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1. Introduction 

In this paper we will solve two problems concerning the genealogy of critical 
branching processes. We will obtain a limit theorem for the generation number of a 
randomly chosen individual and we will prove some results which describe the 
relationship in a randomly chosen finite set of particles. 

To obtain the result for the generation numbers we will study the distributions of 
two related random variables: S, the time of the first death of a member of 
generation II and a, the time of death of the last member of generation n. In Section 
2 we show that if Z(t), t 3 0 is a critical age-dependent branching process in which the 
particles have lifetimes with a distribution G which has mean p < 00, then (&/wl 0 S 
& < 00) and (a,/n IO s a, c “) converge in probability to p. Using this result we can 
show that if L& is the generation number of a particle picked at random from those 
above at time t (UJt 12(t)>O)+ l/p as t -sm. 

The proofs of the limit results for (&,/n IO G S, < 00) and (cr,Jn I 0 s a, < ~0) are 
based on a result which is an extension of a theorem proved by Hammersley (1974) 
who studied the limiting behavior of 6,/n for a supercritical branching process. The 
first part of the proof which we give is exactly the same as Hammersley’s proof, but 
after formula (2.6) the argument is different and is simpler. This should not be 
surprising since the conclusions are different in the supercritical case-Hammersley 
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102 R. Durrett ,I Critical &ranching processes 

(1974), Samuels (197 l), and Biggins (1976) have shown that as n + 00 

&I~ -)Y, nlU, 4, and u,,ln --$ :r (1) 

where the constants y < p’< p < r are defined in terms of tile Laplace transform 
5 e-” dG(t) (see [ 12, p. 6641; [17, p. 6571; [3, pp,, 458,455]). If G(t)= 1 -ee-’ and the 
offspring distribution has mean m > 1 then p’ = Ilrn and y < r are the two roots of 

x e’-” = l/m. From this we see that the results we obtained in the critical case are just 
the ones which would be obtained by extrapolating from the supercritical case. 

When we consider results about the degree of relationship this is no longer the 
case. If we take two individuals alive at time t they will be in generations Uf and Uf 
and have a last common ancestor who died at time Dt s t and who was a member of 
generation Uf’. In the supercritical case Buhler (1972) has shown the following 
result (see Theorem 4.2, p. 471). 

Theorem. For lsi<jsk let Ry= (Vi - Uy ) + (U( - Uy) be the degrees c$ rela - 
tionship of k individuals chosen randomly at time t in a Markov branching process. If 
the offspring distribution has finite variance then on (Zt > 0 for all t 3 0) the random 
varia blzs 

(Ry-2mt)(2mt)-1’2, l~i<j~k (2) 

converge weakly to R ii as t + 00. The random variables R” have a joint normal 
distribution with ER” = 0 and 

i 

1 if ii, j) = {k, 11, 
zov (R”. R”)z $ if I{i, j) n {k, 1) == 1, 

0 if {i, j}n{k, 1}=4. 

The result implies in particular that Rii/t converges in probability to 2m. Now 
from the result of Samuels (1971)mentioned above U;/t and Uf/t converge to m in 
probability so we have that (U,’ + Uf - 2 R :* )/t converges in probability to 0. This 
result suggests that as t +a, D,/t converges to; 0 in probability. An even stronger 
statement is true. It is easy to show (see formula (1.) of Section 3) that if sI + 00, then 

lim P{D, > sI} = 0. 
t-+00 (3) 

Eq. (3) dmws that individuals in a supercritical branching process are in general very 
distant relatives. In the critical case the situation 
show that for Markov branching processes 

!D,>n)=(l-r)(l+2~~I&). t+Q) - = 

is much different. In Section 3 we 

(4) 
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Differentiating formula (4) with respect to r gives that the limit distribution has a 
density 

which is monotone increasing and w-2 log (1 - r) as r + 1. This result shows that two 
individuals chosen at random from a critical branching process are fairly closely 
related. 

We can also describe the relationships between more than tivo particles. To do this 
we consider N,(s) the number of individuals alive at time t which have offspring alive 
at time t. On {Z(t) = 0}, Nt(s)= 0. On {Z(t)> 0}, N,(s) 2 1 and is monotone increas- 
ing. In Section 3 we compute that if Z(t) is a Markov branching process, 0 s irl e: ~2 c 
l,and lrj<k 

!iki P(Nt(rlr) = k 1 Z(t)> 0) = r:-’ (I- r~), 

!$P(N,(r2t)= k 1 N,(r,t)=j)= (s)(z)i(e)k-i 

(6) 

(7) 

Since {N&t), 0 G r K 1) is a Markov process for each t it is easy to use (6)1, (7) and 
the monotonicity of the paths to show that for all E > 0, {N,(H), 0~ I’ < 1 -E} 
converges weakly as a sequence of random elements of D[O, 1 - E] to 2 limit process 
with transition probabilities given by (6) and (7). 

The limit result for {N,(H), 0 s t < 1) gives a fairly complete description of the 
relationship in a critical branching process. In Section 4 we use this result to 
determine what occurs in a critical Markov branching process when we associate with 
each particle a position in Rd according to the following rules: 

(i) A particle does not move during its lifetime. 
(ii) When a particle located at x dies and has j offspring the positions Xii, . . . , Xii 

of its offspring have a joint distribution given by 

Let #iI be the distwibuton of Xi, let pj be the probability of having i offspring and let 

y(x) = f Pi f: $ij(X) 
i=l i= 1 

(9 

be the expected number of the offspring which will be born at a position <x when the 
parent was located at 0. 

These processes, called branching random walks, were introduced by Ney who 
studied them in the supercritical (age-dependent) case in (1965) and obtained a limit 
theorem for the number of particles in vt+xt’/” -t (--00,0]” where v =: 1 y*(d,?). 



104 R. Durrett / Critical branching processes 

Recently Kaplan and Asmussen (1976) have shown that if the displacements of the 
offspring from the.parent are independent and if the distribution @ii is independent of 
i and i then there is a limit theorem for the number of particles in vt + xtl’* + [0, hld. 

In Section 4 we will study the corresponding problems for critical Markov 
branching random walks under the assumption that 

(a) the dispiacements of the offspring from the parent are independent and 
identically distributed, or 

(b) pi > 0 for only one j > 0. 
Our main result is a limit theorem for the family history of a randomly chosen 

particle. This result states that if for each t - =>O we pick a particle at random from 

those alive at time t and let Yt(s) be the position of its ancestor which was alive at 
time s then as t + 00, (t-“*( Y&l)- urt), 0 G r G 1) converges weakly to a Brownian 

motion with mean 0 and covariance & = j yiyj’P(dy ) - vivp 
Combining this conclusion with the results of Section 3 suggests that if we let 

Q C_ Rd be the position of the parties alive at time s and define 

I ris = {X : x E qs and x has offspring alive at time t}, 

then as t -* 00 (t-"2(q:I - vrt), 0 s I s 1 1 qr # 0) converges to a limit process which can 
be constructed from N(s) (the limit of’N,(s)) by the following rules: 

(;) One particle is present at time 0 and a new particle is born at each time of 
discontinuity of Nt(s). 

(ii) No particle dies before time I = 1. 
(iii) All living particles move according to independent Brownian motions with 

mean G anti eovariance 2: 
(iv) A new particle is born at tile location of a particle chosen at random from 

those alive at the time of its birth. 
The reason for interest in a *‘functional limit theorem” of this type is that it should 

imply that if we let qr(S) be the number of points in qr n S then the distribution of 

(t_‘q,(vt + XP2 + (--00, Old) 1 7)* # 0) (10) 

converges to a limit which has the same distribution as the corresponding quantity for 
the conditional branching Brownian motion described above. This limit theorem, 
while plausible, is difficult to make rigorous. To do this we would have to construct a 
space of multi-valued functions in which the processes can converge, prove con- 
vergence of finitt: dimensional distributions, check tightness, and show that the 
functional we have defined above is continuous. The details are too lengthy to 
include in this payer but we may consider theln in a future publication. 

The situation becames even more complicated when we consider limit theorems 
for q,(vt + xf “* + [0, IrId). We conjecture) that if A is a bounded open set with /aAl = 0 
and we ,et A, -= vt +-xt”* + A, then there are monotone functions 1 and &,A, d a 3 
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so that for x > 0: 

if d = 1 lim (t) 
t+oO 

{q,(A,)/IAlt”*>x}=i,r,(x), 

if G! = 2 hrir (t log t)P{qr(At)/IAl log t > X} = 4 c-~‘*~, 

if d 3 3 lim (td’*)P{qt(At)/IAI >x) = Hd,&)- 
t+oo 

The first two results were proved for branching Brownian motions by Fleischman 
(1977) who gave the Laplace transform and some of the moments of Hi(x). (It is not 
an exponential or gamma distribution.) The second result has been generalized to 
branching random walks (see Durrett (1977), Section 8). It seems likely that the: first 
result also holds for branching random walks but I have not tried to show this. A 
more interesting unsolved problem is to show that the limits in d = 1,2 hold for x = 0. 
In the case d = ‘2 this would say that t log t P{q,(A)>O}+4. 

The third statement is a new conjecture. This guess is supported by the observation 
that from the local central limit theorem (for random walks) td’*Eqt(A) is bounded 
away from 00 and the fact that from Theorems 6.2 and 7.1 in Durrett (1’977) 
td’*P{qt(A)>O} is bounded away from 0. 

2. The distribution of generations 

In this section we will study the distribution of the branching process among 
generations and in particular obtain a limit law for the generation number of a 
particle chosen at rando,m from those alive at time t. To do this we will begin by 
studying the distribution of the random time interval in which particles of generation 
12 may be present. The left end point of this interval is & the time of the first birth of a 
member of generation rt, the right end point is a, the time of death of the last member 
of generation n. 

To study the limiting behaviour of & it is convenient to introduce a slightly smaller 
sequence of random variables. Let S,- l be the time a death first occurs to an 
individual of generation n - 1. It is easy to obtain a recurrence relation for the 
distibution of the 8,, rt ZE 1. Let K,(t) = P{S, -So 5 t} (we set S, = 00 if the nth 
generation is empty). By conditioning on the number of offspring in the first 
generation we get 

I 
4 

1 -K,(t)= f pi(l -(K--1 * G(t))’ 
j=O 

or 

K,,(t)= 1 - h(1 -(K,-I * G(t))) 

where h is the probability generating function of the offspring distribution {pi, j 22 0). 
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Letting Q(Z) = 1 - h(1 - t) we can write the above as 

K,,(t) = Q(Kn-I * G(t)). (1) 

There is a similar recurrence relation which gives the distribution of c,. Let 

L,(t) = P{trw -fro ss t} (we set a, = --OO if the nth generation is empty). Now for the 
last death to occur before time t all the deaths have to occur before t so 

L,,(t)= f pi(L,.-1 * G(t))’ = h(L,-1 * G(t)). 
j=O 

If we let L,(t) = P(uo - a, s t} and G-(t) = P{-~0 s t}, then 

L,(t)= 1 -h(L,,vl * G(-t-))= Q(L,-, * G-(t)). (2) 

Since Kn and L, are defined by the same recurrence relation we will follow the 
approach of Hammersley (1974) and focus on the function Q to derive our limit 
theorems. To demonstrate which properties of Q are needed for our conclusions to 
hold we have formulated the next result in greater generality than is required by our 
applications. 

Theorem 1. Let Q be a concave nondecreasing function defined en 0 s z s 1 which 
has Q(z) < z for all z > 0, Q(0) = 0, and Q’(O) = 1. Suppose the sequence of distribu - 
tions F, is given by F,+ 1 = Q(F, * G) .where Fe(x) = 0 or 1 according as x < 0 orx 10 
and where G is a proper distribution with mean JA. If we let fn = Fn@), then fR 40 and 

filFn(nx)+ 1 for x >p. (3 

If (9 1’2 eer dG(t) < OQ for some 9 < 0, or 
(ii) j!!W t2 dG(t) < 00, Q”(O) = -2A < --OO and (Q(z)-@ -Ar2))/z2 decreases to 0 

as ~40, then 

filFn(nx)+O forx+. (4) 

Lzt Tn be a random variable with distribution Fn. If (ii) holds and g t2 dG(t) < 00, then 
R(l?‘,ln -PI IT,, <00)+0. 

Proof. We will first check that f’i0. From the recurrence relation 

f n+l = F,+I(~)= Q(Fn * G(m))= Q(F;,(m)c Q(fn)afn 

so fn is decreasing. Since lim,,, fn 
assumptions that fn lo. 

is a fixed ytiint of Q it follows from our 

Let Cm(t) = f ,‘F,(t). The distributions F, have Fn+l = Q(F, * G) SO the dis - 
tributions C, satisfy 

c n+l =fE:lQ(fnG * G)* 

Let Q,&)=fL!-IQ(~,z). Q, is a concave function with QJO)= 0 and a,(l)= 1 SCI 
Q,(z) > z for all n. Define a sequence of distributions by 6,+1= G, * G, GO = CO. 
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If C,, a G,,, then 

c n+l=Qn(C,,*G)X’,,*G~G,*G=G,+l (5) 

so it follows by induction that C, 2 G, for all II. Since the mean of G is finite it follows 
from the weak large numbers that G&x)+ 1 for x > p and SO C,,(m)+ 1 for x > G* 

To prove c&x)+ 0 for x < g we need to obtain an upper bound fol the sequence 

C,. To do this we observe Q;(O) = fJfn+l and Q, is concave so C?&) s zfnlfn +I alld 

c n+t = QKn * Gb- f &C, * G). 
n+l 

Since Co = Go it follows by induction that 

C& fi fm-lGn = G,/fn 
m=l fm 

(fO = 1). 

Again it follows from the weak law of large numbers that G, (nx)-, 0 for x < p but fn 
also + 0 so we cannot conclude that Cn (no)+ 0 until we can show that G, goes to 0 at 
a faster ratebhan fn. 

The condi&ions we need to do this depend upon the information we have about the 
rate of conergence of fn to 0. From the definitions of Q and fn it follows that 
fn+JfR = Q(fn)/fn + 1. To conclude that C&x)* 0 without additional inforniation 
about the sequence fn we have to show G,(M)+ 0 exponentially rapidly. This is 
guaranteed if cp (8) = sff)a, eer dG(t)< 00 for some 0 C 0. To see this observe that 

eenXGn (nx) s (p(e)” for all 8 s 0, 

so 

G&x) s ( pfo e-LO(B))'. 
G 

~owlimeto(e~excp(8)-1)/8=-(~-x)soifx<~,inf~,oe~ex~(8)~1.F~omthisitis 

easy to conclude that 

filFn(nx)= C,,(nx& Gn(nx)/fn +O 

which completes the proof of (i). 
To obtain results for the more general distributions allowed in (ii) we need more 

precise information about the sequence fn. It follows from a result of Keten, Ney, and 
Spitzer (1966) that if Q(z) = 1 - h(1 -z) where h is a probability generating function 

with h”(l)= 2h E (0, OC)), then fn - (nh)-’ as n -00. Only a few properties of pro- 

bability generating functions are utilized in the proof of this result. From the proof 
given in Athreya, Ney (1972, pp. 20-21) it follows that the result may be refor- 
mulated as follows (see eq. (7) on p. 21 in [ 11). 

Suppase Q is a concave nondecreasing function with Q(3) = 1, Q’(O j = 1, 

-2A, h E (0, ~0). Let fo = 1 and for n 2 1 le1: fn = 

(z - Az2))/z 2 decreases to zero as z&O, then fn - (nA )-’ as n + 00. 
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To conclude that C&x)+0 for x C p now we have to show nG,(nx)+ 0. TO do 
this we will use a result of Baum and Katz (Theorem 4 in [2]): If X1, X2, . . . are 
independent and identically distributed and S, = Xl + l l 9 +X, then the following 
I do statements are equivalent for each Q’ a 0: 

(a) nPP{I& -n&nE)+O for all E ~0, and 

(b) na+lP{~X~l>n}+O and EIX1-p; IX#W]+O. 
To use this theorem we have to truncate the distribution G. Let Xy, Xy, . . . be 

independent random variables with distribution 

Let sfs”=xy+* . . + Xf2”. Applying the result above we see that if c, t* dG(t)< 00 
then yt *P(IXy I> n} + 0 and SO 

-npM/>rte}+o for all EBo 

where PM = 1 t dG”(r). Now 

so if x c p bnd M is chosen so that x -j&M CO, then it follows that f;;‘&(nx)s 
fi’G(ni)+ 0 which completes the proof of (ii). 

At this point we have shown that if T, is a random variable with distribution F, and 
(i) or (ii) holds, then conditionally on T, < 00, T,,/n corlverges in probability to p. To 
complete the proof of Theorem 1 we have to show that if (ii) holds, then E(IT,ln - 
~1 (T,<4+0. 

The first step is easy and does not require assumption (ii). If E > 0, then from (5) 

We have already shown that the right hand side converges to 0. To prove that the left 
hand side has the same limit we observe that if Sn is the sum of n independent random 
variables with distribution G 

J 
h-EM 

p -(x/n)dGn(x)~EIS,,In 4 
--oo 

so 

J 
(cr-E)n 

x/n dGn(x)~~P{S~n/n~(~-&)}-EISnIn-~I 
--oo 

and the right hand side converges-to 0 by the mean ergodic theorem (see Breiman, pm 
117). 

To estimate the other tail we use the same approach. If G > 0 from (6) 
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and the left hand side converges to 0. To see that the right side also goes to 0 we use 
the following equality: 

f J 

00 

-1 
n x/n dGn(x) = 

(C*+E)n 

= (nf,)-‘nE[S,ln-p; S, > (p + E)n] + (nfn)32~ Sn>(r_L+e)n}. 

To estimate the first piece we observe that under our assumption (nfn)-’ + A < 00 and 
E(Sn/n-p)2+0 (see Chung, p. 103), SO 

To complete the computation we observe that from the theorem of Baum and Katz it 
follows that n P{Sn > (CL + ~)n} + 0 and SO 

J 
00 

x/n dC,(x)+ 0. 
(Cr+E)n 

Combining this with the fact that the integral over (-00, (p - ~)n) converges to 0 
shows E(IT,/n - p 11 Tn < 00) + 0 and comples the proof of Theorem 1. 

Applying Theorem 1 to the sequences 8, and a, defined earlier gives 

Theorem 3. For any lifetime distribution G with a finite mean p (6,/n ] 6, c a~) 

converges to p in probability. If G has a finite second moment, then (CJn 1 a,, > - 00) 

also converges to p in probability. 

This result shows that if .G has a finite second moment and the nth generation is not 
empty then most of the particles are born and die at times close to np. This suggests 
that if Ut is the generation number of an individual picked at random from those alive 
at time t then (UJt 1 Z(t:b> 0) converges in probability to l/p. To prove this we have 
to examine the effect on the nth generation of conditioning on Z(t)> 0. The key to 
the analysis is the observation that from Theorem 3 if E >O, then as t + 00 

(6 t,[w-s)/t 1 St.++ C 0) converges to P&L - E) in probability so 

With this formula it is easy to compute that (UJt 1 Z(t) > 0) converges in probability 
to l/p. In fact we can prove a stronger statement: 

Theorem 4. If t + 00, then 

P(oo>a,,/,>tIZ(t)>O)~O forpcl 

and 
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Proof. Let p < 1 an 

P(~~,/,>t’Z(t)>O)~P(S,,,-,=~IZ(t)>O) 

+ P(c+,, > t 1 &CC-e < a, Z(t) > O)P&,-, c 00 1 Z(t j > 0). (8) 

Now the second expression on the right hand side is 

~P(cr,t,, > t 1 &/p-e < 0% z(t)> 0) 

and p < 1 < p/p -E so the above is 

,P(%r/rr ’ t9 &AL < 4 P&h < 4 (8 t/&L-a? < 4 
- 

Wd, -c 00) w&/,-e < =9 wt/,-e < 00,2(t)> 0,. 

Now from Theorem 5, Lemma 2, and (7) we have 

so the second term in the right hand side of (8) converges to 0. To estimate the other 
term we observe that 

and from (7) and Lemma 2 we have that the right-hand side converges to l- 
(fi -E )/p = E/CL. This skews that 

for all E>o 

which groves the first statement. 
To prove the second statement we observe that if p > 1 

an& th;: last expression converges to 0 by Theorem 3 and (7). 

If Z(r)> 0 End we pick two individuals at random (with replacement) from those 
alive at time t they will have a last common ancestor who ied at a time D, s t. In this 
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section we will obtain a limit law for (DC/t 1 Z(t)>O) and derive a result which 
describes precisely how all the individuals alive at time t are related. 

The starting point for our analysis is the following formula. Let fi = 
then 

P(D(t)>s 1 Z(t)>O)= 

=f? ifi W(s)= 4 kil (;)f:-4 -ft-s)n-kPt,s,k tt= 1 = 0) 

where PSs,k is the probability two individuals chosen at random at time t have the 
same ancestor at time s conditioned on the event that exactly k individuals alive at 
time s have offspring at time t. The probability P c,S,k may be computed as follows: If 
we let Xy, XT,. . . be independent and identically distributed random variables with 
the same distribution as (Z(U) 1 Z(U)> 0) and if we let Si = Xy + l . l +Xi, then 
P r,s,k = kE(X;-“,‘Sf;-“)2. 

Now from [2, p. 1131 as u +OO, X:/Au converges to XT an exponentially 
distributed random variable with mean 1. Since 0 s Xy/Si s 1 it follows that if 

t--S+oO 

where Sx is the sum of XT and k - 1 independent random variables with the same 
distribution. To compute E(XT/Sf)2 we observe that if u < v and k 2 2 

WT =u IS~=v)=e-” ( ( v-U)k-2 eW(u-u))/( & e-‘) 
k-2! @ 

= (k - l)(v - u)~-‘/v~-‘. 

Letting x = u/v gives P(XF/St =x 1 Sf = VI= (k - l)(l -x)~-~ and P(X:‘/St s 
y)=l-(l-y)k-’ for 0 G y G 1. From this it follows that if k 2 2 

~(x:,sf)~=j’2y(1-y)~-~dy=2/k(k+l) 
0 

and lim+s+&,s,k = 2/k + 1. Observe that the fo::mula is valid for k = 1. 

Having obtained this information it is easy to compute the limit of P{D, > s} when 
t +. 00 and s/t + r c 1. To do this we observe that from [ 1, pp. 19-201, and a simple 
computation we have 

f?fs -t/s + llr, (3 

fil P{Z,/As E dx} + eex dx (4) 

and 

f ;-,( 1 - fJsx-k m (k!)-'(hsxf,_,)'(l - fr-$” (5) 
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The integral in the sum above is (1 - r)‘+‘/k + 1 so the limit theorem can be written 
i3S 

k-l 

limP{D,zH}=(l-r)(2 &!,b). 
r+m 8 

(6) 

It is comforting to note that the limit is a distribution which is concentrated on [0, 11. 
Differentiating the formula above with respect to r gives that the limit distribution 

has a density 

which is monotone increasing and w-2 log (1 -r) as r + 1. 
The results given above describe the degree of relationship of two individuals 

chosen alt random at time t. To describe the relationships in larger sets of particles we 
wiii consider N,(s) the number of individuals alive at time s which have descendants 
al.ive at 1:ime t. N,(s) is a nondecreasing function of s and if k 3 1 

P(N&)= k 1 Z(t)>O)=fi' f P{Z(s)== n(:)r:-.(I -fi-s)i-k= 
jz& 

From (3), (4), and (5) it follows that if t + 00, then 

(_Vt(rt)= k 1 Z(t)>O) = 
C-+(0 

43 

=r -1 J dx e-x txrl 1 - dk 
k ! 

e -m/l-r = 
rk+(l -r). 

0 

This sholws that as t + 00, Nt(rt)- 1 converges weakly to a geometric distribution with 
success parameter (X - r). 

The next step in determining the limiting behavior of {N,(rt), 0 s r s 1) is to 
compute that the finiite dimensional distributions converge. Now the distribution of 
(Z(s -- u), 0 5 u s t - s 1 N,(s) = k) is the same as that of the sum of k independent 
processes with the sa.me distribution as (Z(U), 0 s u s t - s 1 Z(t - s)) 0) so using the 
one dimensional convergence resu t shows that if t+oo and 0<rl<r2< 1, then 

(N&t) = i \ 
r-*00 

k 1 N,(y&=j)= (,” -,f)(~)i(~)k-i for k aj. - 

(9) 
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The right-hand side is the probability of observing the jth occurrence of an event on 
the kth trial in a sequence of independent events with probability (1 - r#(l - rl) (see 
Feller, Vol. I, p. 165). 

Since {N@t), 0 s I G 1) is a Markov process for each t combining the results of (8) 
and (9) shows that the finite dimensional distributions converge. Since each path of 
IV,@) is monotone increasing and for all r < 1 the collection {N,(rt), t 2 0) of one 
dimensional distributions is tight it follows that as t + 00, {N,(rt), 0~ r s 1 - E} 
converges weakly as a sequence of random elements of DIO, 1 - E] to a limit process 
N&r) with transition probabilities given by (8) and (9). 

The paths of the limit process are monoton increasing and have N’&)~oo as rf 1 D 

From formula (9) it follows that if rl < 1, j 2 1, k 2 j + 2, then 

lim (t2 - rJ’B(N,(r~) = k 1 N&) = j) = 0 
r2+*r1 

so N&r), 0 G r < 1 almost surely has no jumps of size 32. This result is the one we 
should expect-it is unlikely that two survivors will be born at the same time. 

From the limit theorem for {N&t), O- r =Z s 1) we can obtain results about the 
relationships in a set of k 23 particles chosen at random (with replacement) from 
those alive at time t. To state these results we need to introduce some notation: for 
1 s i < j 6 k let Dy be the time of death of the last common ancestor of the particles 
which were chosen at the ith and jth selections. To obtain limit laws for t-by from 
those we have derived for N,(s) we observe that from the lack of memory property of 
the exponential distribution it follows that when N,(s) increases the new offspring is 
born to an individual chosen at random. 

From this limit law for N,(rt) it is (theoretically) possible to calculate the limit 
distribution of (D y, 1 G i c j s k) and obtain results for critical branchingprocesses 
which correspond to the results obtained by Bukler in the supercritical case. We have 
done this for k = 3. In this case either 0:” = D:‘, of” = D:“, or 0:’ = 0:’ so there 
areonlytworandomvariablestostudyI3; =D:’ hDi3 /\Df3 andD:‘=Di2 vDi3 v 
0:“. We’can compute the limit of D:/t in the same way we computed the limit of D,/t. 

The first step is to observe that 

P(D: > s 1 Z(t)> 0) = 

= f;’ f p{z(s) = d kfl (;)f ‘s(l -fr-s)n-kP:.s.k 
tl=l = (10) 

where i,s.k is the probability that three individuals chosen from those alive at time t 

have the same ancestor at time s. If X’,” and S;’ are the random variables defined after 
formula (1) then 

From this it follows that if t -s + CQ 

p :.s, k (11) 
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where Xt is an exponentially distributed random variable with mean 1 and Sg is the 
sldrn of XT and 1G - I independent random variables with the same distribution. 
From this it follows that 

Using (3), (4) (5), (lo), and (11) gives that 

lim P(.D: > rt 1 Z(t!l> 0) = f rk-* 
3! 

dx e 
-x/l-r (xl 1 - rY 

t-*m k=l (k+l)(k+2) I k! 

= (1 -r) : ,vk-l (k + l;;k +2). 
k=l 

Ey proceeding in a similar way ‘we can compute the lim t of (D:IJt 1 Z(t)> 0). To do 
this we observe that P(Dy< rt 1 Z(t)> 0) is equal to the right hand side of (10) with 
Pi,S,d: replaced by P E&k th;e probability that three individuals chosen at random from 
those alive at time t have three different ancestors at time s. If Xy and Sy are the 
random van iables defined after formula (I), then 

p;& = E[ &, x;;“xl-sx;-s/(st”)3] l . . . 1 

disti&t 

Again as u + 00, Xy/Au converges in distibution to XT an exponentially distributed 
random variable with mean 1 so whenever t-s -, 00 

P:Is.k + 
uvw k-4 

(U+*+W+x)3e 
~(u+o+wi-x) x 

k dx dw dv drd. - . 

If we let P&k denote the right hand side of (13) then 

lim P(D:(< rt 1 z(t)> 0) = (1 - r) i rrc-3p&. 
t-PC0 k=l 

By a similar, more tedious, computation we could compute the limit of P(D: < rlt C 
rzt <: 0:’ 1 Z(t)> 0) but we would probably not obtain a useful formula. 

ranching random walks 

In this sec&, ---=*q we ~41 consider the limiting behavior of critical Markov branching _ _ 

random walks. We wii’l begin by considering the family history of a particle which is 
picked at random from those alive at time t. For each time s =G t this particle has a 
unique ancestor alive at time s. Let Yt(s) be the position of this ancestor and Vt(s) be 
its generation number-. Now since the particles .have exponential lifetimes the 
survival of a “family name” iC* lrom s until time t is independent of the history of 
the process before time s. From this we see that the distribution of \‘, Vt(s) 1 qr # 8) is 
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the same as the distribution of (U” 1 qt f 0). With this fact it is easy to compute the 
limit of &(rt)/t. To do this we let E > 0 and observe that 

From Theorem 2.4 and Lemma 2.2 it follows that the right hand side of (Qconverges 
to 0 and P(& > (r + ~)t 1 qt Z lb)* 0. A similar argument shows P( C&t < (r - E )t ] qt # 

8) SO Vt(rt)/t converges to r in probability. 
From this we see that if t + 00 and s/t + r then Vt(s)Jit converges to r in probability. 

Since the limit of the one dimensional distributions are degenerate it follows that for 
any 06rl<r2-* <r, s 1, (V,(r&/t, . . . , Vt(rnt),h) converges in probability to 

(ri, . . . 9 r,,). Since Vt(s) is a monotone function of s and function q(r)= r is 
continuous it follows that &(rt)/t converges to cp in probability (as a sequence of 
random element of D). 

At this point we would like to obtain a limit law for { Yt(rt), 0 s r s 1). To do this we 
need to know the distribution of a par Me alive at time rt given that he has a 
descendant alive at time t. This distribution can be computed in the two cases 
mentioned in the introduction: 

(a) the displacements of the offspring from their parents are independent and have 
a common distribution which does not depend on the number of offspring produced 
or 

(b) pj > 0 for only one j > 0. 
I_Jnder either of these assumptions the steps taken by our particle and its ancestors 
are independent random variables with distribution q. From this it follows that 
Yt(rt) = &A,~) where Sn, n 2 1 is a random walk which is independent of V,(rt) and 

takes steps with distribution q. 
Let v = j y!P(dy). It follows from the central limit theorem that for all t 2 0 

(&al - fltd/n 1,12 converges to a d-dimensional Normal distribution with covariance 

xij = 1 Yi.Yiq(dY I- vipb NOW Y,(rt) 4 SVr(,t) and we hava shown that &(rt)/t con- 

verges in probability to r so it follows from formulas (17.7)-(17.9) in Billingsley 
(1968) that 

{ Y,(rt), 0 G r s 1)) converges weakly to {W(r), 0 s r c I}, (2) 

a multidimensional Brownian motion with mean zero and covariance matrix X 
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