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Inspired by earlier work of Hubbell, we introduce a simple spatial model to explain observed
species-area curves. As in the theory of MacArthur and Wilson, our curves result from a balance
between migration and extinction. Our model predicts that the wide range of slopes of species-area
curves is due to the differences in the rates at which new species enter this system. However, two other
predictions, that the slope increases with increasing migration/mutation and that the curves for remote
islands are flatter than those for near islands, are at odds with some interpretations of data. This suggests
either that the data have been misinterpreted, or that the model is not sufficient to explain them.

1. Introduction

One of the most profound and important empir-
ical observations in ecology is that larger areas
contain more species than smaller areas. For
understanding how communities are organized or
what the consequences of reserve design are for
the maintenance of biodiversity, no relationship is
more informative. Yet an understanding of what
determines species-area curves remains elusive to this
day.

Increasing areas can support more species both
because the increasing habitat heterogeneity allows
greater potential for specialization, and because even
in a homogeneous environment smaller areas are to
some extent random samples drawn from a larger
population of species not all of the same size (Preston,
1962). The exact dependence of species number S
on area A is debated (Johnson & Raven, 1973,
Connor & Simberloff, 1978; Gilbert, 1980; McGuin-
ness, 1984). Early studies (e.g. Hopkins, 1955) fitted
the curve S = a In (1 + bN), a relationship that would
be expected if the individuals in a region were a
random sample from a larger population (Preston,
1969). The most accepted relationship, however
(Kilburn, 1966; MacArthur & Wilson, 1967; May,
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1975; Connor & McCoy, 1979; Coleman, 1981;
Sugihara, 1981), takes the logarithm of S to be
proportional to log area, plus a constant; that is, S is
proportional to a power of 4.

Hubbell (to appear, 1995; see also Hubbell &
Foster, 1986) has sought theoretical explanations of
the observed species-area curves, extending ideas
of MacArthur (1969) and Rosenzweig (1975) and
incorporating dispersal and speciation. In this paper
we build on Hubbell’s work, addressing the last two
of four questions posed by Williamson (1988) in
a review of the concepts and empirical data on
species-area relationships.

(3) Why is the power p in general between 0.15 and
0.4?

(4) Why is there so much variation in the power
among surveys?

To help motivate these questions, we refer to
Table 1, which gives the slopes for various data
sets taken from MacArthur & Wilson (1967),
Preston (1962), Johnson & Raven (1973), Connor
& Simberloff (1978) and van der Werff (1983). In
brief our answer to question (4) is: the power p is
related to the rate (called o in our models below)
at which new species enter the system. There is
so much variation in the power o because the
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TABLE 1
Some typical species-area curve powers z

Fauna or Flora Location z

Birds Finland 0.146
Flora Britain 0.189
Birds Maryland 0.213
Land vertebrates Lake Michigan Islands 0.239
Birds East Indies 0.280
Mammals East Indies 0.280
Ponerine ants Melanesia 0.300
Amphibians West Indies 0.301
Birds East-Central Pacific 0.303
Land plants Galapagos Islands 0.325
Carabid beetles West Indies 0.340
Birds Gulf of Guinea 0.489

appropriate values of o may differ by several orders
of magnitude.

2. Development of the Models

In the models that we consider space is divided
into square cells. The centers of these are represented
by the two-dimensional integer lattice, Z? the
points in space with integer coordinates. We begin by
describing Hubbell’s model (to appear), in which time
is discrete (i.e., = 0, 1, .. .) and at any time ¢ the state
of each site is described by giving a list of the species
found at that site. To make the transition from time
t to time ¢ + 1 we sequentially apply the following
three processes to the entire grid.

(i) Speciation. At each site x, each species at x is
replaced by a new species, also located at x, with
probability a.

(i1) Dispersal. At each site x, and for each of the
eight neighbors y that differ from x by at most one
in either coordinate, each species at x can disperse
onto y with probability b.

(iii) Competition. If at the end of step (ii) there are
n species at a site, then each survives with probability
c/(1 + n).

The speciation, dispersal, and competition events
for different species or for different sites are
independent. This means that in the computer
realization of the model they are determined by
different calls to a random number generator.

Hubbell’s model is somewhat complicated to
program because each site must have a data structure
that allows for the storage of a variable number of
species. To avoid this problem we will adopt a finer
spatial scale in which there can be at most one species
per site. We index our species by points from the
interval (0, 1), so we can pick new species at random
from the set of possibilities and not duplicate an
existing species. Thus, at any time ¢, the state of

site x, & (x), can be 0, indicating a vacant site, or a
real number w with 0 < w < 1, indicating that it is
occupied by one individual of species w.

Our models take place in continuous time, i.e.,
t can be any non-negative real number, so they
are formulated in terms of transition rates. We say
something happens at rate / if the probability of an
occurrence between times ¢ and ¢ + & is & 4h when £
is small. When things happen at a constant rate
[like the death rates in (ii) below], the interoccurrence
times #; are independent and have an exponential
distribution with mean 1/4, i.e. P(t; > t) = e ™.

To define our model, known in the mathematics
literature as the “multitype contact process with
mutation”, we begin by introducing the dispersal
kernel p(x, y), which is the probability an offspring is
sent from x to y. To have a spatially homogeneous
model, we will assume p depends only on the distance
between the two sites, i.c., p(x, y) = p(ly — x|).

(i) At rate f an occupied site x produces an
offspring of its type, and sends it to y with probability
p(x, ). If y is already occupied then no birth occurs.
A mean number u of propagules can be produced at
rate fi/u without substantially changing the results we
will state, but we will stick to the simpler formulation.

(i1) An occupied site becomes vacant at rate . This
represents death of existing individuals.

(iii) An occupied site changes to a new type w’,
chosen uniformly on (0, 1), at rate o.

The changes referred to in (iii) have two possible
interpretations: (a) the introduction of new species
from outside the system by migration, or (b) genetic
changes that introduce new species. We expect that
the first mechanism will be more important for
island groups, whereas the second may be more
important for terrestrial situations such as the flora
of Britain. Under either interpretation o will be very
small; but, typically, the rates appropriate for (b)
will be several orders of magnitude smaller than
those for (a). It might be slightly more realistic to
allow new types to appear in situation (a) at vacant
sites or in (b) during the birth step. However, this
will not make a significant difference in the
behavior of the model except to change the effective
value of a.

Turning to (i) and (ii), we note that if we ignore the
types of the individuals then our model reduces to the
“contact process”, an interacting particle system
that has been extensively studied for more than 20
years. For the mathematical theory see Harris (1974),
Chapter VI in Liggett (1985), Chapters 4 and 11
in Durrett (1988), or Durrett (1991). For biological
applications see Barkham & Hance (1982), Crawley
& May 1987), Inghe (1989), or Durrett & Levin
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(1994). The contact process (with or without
mutation) obviously ignores many aspects of the
growth and competition of plants. However, it is
spatially explicit and captures what we believe are the
essential features of the interaction—there is a limited
carrying capacity and offspring are born near their
parents.

In the above, we have made the assumption that the
birth and death rates and displacement distribution
do not depend on the species. It would be easy, within
the contact-process framework, to allow for a spread
of such rates. However, introduction of different rates
for different species would introduce a Pandora’s
box of complications: stronger species will start to
exclude weaker ones competitively; and, having
admitted different types of individuals, we should
logically allow succession to occur, i.e., some types
can invade sites occupied by other types. Introducing
such mechanisms in the name of realism would, in
our opinion, result in an overly complicated model
where one could not be sure what features of the
model are responsible for the observed qualitative
behavior. Instead we have taken a minimalist
approach in constructing our model in order to
answer the question: what would species-area
curves look like in a homogeneous world where the
only forces at work were migration or mutation,
colonization, and extinction?

Before stating our first result we need to give some
definitions and recall some “well-known” facts about
the contact process. A “‘stationary distribution” for
the contact process or multitype contact process with
mutation is a possible equilibrium state. That is, if
the initial state of the system, &, has this distribution
then the state at time ¢, &,, has this distribution for
all # > 0. Since the state of the system at any time ¢
is an assignment of a number in (0, 1) to each site
x € Z*, the distribution of the state is given by
describing the joint distribution of &, (xy), ..., &(x,)
for all finite sets {x,..., x,j=Z’. The
(distribution of the) initial state is a stationary
distribution if all these “finite dimensional distri-
butions” are the same when computed at time ¢ or at
time 0. For further explanation, see Durrett & Levin
(1994).

Either version of the contact process [i.e., with or
without rule (iii)] has a trivial stationary distribution
in which &,(x) = 0 for all x and ¢. Clearly, increasing
f makes it easier for the contact process to have a
non-trivial stationary distribution; one that puts no
mass on the all 0’s state. Harris (1974) showed that
for the basic contact process there is a critical value
A. > 1, which depends on the dispersal function p(z),
so that for /0 > /. the basic contact process has a

non-trivial stationary distribution. Bezuidenhout &
Grimmett (1990) showed that there was only one
non-trivial stationary distribution. By combining
their result with an idea from Neuhauser (1992),
one can show:

Lemma 1. Suppose /0 > A.. Then the contact
process with mutation has a unique non-trivial
stationary distribution, which we will denote by &.,.
The importance of this result is simple. We want to
study species-area curves for the contact process with
mutation when it is in equilibrium, so we need to
know that there is a unique equilibrium. Proofs of
Lemma 1 and of the other results stated below can be
found in the companion paper by Bramson et al.,
(1996).

For a variety of reasons, we will also be interested
in an even simpler version of the model above, called
the “voter model with mutation,” which evolves as
follows:

(i) A site x is always in some state w e (0, 1).
At rate §, it changes its state to that of a randomly
chosen neighbor, picking y with probability p(x, y) =
p(ly — xI).

(ii) At rate o, a site changes to a new type w’ chosen
uniformly on (0, 1).

Again, we will use &(x) to denote the state of site
x at time ¢. The name “‘voter model” comes from
thinking of the collection of sites, Z%, as a rectangular
grid of houses and &,(x) as the opinion of the voter
at x at time 7. Our voters are very simple-minded.
Each voter keeps an opinion for an exponentially
distributed amount of time with mean 1/6 then adopts
the opinion of a neighbor, with a voter at x picking
neighbor y with probability p(x, y). While one could
argue that actual voters are equally naive, the point
of studying the voter model is not to explain current
political trends, but instead to gain insight into the
behavior of the more complicated multitype contact
process.

Mathematically, the voter model with mutation can
be thought of as the multitype contact process with
mutation with birth rate f = oo. That is, when a death
creates a vacant site at x, it is immediately filled
in, with neighbor y having probability p(x, y) to be
the first to fill the site. One does not have to believe
that f is enormous, however, to replace the contact
process by the voter model. When f = 106 in the
contact process, approximately 90% of the sites
are occupied in equilibrium. If one recalls that f
represents the rate at which propagules are produced
times the mean number produced, then ten does not
seem to be an unreasonably large value.
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The voter model was first studied by Holley &
Liggett (1975). More recently, it has appeared
(slightly generalized) in the work of Silvertown et al.
(1992) on the competitive interaction of grass species.
The voter model is particularly simple to analyse
because there is a “duality” that allows us to reduce
questions about the voter model to questions about
random walks. We will not go into the details here,
but only mention that this duality is the key to the
proofs of the results in the next section and is even
useful in simulating the system efficiently. As in the
case of the contact process, we need to know there is
a unique stationary distribution before we can study
the associated species-area curves, and this is true.

Lemma 2. The voter model with mutation has a
unique stationary distribution, which we will denote
by &

3. Mathematical Results for Species-Area Curves

We would like to be able to prove results for
the multitype contact process with mutation under
the assumption that the dispersal function p(x, y) =
p(ly — x|) has finite variance, that is, X.|z|* p(z) < 0.
However, for technical reasons, we are only able to
prove results for the voter model with a nearest
neighbor interaction, i.e., p(x,y) = 1/4 if |y—x| = 1.
The work of Neuhauser (1992) suggests that
Theorems 1-3 below are also true for the multitype
contact process. In Section 4 we will give simulation
results to support this conclusion.

To explain the formulation of our results, we begin
by observing that since the rate at which new species
enter the system is small, we investigate the limiting
behavior of the species-area curves as o approaches 0.
The reader should not confuse this with setting oo = 0,
which results in a trivial model in which new species
never appear. Instead, what our analysis will give us
is a slope that depends on o and is an approximation
that becomes more exact the smaller o becomes.

Key to our approximation, mentioned in the
previous paragraph, is the identification of a length
scale L, which depends on «, over which we expect to
see interesting behavior. To compute L, note that
if we follow the ancestry of a site backwards in
time, then the time until we encounter a “mutation”
has an exponential distribution with mean 1/o. The
successive displacements of parents from offspring
form a random walk, so the distance from an
individual to its first ancestor who experienced a
mutation will be of order 1/\/oc. This leads quite
naturally to the introduction of the length scale
L=1 /\/&. To relate L to real distance, recall that

sites are by definition one unit on a side and have a
size comparable to the spacing between individuals.

In what follows we will take as our basic unit of
area the square of side L', that is S, = (—L'/2, L"/2]*.
We include the right endpoint but not the left to make
the number of points exactly equal to L* whenever L’
is an integer. To define the species-area curve we let
N, be the number of different species in S, in
equilibrium, and then plot the log of N, vs. the log of
the area of §,, i.e., 2rlog L. Since log L — o0, as
o — 0, we rescale by dividing by log L and plot

¢(r) =log N,/2log L,

which is a function of the dimensionless log of area,
r. We then have the following three results, which are
proved in Bramson ez al. (1996).

THEOREM 1 As o — 0

StV
0 ifr<1 | .
= {r it in probability.
Here X —a in probability means that

P(|X —a|> ¢)— 0 for any ¢ > 0.

The observations in the paragraph above the
theorem lead easily to the fact that states of sites
separated by a large multiple of L are almost
independent. So for length scales larger than L the
number of species will be proportional to area and the
limiting curve has slope 1 for r>1. Roughly,
Theorem 1 says that

log N, =~ 2(r — log L for large L when r > 1

Our next result sharpens this conclusion.

THEOREM 2 If r > 1 then o« — 0 (and L — o0)

N,

2. .-
m—); mn probablllty

Intuitively, this says that N, ~ (2/n)(log L)* when L
is large, so as L — oo

log N1 _ 2loglog L + log(2/n)
2log L~ 2log L

—0

Our final result shows that when r < 1 the number
of species does not go to oo as L does.

THEOREM 3 If r < 1 then as o — 0 the expected number
of types, EN, converges to a constant C,.

This result, and its proof, complete the following
picture of the equilibrium state. Locations that are
separated by more than L are largely independent.
On smaller scales, i.e., L" with r < 1, the landscape
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F1G. 1. Simulated species-area curves for the voter model with mutation. Here L = 100, 200, 400, o« = 1/L?, and the universe is a K x K
square where K = L*3. Notice that these curves are far from the limit, which is flat out to 1 and has slope 1 after that. [], 400 x 400;

O, 200 x 200; O, 100 x 100.

is relatively homogeneous, and has a positive
probability (which depends on r) of being all one

type.

4. Computer Simulations

In the discussions above we have asserted that
(1) the multitype contact process with mutation and
the voter model with mutation lead to similar
species-area curves. A second point that will be
important in the interpretation of these results below

is (il) the species-area curve is almost linear for
0 <r<1. We have not been able to prove these
results mathematically, so we will demonstrate them
via computer simulation.

To deal with (i), Figs 1 and 2 give the results of
simulations for the voter model with mutation and
contact process with mutation on (0, K)* using nearest
neighbor dispersal (p(x,y) =1/4if |[x —y|=1) and
imposing periodic boundary conditions. That is, sites
on the left edge of the square are neighbors of those
on the right, those on the top edge are neighbors of
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F1G. 2. Simulated species-area curves for the contact model with mutation. Here L = 100, 200, 400, o« = 1/L? and the universe is a K x K
square where K = L*3. Notice that these curves are very similar to those for the voter model in Fig. 2. [, 400 x 400; <>, 200 x 200;

O, 100 x 100.
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F1G. 3. Simulated species-area curves for toroidal (triangles), flat
square (squares), and flat circular (circles) regions. Note that the
three curves are almost identical showing that the species-are curve
is not sensitive to the boundary conditions used.

those on the right; or in the description our computer
prefers, the neighbors of a point are {y:|x — y| = 1}
where the difference x — y is computed modulo K
[e.g. (0,7) —(K—1,7)=(1,0)]. Periodic boundary
conditions make our universe into a torus (or
doughnut) but they eliminate boundaries and give us
a universe that looks the same from every point it.
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The main advantage for this is that on one simulation
we can compute the species-area curves from a
number of different centers (we use 100) and average
the results to reduce the variance.

However, islands are not doughnuts floating on the
ocean, and it is important to ask if the results are
sensitive to the choice of boundary conditions. To
investigate this point we have simulated the process
on a square flat island and a round flat island. In the
flat island simulations there is an array of habitable
sites (land) surrounded by a boundary of uninhabit-
able ones (ocean) that can never become occupied.
Figure 3 gives the average of ten simulations for
flat (square), round (circle), and toroidal (triangle)
islands with 10000 sites. The curves are so close that
the graph is a mess when all three curves are plotted
simultaneously. Thus, we have chosen to alternate
plotting points from the three data sets.

Returning to the details of the simulation, we
should also point out that when we are thinking about
nested boxes within a land mass as in the example
of the flora of the British Isles, K is a spatial cutoff,
with no fixed relationship to the model parameters
L= 1/\/&. In our first set of simulations we have
taken K = L**. Theorem 1 implies that in the limit as
K — oo the species-area curve will be flat out to 1 and
then have slope 1. The realizations in Fig. 1 show that
in the voter model we are far from this limit when
K =400 and there has not been much change from
the curves from K = 100 and K = 200. Figure 2 shows
three analogous results for the contact process. While
we do not expect the curves to be identical for the two
models, they are clearly very similar.
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FIG. 4. Three simulated species-area curves for the voter model with mutation when L = 1000, & = 1/L* = 10~°. Note that the curves
are fairly close to straight lines and there is little variation between runs.
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To investigate the shape of the species-area
curves for our models, we simulated the equilibrium
distribution when o = 10~¢ and hence L = 10°. Since
we were only interested in the behavior for 0 < r <1
we took K = 10°. The results of three simulations
graphed in Fig. 4 show that the curve is fairly straight
and there is not too much variation among simulation
runs.

5. Interpretation of our results

The first point to be made is that although the
limiting curve in Theorem 1 consists of two straight
lines with slopes 0 and 1, Theorem 2 allows us to
compute a slope for species-area curves that depends
on a. To calculate that slope, note that (i) the
simulations discussed above suggest that the species-
area curve is linear on log—log paper for 0 < r < 1, (ii)
Theorem 2 says N, ~ (2/n)(log L)*>, and (iii) the
number of species in a 1 x 1 box in the voter model
with mutation model is always one, so N,=1.
Combining (i-iii) the slope of our species-area curve
will be

log N —log Ny _2loglog L + log(2/m) )
2log L = 2log L

Plugging in different values of o we find the following
slopes

species-area curves for distant islands (with smaller
o’s) should be flatter. This conclusion differs from
much current theory (see e.g., the popular textbook
by Begon et al., 1990) that slopes are steeper for more
distant island groups. However, data on this point are
equivocal, and others have asserted that the opposite
is true (Hamilton & Armstrong, 1965; Schoener,
1976; Connor & McCoy, 1979, p. 806; Williamson,
1981, p. 65; Williamson, 1988, p. 111).

A second widely accepted qualitative property of
species-area curves that is in conflict with the
predictions of our model is that higher mobility leads
to smaller slopes. A commonly cited source for this
conclusion is Wright (1981). However, inspection of
his table on p. 737 reveals that apart from the data
on the West Indies most ‘‘z-statistics” are barely
above the 1.64 (standard deviations) needed for
95% confidence. For example, in the column
comparing birds and non-volant mammals the values
are 9.36 (West Indies), 2.5, 2.38, 2.02, 1.76, 0.78,
0.17, —0.08, —0.32 i.e., the result is significant in
six cases out of ten.

Even if one accepts that birds have significantly
smaller slopes, this does not automatically falsify the
model. One can argue that (i) birds move easily from
one island to another, and (ii) it is the availability of
suitable habitat that determines if they settle, so the
slopes of their species-area curves are determined by

o 10°* 10-? 10-° 1077
slope 0.306 0.284 0.264 0.245

10~ 12
0.182

10"
0.191

10-10
0.202

1078 10-°
0.229 0.215

By varying L = 1/\/& in (1) we can match the slopes
in Table 1 from the flora of Britain to the birds of the
East Central Pacific. Larger slopes, such as the birds
of Guinea, can be obtained by using longer range
migration (beyond nearest neighbors) in which case
the 2/n in Theorem 2 will be replaced by a larger
constant C that will depend on the dispersal distance.

Even though we can match the slopes in Table 1,
the simple spatial models we are using are not
designed to make quantitative fits, but instead to
offer explanations for observed qualitative behavior.
Thus, to answer Williamson’s fourth question: our
model predicts that there is so much variation among
surveys because the rate o at which new species enter
the system varies considerably.

The last observation is consistent with the view,
see e.g. Preston (1962), that species-area curves are
steeper for islands than for nested areas within
a continent, since new species will arrive at a lower
rate in the second case. Taking this reasoning one
step further our formula predicts that the slope of

those of the relevant vegetation. Clearly the points in
the last three paragraphs bear closer examination.

One possible source of error in our analysis is that
we equate the slope of the species-area curve ¢ (r) with
that of the difference ¢(1) — ¢(0). Since islands of a
fixed size will have fewer species in more distant island
groups, the associated species-area curves can be
steeper only if they reach 0 (i.e., one species) at a
higher level.

Finally, in applying our model to island groups
we have certainly made a gross simplification by
supposing that new species arise on each island at a
constant rate per square meter. Certainly smaller
islands will receive new species from larger ones
nearby, while new species can enter the island
group only by being dispersed very long distances.
This makes it clear that our simple picture ignores
important details. However, to model an entire island
group directly would lead to a model that is both
hopelessly complicated and specific to a given island
group.
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6. Conclusions

The considerations of this paper show that
many of the properties of species-area curves can
be explained in general terms with one of the
simplest interacting particle models. Our work is in
the spirit of MacArthur & Wilson’s (1963, 1967)
theory in that the number of species is a result of
a dynamic equilibrium between immigration and
extinction. However, in contrast to MacArthur
& Wilson, who use two unspecified monotone
functions to describe immigration and extinction
(see fig. 4, p.376 in their 1963 paper or the
same figure on p.22 of their 1967 book), our
model has precisely specified dynamics that enable
us to make quantitative as well as qualitative
predictions.

Our most important prediction is that the slope
z of the species-area curve on log-log paper depends
on the rate o at which new species enter the system.
This is in contrast to earlier work of for example
Preston (1962) and May (1975) who predicted a
unique value of z ~ 1/4, and seems to be in better
agreement with the data quoted in Table 1 which
shows a wide variety of slopes. In particular this
allows us to see that the ‘“‘areas within continents”
and ““island groups” situations are not really different
but simply correspond to quite different values of the
rate o.

The predictions above must be compared with
the existing data. Given the controversy that has
surrounded explanations of species-area curves
(see e.g., Connor & McCoy, 1979; Gilbert, 1980;
McGuinness, 1984) it would be foolish to claim that
our new variation of the equilibrium theory of
MacArthur & Wilson suddenly solves a century-old
problem. At the very least, it is clear that habitat
diversity, which is ignored in our model, plays an
important role in some situations. However, we feel
that our approach through spatial models sheds some
new light on an old puzzle. Certainly it will generate
some new heat as well.
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