, give a convergence theorem for
the reaction diffusion equation. In this case the desired function is

H(v1,v2) = Ba(vy — pilogvr) + (B + B2 )(v2 — p2logv2)
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Being the sum of four convex functions, H is clearly convex. The next step is to check
that it is a strict Lyapunov function: if (v, v;) is a solution of the dynamical system that
does not start at the fixed point then 0H (v, v;)/0t < 0. Differentiating gives

0H P oH P2

bl 1-£ = 122

o, Ba ( £ (b1 + 2) o

V1
So using the chain rule and (9.2)

— OH(vy,v2)

H ot

= Ba(v1 — p1){(B1 — 61} — Bive — (Br + B2 )va}
+ (Bi + B2)(v2 — p2){—62 + Pavs — vv2}

Using the next two identities to subtract 0 from each term in braces

0= (81 —61)— Bip1 — (B1 + B2)p2
0= =82 + Baps — vp2

gives

Hy = B3(v1 — p){—Bi(v1 — p1) — (B1 + B2)(v2 — pa)}
(9.4) + (1 + B2)(v2 — p2){Ba(v1 — p1) —¥(v2 — p2)}

= —p182(v1 — Pl)2 —¥(B1 + B2)(vz — p2)* <0

with strict inequality for (vy,v2) # (p1, p2)- The importance of the last conclusion is that
H(vy(4),v2(t)) is strictly decreasing in ¢ and hence all trajectories that begin in (0, c0)?
must end at the minimum of H, (p;, p2). For later purposes we would like to note that
the level curves Hy = —r are concentric ellipses.

The above computations that show H is a Lyapunov function obviously depend on
the special form of (9.2). To prepare for other applications at the end of this section, we
would like the reader to check that in what follows only equations (9.6) and (9.10) depend
on the special form of H.

Since composing the Lyapunov function with solutions of the dynamical system shows
that they converge to the fixed point, it is natural to look at A(t,z) = H(ui({,z), ua(t, z))—
H({pi,p2) > 0 when u is a solution of (9.1). (Here we have subtracted the value of H at
its minimum to make the minimum value 0.} To show the generality of this computation
and to simplify notation we will write (9.1) as

é:f;lt" = Au; + fi(u).
Differentiating and using the previous equation gives
oh OH Ou; oH
5 = i o a—u'_’(Au-*Ff:(u))

9%k _ OH 3%u; '*‘Z H Ou; Ouj
1]

E_ : a—uiazfn 6u;6u_,-m6zm
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Here and in what follows the indices ¢ and j are summed from 1 to 2. Summing the second
equation from m = 1 to d gives

. 8?H Ou; Ou;
ah=3 3 —A“' * 2 :0U; DT, Oz o

i m,i,}

sousing Hy =Y, 2 T SH f.(u) gives

dh O*H au, Ou
F Ah+ Hy - Z Ou;0u; 63:,,, Orm

m,i,j

Since H is convex the last term (including the minus sign) is nonpositive and we have

(9.5) %’} < Ah+ H,

To prove Theorem 9.4, we will use (9.5) to conclude

(9.6) sup h(t,z) -0
llzll<et

If we were on a bounded set with Neumann boundary conditions this would be easy, since
in this case inf«;(t,z) > 0 at positive times and thus A(t, z) is bounded. If we let z, be a
place where m; = max; h(t, z) is attained then Ah(t,z,) <0 so

% < H, < sup{H(v): Hv)=m,} <0

and an argument like the one in the proof of Theorem 5.1 shows (9.6).

To prove (9.6) on R? we have to deal with the fact that k(t,z) may be unbounded.
To do this we first get bounds on how fast the H, will push k to 0 and then get a prior:
bounds on h(t, z) inside ||z|| < at that will allow us to drive & to 0. To get upper bounds
on H; (recall it is < 0), we let

g(h) = inf{—H(vi,vz) : H(vy,v2) 2 h}

We have defined ¢ this way to make it clear that h — g(h) is increasing. To determine the
behavior as h — 0 we observe that at (p;, p2) 0H/0v; = 0 and

’H _ P PH (B +Ba)pa 9*H _
301 v3 vk vl Jv10vy

So near (p1, p2)

2, (B +ﬁ2)(v2 — pa)?
P2

H(vy,v2) — H(py,p2) = gz(v, -p1) +
1
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and it follows from (9.4) that g(h) ~ Bh. Since g(h) is increasing we have
(9.7) g(h) > ah/(1 + k) for some a >0

The next step in bounding A(t,z) is to examine the behavior of

,  —aw

w=1+w

w(0)=W

Since w(t) > W — at the time to reach n > 0 is at least (W —n)/a. To see this estimate is
fairly sharp observe that while w(t) > W1/2~1 we have w' < —a(1—W /%) so w(t) reaches
W1/2 _1 at time < W/(a(1 - W~1/2)). When w(t) < W!/2 — 1 we have w' < —aw/W/?
so the time to go from W/2 — 1 to 7 is at most W1/2a~1(log(W'/?) —log ). Adding the
two estimates we see that

(9.8) For W > 4 and n < 1 the time to reach n is smaller than
22" W + CW/*(log W — logn).

To get a priori bounds on h note that our hypotheses imply that u;(1,z) is positive
and continuous so there are constants y; so that u;(1,z) > g; for all  with |jz|]; <1, and
we can without loss of generality assume that the lasi conclusion holds at time 0.

(9.9) Lemma. There is a constant K so that if ||z]|; < at and t > 1 then h(t,z) < Kt.

Proof: We have supposed that ¢;(z)+#2(x) < 1 so the probabilistic interpretation implies
u1(t, z) + uz(t,z) < 1 for all ¢ and z and it follows that

9ur
ot
Ouz

ot

To see these inequalities it is convenient to write the right-hand side in the form in (9.2).
(Recall that our main assumption (9.3) implies 8; > §;.) Let ¢; = (f1+52) and ¢z = 62+7.
Recalling that solutions of

2 Auy — (B + B2)ua

> Aug ~ (82 + y)u2

%t{ = Av —ev u(O, IL’) = ¢($)

are given by
u(t,z) = e /(471'1‘)_‘1/2e_”’_y";/“¢(y) dy

and using the maxinum principle (see (9.11) at the end of this section) we have that when
lizllz < at

wilt, z) 2 ey / (4mt) 2=l D it gy
Iyl <1

> Capi(4nt) ™2 exp(—(c; + (a? /4))t — a/2 — (1/41))



186

where Cy is the volume of {y : |ly]l2 < 1}. Combining the last expression with the fact
that

(9.10) h(z) < C(1 - log(m{in z;))

completes the proof of (9.9) C
Let a > 0 be chosen so that 3a™1aK < (1 — a), i.e., so that if w(t) solves

w' = —ow/(l+w) with w(0)=Kat

then for any n > 0 when t > T}, w({1 —a)t) < n. We will prove Theorem 9.4 with ¢ = a/2.
Let D, = {y : ||lyll2 < r} and define hi(¢,z) to be the solution of

a—h =Ah—ah/(1+h) in Dy = [at,t] x Dy

at
h(s,z) = Ks if s=at, or z € 0D,

Since h(s,z) < hi(s,z) when s = at or z € 8Dq, and g(k) > ah/(1 + h) it follows from
the maximum principle that h(s,z) < hi(s,z) for (s, z) € Dy.

To bound hi(t,z) we will use hi(s,z) = w(s — at). Another use of the maximum
principle shows h!(s,z) > hi(s,z) in D,. The last inequality is the opposite of the one we
want but we will turn it around by showing that the difference is small when ||z||; < at/2.
Intuitively the difference is only due to paths (¢t — s, B,) that escape from the space time
cylinder [at, ] X D¢ on the side. Here B, is a Brownian motion run at twice its usual speed.
When the starting point || Bg[l2 < at/2 this event has exponentially small probability and
brings a “reward” < Kt so the difference #} — h} goes to 0 exponentially fast as ¢ — co.

To begin to turn our intuition into a proof, we let §(z) = az/(1+ ) and observe that
1t6’s formula implies that if 7 = inf{s : B, & Dq.} then

SAT
Rt = (s AT),Bonr) — / G(hi(t —r,B,))dr s<(l—a)t
0
is a bounded martingale. Using the martingale property at time s = (1 — a)t gives
(1—a)t
hi(t,z) = E. | hi(at, Bu—ay) — / ghi(t = r,B.))dr;T > (1 —a)t
0

+E, (h:.(t —7,B,) - /Org(hf(t —r,B,))dr;T<(1- a)t)

Since hi(at, z) = hi(at,z), 0 < hi(t—r,B,) < hi(t—r, B;) when 7 > r, and § is increasing,
it follows that on {r > (1 — a)t} we have

(1—a)t
h!(at, B _ay) — / g(hi(t —r,B,))dr
0

(1—a)t
< hi(at, Bi—ay) = / GRS (¢ 1, By)) dr
0
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Subtracting the two expressions for hl(t, z) and recalling h} > 0 and g > 0 gives

Ri(t,z) — hi(t,2) <0+ E, (h;(t -7,B;)+ /r g(hb(t —r,B,))dr;i7 < (1 - a)t)
< (Kt + at)P,(r < (1 - a)t)

since hi(s,z) = Ks when z € 8D,, and 0 < § < a. Standard large deviations estimates
for Brownian motion imply that for ||z||; < at/2, P.(7 < (1 — a)t) < Cexp(—6t), so

sup [hi(t,z) - hi(t,z)| = 0 ast— oo
Izl <at/2

Since hi(t,z) > h(t,z) for z € Dy and hi(t,z) = w((1 —a)t) <y for t > T;, Theorem 9.4
follows. a

For completeness we give a proof of

(9.11) Maximum Principle. Suppose f;(h) > f2(h) and the k; solve

Oh; .
—é-t— = Ah, — f,(h,) m D¢

with hy(s,z) < hy(s,z) if s = at, or x € 9D, then hi(s,z) < hy(s,z) in Dy.

PROOF: This is easier to prove than to find in the library. Suppose first that f(h) > fz(h)
and hy(s,z) < hy(s,z) if s = at, or ¢ € 3D, Let so be the smallest value of s for which
there is an z with Ay(s,z) > ha(s,z). Continuity of the h; implies that we can find an
Tg so that hi(sp,z0) = ha(so,z0). The strict inequality between the h; on the boundary
implies zp € D, and s > 0. The definition of sy implies that kh;(so,z) < ho(so,z)
for all z. Since hy(s0,%0) = ha(s0,20), we must have VA (sg,Zo) = Vha(so,z0) and
Ahy(s0,20) < Ahy(s0,70). Using the last fact and fi(h) > f2(h) it follows that at (s0,%0)

ah Sh

8—; = Ahy — fi(hi) < Ahy = fa(he) = EZ

However this implies that hy(sq — €,z) > ha(sp — €,z9) for small e contradicting the
definition of sg, so we must have hi(s, ) < hao(s, z) for all (s, z) € Dqy. To prove the result
in (2.4) now let fo(h) = fi(h) + € and change the boundary values to hi(s,z) —e. The
new solution h§(s,z) < ho(s, r) and converges pointwise to hi(s,z) as € — 0. a]

The main reason for interest in Theorem 9.4 is that it applies to systems of equations.
However, as the next two examples suggest we also get interesting information when we
apply it to a single equation.

Example 9.2. The basic contact process. If we let 3 = AN where N is the number
of neighbors and write u for u; then the equation in Example 8.1 can be written as

(9.12) g—;‘ =Au—-u+pl-uwu  u(0z)=¢(z)
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To find a Lyapunov function we let p = (8 — 1)/ and write the dyanmical system as

dv
S = o(=1+6(1 - v)) = fulp - v)

Taking H(v) = v — plogv and noticing h'(v) = 1 — (p/v) we have

dH('U(t)) - —,H(’U _ p)2

dt

Clearly H satisfies (9.10). Since H'(p) = 0 and H"(v) = p/v?, repeating the proof of (9.7)
shows it is satisfied. Since H is convex we get a convergence result like Theorem 9.4

Theorem 9.5. Suppose that § > 1 u solves (9.12) for continuous 0 < ¢(z) < 1 with
${zg) > O for some z4. Then there is a ¢ > 0 so that as t — oo,

A1l
u(t,z) 7 1 0.

sup
Izl <ot

Much better convergence results than this are known for this equation (see Aronson
and Weinberger (1978) for more general results and Bramson (1983) for more detailed
information), but the last result shows that (*) holds and we have

Theorem 9.6 Suppose 8 > 1. If € is small then the contact process with strring at rate
¢~? has a translation invariant stationary distribution in which the density of 1’s is close

to (B —1)/8.

Example 9.3, The threshold voter model. In this case if N is the number of neighbors
and we write u for u; then the limiting equation in Example 8.2 is

Ju

o = Au—u(l—uM) +(1-u)1-1-w)Y)  u0,2) =)

(9.13)
When N = 1 the last two terms on the right hand side cancel so we will suppose that
N > 2. For our Lyapunov function we take H(v) = —logv — log(1 — v), which has

PR | 1 2v-1
H(v) = v+1~v_v(1——v)

dH(v(t)) _ 20—-1 .
& o(l-v) {=v(1 =)+ (1 - o)1 - (1 - )"}

=@ -D){-(1+v+-+oV N+ A +A-v)+ -+ (1 =-v)¥}

N~-1 PR
=—(2v—1)2{1+ Z (iil%—v———}
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where the sum is 0 if N = 2. Since (1 — v)? — v’ and 1 — 2v are both positive on v < 1/2
and negative on v > 1/2 their quotient is always positive. To compute the value at v = 1/2
we note that L'Hopital's rule implies that

Rt et A ¢ Sk ) e

= 49-(G=1D
v—1/2 1-—-2v v—1/2 —2v J

so the term in braces is bounded away from 0 and oo.

Since H'(1/2) = 0 and H"(1/2) > 0 it is easy to see as before that (9.7) holds. The
other condition (9.10) does not hold as stated since H{1) = co. However it is easy to see
that under suitable assumptions (9.9) holds and we have

Theorem 9.7. Suppose that N > 2 u solves (9.13) for continuous 0 < ¢(z) < 1 with
#(z¢) > 0 for some z¢ and §{z,) < 1 for some z,. Then thereis a g > 0 so that ast — oo,

sup |u(t,z) - 1/2| — 0.
flzli <ot

Again better convergence results than this are known for this equation (see Aronson
and Weinberger (1978) and Fife and McLeod (1977)) but the last result shows that (x)
holds and we have

Theorem 9.8. Suppose N > 2. If € is small then the contact process with strring at rate
€2 has a translation invariant stationary distribution in which the density of 1’s is equal
to 1/2.

We get “equal to 1/2” rather than just “close to 1/2” by starting from product measure
with density 1/2 and using the symmetry of the dynamics under interchange of 0's and
1’s. Comparing this with Theorems 5.1 and 5.3, the only surprise is that in the nearest
neighbor case there is a stationary distribution with fast stirring. We conjecture that the
presence of stirring at any positive rate, there is a nontrivial stationary distribution. In
support of this conjecture, Figure 9.2 shows a simulation of the nearest neighbor case with
stirring rate = 3.



Figure 9.2. Threshold voter model, d = 1, N = {—1,1}, with stirring at rate 3
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Appendix. Proofs of the Comparison Results

In this section we will prove Theorems 4.1, 4.2, and 4.3. The proofs are not beautiful
but by now the reader has hopefully been convinced that they are useful. We begin by
recalling the set-up and repeating some definitions that were more fully explained in Section
4. Let

Lo={(z,n)€Z* 2+ niseven,n >0}

and make Lo into a graph by drawing oriented edges from (z,n) to (z + 1,n + 1) and
from (z,n) to (z — 1,n 4+ 1). Given random variables w(z,n) that indicate whether the
sites are open (1) or closed (0), we say that (y,n) can be reached from (z,m) and write
(z,m) — (y,n) if there is a sequence of points T = Tm,...,Tn =y so that |zz — Tp—y| =1
for m < k < n and w(zg, k) = 1 for m < k < n. We say that the w(z,n) are “M
dependent with density at least 1 — 7" if whenever (z;,n;), 1 < i < I is a sequence with
(zi,mi) — (zj,mj}leo > M if i # j then

(A1) P(w(zi,ni) =0for 1 <i <) <At

Let Co = {(y,n) : (0,0) — (y,n)} be the set of all points in space-time that can be
reached by a path from (0,0). Cy is called the cluster containing the origin. When the
cluster is infinite, i.e., {|Co| = oo} we say that percolation occurs. Our first result shows
that if the density of open sites is high enough then percolation occurs.

Theorem A.l. If § < 6-42M+D* then P(|C;| < 00) < 5561/(2M+1)?* < 1/90,

PROOF: The proof is by the contour method. Even though the argument is messy to write
down, the idea is simple: if |Cy| < oo then there is a “contour” of closed sites that stops
the percolation from occuring. As we will show, the probability of a specific contour of
length n is < g(8)" where g(8) — 0 as § — 0 and the number of contours of length n is
< 3" so by summing a geometric series we see that the existence of a contour is unlikely
if 8 is small.

Most of the work goes into defining the contour. Before starting on this we have to
discard a trivial case: if (0,0) is closed, an event with probability < v, then Co = @. For
the rest of the proof we will concentrate on the case in which (0,0) is open and hence
(0,0) € Co. Let D = {z € R?: ||z||, < 1}, where D is for diamond. To turn the cluster Co
into a solid blob, we look at

Do = U(m.")GCo ((mv Tl) + D)

where (m,n) + D = {(m,n) + z : z € D} is the set D translated by (m,n). When
(0,0) € Cy, the lowest point in Dy is (0, —1). If |Cp| < oo, then the open set

G ={R x (—1,00)} — Do

has exactly one unbounded component U. We call T' = 9U N Dy the contour associated
with Cy, and orient it so that the segment (0,—1) — (1,0), which is always present, is
oriented in the direction indicated. For an example see Figure A.1.
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Figure A.1

The contour is made up of segments that are translates of the four sides of D

type 1 2 3 4
translate of  (-1,0) — (0,-1) (0,-1)—(1,0) (1,0)—(0,1) (0,1) — (-~1,0)

As we walk along the contour in the direction of the orientation, our left hand is always
touching Dy and our right is always touching U. If we stand at the midpoint of one of the
segments that make up I" then the site in

L ={(m,n) € Z*: m + n is even}

closest to our right hand is called the site associated with the segment. A glance at Figure
A.1 reveals that the sites associated with segments of types 3 and 4 must be closed but
those associated with types 1 and 2 may be open or closed. Let n; be the number of
segments of type 7 in the contour. The segments of types 1 and 2 increase the z coordinate
by 1, while those of types 3 and 4 decrease the z coordinate by 1. The contour ends where
it begins so n3 +ny = n; +n, and hence if the contour is composed of n segments we must
have n3 + ny = n/2. Now a closed site may be associated with one type 3 and one type 4
segement (see 5 on Figure A.1) but cannot be associated with more than one segment of
each type, so if there are n segments in the contour there must be at least n/4 closed sites
along it.
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To count the number of contours of length n we note that the first segment is always
(0,—1) — (1,0) and after that there are at most 3 choices at each stage (since we cannot
retrace the step just made), so there are at most 3"~! contours of length n. Suppose for
the moment that the states of the sites are independent and open with probability 1 — 7.
Noting that the length of the contour is > 4, it follows that

oo ~ 1 (371/4)4 27y
P(0 < |Co] <00) < D 8"y = 2 =
( [Co| < 00) < 23 7 3 1=3y1/4 7 1-3y1/4

n=4

which is < 1 — 7 if 4 is small enough. (Recall P(Cy = 0) < v.) To extend the last result to
the M dependent case, note that we can find a subset of the closed sites along the contour
of size at least n/4(2M + 1)? so that for each z # w in this set ||z — w|l > M. (Pick any
closed site to start, then throw out the < (2M + 1)2 — 1 closed sites in our set that are
too close to the first one, pick another site, throw out the closed sites too close to it ...)

Using (4.1) and noting our assumption on v implies 3yl/a@M+D? < 1/2 we have
oo

P(0 < |Co| < 00) < 3 3t yn/ACMAD?

n=4
1 (371/4(2M+1)’)4

2
=31 gy S SN

Recalling now that P(Co =0) <y < "/1/(“"“)’, we have proved Theorem 4.1. O
From the last proof it follows immediately that if we let |I'| denote the number of

segments in the contour and assume 7 < 674ZM+D’ thep

(A.2) P(LLMN <o)< Z gr-lyn/42M+1)*
n=L

1 (371/4(2M+1)’)L L
31— 3yi/aEMH)? s2

In order to prove the existence of stationary distributions we need results about M
dependent oriented percolation starting from the initial configuration W{ in which the
events {z € W[}, z € 2Z are independent and have probability p. Let

W? = {y:(z,0) = (y,n) for some z € W[}

Theorem A.2. If p >0 and v < 67 4CM+1)" thep

liminf P(0 € W2,) > 1— 556"/ 2M+1)* > 19/99

n—oo

Proof: The first step is to look backwards in time to reduce the new problem to the old
one solved in (A.2). This is the discrete time version of the duality considered in Section
3. To have the dual process defined for all time, it is convenient to introduce independent
random variables w(z,n) for n < 0 that have P(w(z,n) = 1) = 1 — v and look at the
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percolation process on £ = {(z,n) € Z? : z + n is even}. Later in the proof we will want
to use the fact that v > 0, so you should observe that the desired conclusion is trivial when
v =0, 1.e., all sites are open.

We say that (z,m) can be reached from (y,n) by a dual path (and write (y,n) —.
(z,m)) if there is a sequence of points = zm,...,zn = y so that |zx — zx_1| =1 for
m < k € n and w(z, k) = 1 for m < k < n. It should be clear from the definition that
(z,m) — (y,n) if and only if (y,n) —. (z,m), so

{0 € W} = {(0,2n) —, (z,0) for some z € W'}
To estimate the right hand side it is convenient to introduce

V?,f," = {z :(0,2n) —. (z,2n —m)}
C(OJ,.) = {(I, t) . (0, 2n) —F . (z,t)}

By conditioning on the value of W27, it is easy to see that
(A.3) P(0€ WE) =1_E{(1_p)IW§é‘}

so to complete the proof we want to show that if n is large and W2" # @ then |W27| is
large with high probability. The process W2" comes from random variables w(z,n) that
have property (A.1), and the event on the left hand side of (A.4) below implies that the
contour associated with 6;(0,2,,) has length at least 4n, so (A.2) implies

(A4) P(Wir #9,1C0,2m| < 00) < P(4n < T} < 00) <2747

Now the sites (z, —1) € £ are independent of those in £y and are closed with probability
~ so

(A5) P (Wi, = 0|0 < Wi < VR) 2 627
Combining (A.4) and (A.5) gives

P(WEr #0,1C(0,2m)| < 00)
P (sz:H = @‘0 < |W221':| < \/T_l)

< 2—4.17—2\/?;

(A.6) P < [WZr| < V) <

Using (A.3) in the first step; then (A.6) and P(|WZ2| > 0) > P(|é(o'2")] = o0) in the
second; and finally, Theorem 4.1 in the third we have

PO W) > {1-(1-p)"} PUWE 2 VR)
2 {1 -(1- P)ﬁ} (P(lé(g'z,,ﬂ = 00) — 2"4"7‘\/’_')
2 {1 -1 —p)ﬁ} (1 — 55 1/GMADT _ 2-4"7—ﬁ)
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which proves the desired result. a

The arguments for the last two results can be extended easily to give the conclusion
quoted in Section 6 as (6.1):

Theorem A.3. If p > 0 then

liminf P({-2K,...,.2K}NW? #0)>1—ex

n—oc

where e — 0 as K — oo.

PROOF: By the reasoning in the proof of Theorem A.2, we have {—2K,...,2K}NW! #40
if and only if there is a path down from some (z,n) with |z| < 2K to (y,0) for some
y € WJ.. To estimate the probability that this occurs we suppose that all the sites
{-2K +1,-2K +3,...,2K — 1} are open at time 2n 4 1, let

¢ = {(z,t) : (y,2n 4+ 1) -, (z,t) for some |y| < 2K — 1}
and turn the cluster € into a solid blob by looking at

D =V nyec(mn) + D
where D = {z € R? : ||z||; < 1}. As in the proof of Theroem A.1 when |C| < oo we can
define a contour associated with the cluster, and when the contour has length n there will

be at least n/4(2M + 1)¢ closed sites so that for each z # w in this set ||z — w|lee > M.
Since this time the shortest contour has length 8K using (A.2) gives

P(IC] < 00) < 27K
If we let
Wl = {4 (2,2n 4+ 1) —. (y,2n — m) for some |z} < 2K — 1}
then the argument in the proof of Theorem A.2 shows that
PO < Wi | < vm) g 270y V"

So repeating the last computation in the proof of Theorem A.2 proves the result with
ex = 278K ]

Our last task is to prove Theorem 4.3. We begin by recalling the

Comparison Assumptions. We suppose given the following ingredients: a translation
invariant finite range process & : 2% — {0,1,...x — 1} that is constructed from the graph-
ical representation given in Section 2, an integer L, and a collection H of configurations
determined by the values of £ on [~ L, L]* with the following property:
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if £ € H then there is an event G¢ measurable with respect to the graphical representation
in [—koL, ko L]? x [0, joT] and with P(Ge¢) > (1 — 6) so that if & = ¢ then on G¢, {1 lies
in oy, H and in 0_,p, H.

Here (0,€)(z) = £(z + y) denote the translation (or shift) of { by y and oy H = {0,{: £ €
H}. If we let M = max{jo, ko} then the space time regions

Rmn = (m2Le;, nT) + {[—koL, ko L}* x [0, 0T} }
that correspond to points (m,n),(m',n’') € £ with ||(m,n) — (m/,n’)||ec > M are disjoint.

Theorem A.4. If the comparison assumptions hold then we can define random variables
w(z,n) so that X,, = {m : (m,n) € Ly, T € OmaLe, H} dominates an M dependent
oriented percolation process with initial configuration Wy = X and density at least 1 -+,
i.e., Xp D W, for all n.

PROOF: We will define the w(z,n) in the oriented percolation by induction. We begin
by setting V5 = X, and defining a slightly enlarged version of the percolation process V,,
consisting of all the y so that can be reached from some (z¢,0) with g € Vy by a sequence
ZoyZL1,...Tp =y so that |zx —zk—| =1for 1 <k <n and w(zx, k) =1for 0 < k < n,
i.e., the last point in the sequence does not have to be open. Since V,, D Wy, it suffices to
show that X, DO V,,.

Let n > 0 and suppose that V,, and the w(z, £) with £ < n have been defined so that
Xn D Va. To define the w(m,n), and hence V, 41, we consider two cases.

Casel. meV, C X,. We set w(m,n)=1Iif G,,_mmlé” occurs in the graphical repre-
sentation translated by —m2Le; in space and —nT in time, 0 otherwise. By assumption
this event is determined by the Poisson points in R n, has probability at least 1 —+, and
guarantees that (m + 1),(m — 1) € X, 4.

CASE 2. m ¢ V,,. In this case, the value of w(m,n) is not important for the evolution of
the percolation process so we set w(m,n) equal to an independent random variable that is
1 with probability 1 — 4 and 0 with probability .

If m € Vo4 then either m —1 € V, andw(m —1,n) = lorm+1 € V, and
w(m + 1,n) = 1. In either case the observation in Case 1 implies that m € X, ;. The
last conclusion and induction imply that X, D V, for all n. The last detail to check is
that the w(m,n) satisfy (A.1) and again we use induction. If I =1 the conclusion is true,
so suppose now that £ > 1 and that the conclusion is true for I = k — 1. Let (z;,n;)
1 € ¢ < k be a seqeunce of points with |[(zi,n:) — (zj,7;)|lec > M if ¢ # j and suppose
that the sequence has been indexed so that nx > nj forall 7 < k. Let F be the information
contained in the graphical representation up to time n;T or in one of the space time boxes
Romi,n; With ¢ < k. The comparison assumptions and the fact that ng > n; for j < k imply
that

Plw(m,nx) = 0|F) < v
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Integrating the last inequality over Ex—y = {w(mi,n;) = 0fori < k — 1} € F which by
induction has probability smaller than v*~1 gives

k —
vy Z/l;k_l‘YdPZ/Ek_‘P(w(mk,nk)_OU:)dP
= P(Ex-1 0 {w(mi,n) = 0}) = P(Ex)

which verifies (A.1) and completes the proof. a
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