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In a homogeneously mixing population of E. coli, colicin-producing and colicin-sensitive strategies both
may be evolutionarily stable for certain parameter ranges, with the outcome of competition determined
by initial conditions. In contrast, in a spatially-structured population, there is a unique ESS for any
given set of parameters; the outcome is determined by how effective allelopathy is in relation to its costs.
Furthermore, in a spatially-structured environment, a dynamic equilibrium may be sustained among
a colicin-sensitive type, a high colicin-producing type, and a “cheater” that expends less on colicin

production but is resistant.

1. Introduction

A central issue in evolutionary theory is the evolution
of altruistic behavior, and how it is influenced and
enhanced by aspects of the social structure of
populations; an equally compelling and closely
related issue involves the evolution of antagonistic
behaviors. Bacteria may produce toxic substances,
known collectively as bacteriocins, that kill or inhibit
the growth of competing bacteria of different
genotypes through what is known as allelopathy. In
general, bacteria that are capable of producing such
chemicals are immune to their action. The colicins,
the most extensively studied class of bacteriocins, are
produced by the bacterium Escherica coli and other
members of the family Enterobacteriaceae. For
concreteness and ease of exposition we will restrict
our attention to the last special case. It should be
clear, however, that our analysis applies to bacteri-
ocins in general and to a number of other similar
competitive situations.

Most theoretical studies of the competition of
colicin-producing and colicin-sensitive bacteria as-
sume that the population is homogeneously mixing to
arrive at differential equations describing their
dynamics [see Levin (1988) and Frank (1994)]. This
approach is appropriate, for example, when the
bacteria are grown in liquid cultures. However,

0022-5193/97/060165 + 07 $25.00/0/jt960292

© 1997 Academic Press Limited

experimental studies [see Chao & Levin (1981)] show
that the outcome of competition is different when the
bacteria are grown in a structured habitat such as a
soft agar matrix. In this paper we will introduce a
spatially explicit model appropriate to the Ilatter
situation and contrast its behavior with that of the
ordinary differential equations. The differences we
find in the behavior of some of the models parallel
those found experimentally. In particular, the
evolution of alleopathy is possible only in a structured
environment. This has also been demonstrated in
unpublished work of Chao (1979), but ours is the first
analytical treatment of the phenomena. The demon-
stration that spatial localization is fundamental to the
evolution of a variety of traits is complemented by
work by Levin et al. (1984), Cohen & Levin, (1991),
Nowak & May, (1992), and others. Finally, new
theoretical results are presented demonstrating that a
stable equilibrium can be maintained among a
colicin-sensitive type, a colicin-producing type, and a
cheater that expends less on colicin production but is
resistant. This points the way to a fascinating
experimental test.

2. ODE Approach

To set the stage for the introduction of our
stochastic spatial model we will describe how others
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have previous looked at the system through
deterministic nonspatial eyes. In this approach one
starts by assuming the population of bacteria is large
and homogeneously mixing. Let u; be the density of
colicin-producing and let u, be the density of the
ordinary, colicin-sensitive bacteria. We assume that f;
is the intrinsic birth rate of type i, and 0; is its natural
death rate, so that in isolation its dynamics are given
by

Cg;" = (1 — w) — Su;

Note that units have been chosen, without loss of
generality, so that as J;— 0 the carrying capacity
tends to its maximum, unity. When the two types are
placed in competition, the equations become

d
% = ﬁlul(l — U — uz) — 51”1

du,
% = ﬁzl/lz(l — Uy — 1/[2) — 521/12 — YU (1)

in which the additional term represents the rate at
which type 1 poisons type 2.

The system (1) has locally stable boundary
equilibria at

(1 = 61/f:,0) and (0,1 — 9,/B>)
provided

0y 0 02ty

o: < B, /52<ﬁ1<ﬁz+y

There is moreover an interior saddle point (u, u,) in

this case. See Fig. 1 for a picture of what happens

when 6,=00=1, fi=3, f=4 and y=3. The

interpretation of the inequalities in order from left to
right is:

()

(1) the birth rate exceeds the death rate so either
type can maintain a population in isolation
from the other;

(i) there is a cost to colicin production, metabolic
or otherwise, reflected in a lower carrying
capacity in isolation

(iii) the competitive benefit of colicin production is
sufficiently large to repel invasion by the wild
type of an established colicin-producing
community.

The implication of this analysis is that colicin
production is an evolutionarily stable strategy, but so
is non-production. In the dynamical system pictured
in Fig. 1, if the density of the colicin-sensitive-bacteria
is near the equilibrium value one, then the
colicin-producing bacteria cannot invade. That is, if
they are introduced at a low level then their density

will shrink to zero. On the other hand, if the colicin
producers are introduced at a large enough level, their
density will increase to one and the density of the
colicin-sensitive strain will approach zero. In words,
selection will only favor genotypes when they are
common, rare species cannot invade, and genetic
diversity will not be maintained. This situation is
“disruptive frequency dependent selection” (see
Levin, 1988; Thoday, 1959-1964).

The conclusions of this model have been borne out
experimentally by Chao & Levin (1981). Levin (1988)
presents a model and simulation results confirming
the experimental observations. A similar system has
been analysed mathematically by Lenski & Hattingh
(1986) for a detoxification polymorphism, but they
observe that by a change of sign a disruptive regime
would arise.

3. Spatial Model

Given the analysis in the previous section, it is hard
to imagine how the colicin producers could arise
through mutation in a population of ordinary E. coli.
Indeed Chao & Levin (1981) have shown experimen-
tally that this will not occur in a culture of bacteria
grown in a stirred liquid suspension. This conclusion
changes if we look at the situation through the eyes
of a spatial model, which is appropriate if we think
of bacteria growing in a Petri dish. Rather than
keeping track of the physical location of each
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F1G. 1. Solution curves for the mean field ordinary differential
equations (1) with 61 =d. =1, i =3, fo=4, and y = 3.
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bacterium, we will simplify things and represent space
as a grid, specifically Z?, the points in two-dimen-
sional space with integer coordinates. Chao (1979)
introduced a related spatial model in his unpublished
Ph.D. thesis and presented some simulation results.

We will describe the state of the system at time ¢ by
a function ¢&: 77— {0,1,2} where 0 = vacant,
1 = occupied by a colicin producer, 2 = occupied by
a colicin-sensitive bacterium. In words, &,(x) gives the
state of site x at time 7. In our model, time will be
continuous, i.e., ¢ is indexed by the real numbers >0.
To specify the evolution of the process we will
describe the rate at which various transitions occur.
Here, when we say something happens at rate 4, we
mean that the probability of an occurence in a short
interval of time with length Az is AAt. For more about
what this means, see Durrett & Levin (1994a).

To specify the model precisely, we begin by
describing the interaction neighborhood N. The set N
tells us the “‘neighbors of the origin (0,0)” or the sites
that (0,0) interacts with. The neighbors of a general
point x are then defined to be x + N = {x + z:zeN}.
Since the growth and competition of the bacteria
occur over short distances two natural choices for N
are N, = the four nearest neighbors {(1,0), (0,1),
(—1,0), (0, — 1)} or N, = the four nearest neighbors
plus the four diagonal neighbors (1,1), (1, — 1),
(— 1L1), (—1, — 1). In either case we can let f; be the
fraction of neighbors in state i and formulate the
transition rates as follows:

birth rate death rate
0—2 Bofa 2—-0 o + Y

In words, each type is born at empty sites at a rate
proportional to the fraction of neighbors of that type.
The colicin-producing strain dies at a constant rate 9,
while the colicin-sensitive strain experiences deaths at
rate J, plus y times the fraction of colicin-producing
neighbors.

To make the connection between the rates above
and the differential equation in (1) we note that if in
the spatial model the states of adjacent sites were
independent then (for either choice of neighborhood)
the density u of colicin producers and the density v of
colicin-sensitive bacteria would again evolve accord-
ing to the differential equations (1).

This model is similar to that studied by Matsuda
et al. (1987, 1992), and Harada er al. (1995) who
examined the evolution of social interactions that
modify the mortality of neighbors. They studied the
model by means of pair approximation, in addition to
computer simulations, and discussed conditions for
the existence of evolutionarily stable strategies (ESS).
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F1G. 2. Density of colicin producers (1’s) and colicin-sensitive

bacteria (2’s) in a simulation of the spatial model with the same
parameters as in Fig. 1: 1= =1, fi=3, fr=4 and y = 3.

4. Simulation Results

The previous section shows that if we pretend
adjacent sites are independent in the spatial model,
then we get the system (1) and derive the same
conclusions. However, in the spatial model adjacent
sites are not independent and the qualitative behavior
changes. In this section we will describe the behavior
of the spatial model. To be precise we must preface
our discussion with a disclaimer. In almost all cases
the conclusions stated below are based on simulations
and analogies with simpler models, but we do not
know how to prove them mathematically.

Figure 2 shows the density of colicin producers and
colicin-sensitive bacteria in a simulation of the spatial
model with neighborhood set N, (four nearest
neighbors), and parameters: 6, =06,=1, =3,
f> =4 and y = 3. Here the lattice is 100 x 100 and to
avoid edge effects we have used periodic boundary
conditions. That is, sites on the bottom row are
neighbors of those on the top row; sites on the left
edge are neighbors of those on the right edge. We
start at time 0 from product measure. That is, the
states of the sites at time 0 are assigned independently,
i.e., by making repeated calls to a random number
generator. We started the simulation with colicin
producers (1’s) at density 0.01 and the colicin-sensi-
tive strain (2’s) at density 0.50; but as the graph
shows, the colicin producers gradually increase to
their equilibrium level while the density of colicin-sen-
sitive bacteria drops to 0. Figures 3 and 4, which show



F1G. 3. Snapshot of the spatial model at time 300. Parameters are
the same as in Fig. 2. Note that the colicin producers (black) which
started at a small density have formed clumps, while the
colicin-sensitive strain (gray) occupies most of the space.

snapshots of the process at times 300 and 750, explain
how this occurs. The colicin producers first establish
themselves in clumps that grow linearly in radius and
take over the system.

The victory of the colicin producers in the last
example is due to the fact that the colicin induced
death rate y = 3 is large enough to compensate for the
fact that the colicin-producing strain has birth rate
1 = 3 vs. f, = 4 for the colicin-sensitive strain. If we
reduce y to 1 the situation reverses and the
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F1G. 4. Snapshot of the spatial model at time 750. Parameters are
the same as in Figs 2 and 3. Note how the black clusters of colicin
producers have grown and merged. Eventually, by about step 2000,
they will have taken over the system and eliminated the gray
colicin-sensitive strain.
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F1G. 5. Density of colicin producers (1’s) and colicin-sensitive
bacteria (2’s) in a simulation of the spatial model with §, = 9, = 1,
pi =3, fo =4 and y = 1. Here 2’s win, in contrast to the situation
in Fig. 2 (2’s win).

colicin-sensitive strain is victorious even when it starts
from a low density (see Fig. 5). For values of y
between one and three coexistence might be possible
but this does not occur: there is a critical value 7y, so
that 2’s take over when y < v., while 1's take over
when y > ..

More generally if we fix §, =0,=1, =4, and
vary f; and y then we get the phase diagram drawn
in Fig. 6. The figure is a free-hand sketch that
emphasizes the generic qualitative properties but is
not exact. For each fixed value of f3; there is a critical
value y.(f) so that 2’s take over when y < y.(f;) while
1’s take over when y > y.(f:). When f,=4=f,,
y.(p1) = 0. Decreasing f, increases y.(f;) until it
reaches oo at a point we have labelled f3.. ., which
is ~1.65 for the neighborhood N,, is the minimum
value of the birth rate needed for a single strain to
survive in the absence of the other. When there is a
single strain the model reduces to the basic contact
process, see Durrett & Levin (1994a).

The situation described here is an instance of Case
2, contingent competition, of Durrett & Levin
(1994b). The ordinary differential equations have two
attracting fixed points and predict that the winner of
the competition depends on the initial densities. In
contrast, for the spatial model there is a stronger type
that takes over the system whenever it starts with a
positive density; that is, there is no dependence on
initial conditions as long as those conditions are
generic. To be precise, we conjecture that (for the
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model on Z?) the stronger type always wins if there
are infinitely many individuals of that type present in
the initial configuration. Here, by “wins” we mean
that the probability a given site x will be occupied by
the weaker type converges to zero as time t — 0. For
related systems where this has been proven rigorously
see Durrett & Neuhauser (1994) and Durrett &
Swindle (1994).

5. A Three Species System

In the preceding section, the ODE and the spatial
model sometimes disagreed on who would win the
competition, but both approaches agreed that one
type would always competitively exclude the other. In
this section we will describe a system in which three
species coexist in the spatial model, but in the ODE
there is always only one winner.

In particular in the light of the experiments
described earlier, it is important to ask whether a
“cheater” can invade an environment dominated by
a colicin-producing strain, resistant to colicin, by
producing less or perhaps no colicin. We find not
only that this is possible, but also that the result of
the competition may be the persistence of all three
types where no two could coexist without the third.
To describe the system in words, we assume 1’s and
2’s both produce colicin, to which they are immune,
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F1G. 6. Phase diagram for the colicin system when o, = d, =1,
. =4 is fixed and we vary f3, y.
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F1G. 7. Solution curves for the mean field ordinary differential
equations for the three species colicin system (3) with f; = 3,
B=3.2, f3=4, y1 =3, and 7, = 0.5. Here, the view is from inside
the positive orthant looking toward the origin, which is marked
with a 0. The letters ui, u>, and us indicate the corresponding axes.

and to which 3 is sensitive. The rates for this system
are:

birth rate death rate

1—1 Bifi 1—0 0

0—2 Bofs 250 5

0—3 Byfs 3—0 O+ nfi + 0k

Here, f; is the fraction of neighbors in state i and we
choose the neighborhood set to be &, the four nearest
neighbors.

In our concrete example we will set all the 6, =1
and

ﬁ|:3a ﬁ2:3'25 33:4, 7123, V2:05

Here we imagine that species 1 produces more colicin
than 2 does but has the lowest birth rate. The
parameters are chosen so that 1’s win against 3’s while
3’s win against 2’s. When only 1’s and 2’s are present
the system reduces to the multitype contact process
studied in Neuhauser (1992). Since 5, > f, the 2’s win
against the 1’s in this case.

If we write u; for the fraction of sites in state i and
assume that adjacent sites are independent then in
general we get the following ODE:

d

% = ﬁluluo - 51M1

duz -

¥ = ﬁzuzuo — Oty (3)

d
% = /33“3% - u3(53 + Yy + Vzuz)

If we insert the values for the concrete example then
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the picture in Fig. 7 results. In the wu, plane all
trajectories starting with u, and u, positive are
attracted to (0, i,0) where %, = (f; — d,)/f:. In the
three-dimensional ODE there is a surface which
connects the two separatrices in the wu; and wu;
planes, so that above the surface trajectories converge
to (0,0,i5) while those below converge to (0,i,0).
These conclusions are true whenever ff;, < f, and
equilibria exist in the interior of the wu; and wu;
planes. [Conditions for this can be derived from (2).]

In contrast to the behavior of the ODE, the spatial
model shows coexistence, at least for a long time. See
Fig. 8 for a simulation of the process on a 200 x 200
grid with periodic boundary conditions. Here we
started in an initial product measure in which the
states 7 = 1, 2, 3 each had density 1/3 and plotted the
observed density of the three species every 1000 units
of time out to time 50000, which represents more than
ten periods. After an initial transient the densities are
always at least 15-20%, so none of them seems in
danger of hitting zero.

6. Summary

The evolution of allelochemics, as many other
characteristics that involve intraspecific or inter-
specific interactions, is mediated in a frequency-de-
pendent context that relies heavily on spatial
localization. As Levin (1988) has shown experimen-
tally, in a well-mixed environment the costs of colicin
production always outweigh the benefits when the
colicin producers are rare; but in a structured

environment, the situation may shift to favor the
production of colicin. We have investigated, through
a series of models, the conditions for the evolution of
colicin.

In a mean-field model (in which homogeneous
mixing is assumed) there are two stable states: one
with only colicin producers present and one with only
the colicin-sensitive strain. This confirms the exper-
imental observation that in a well-mixed environ-
ment, colicin producers cannot evolve from low
frequencies. However, in this setting colicin pro-
duction is also an evolutionarily stable strategy; if it
is represented in the population at a sufficiently high
level, the population will proceed to fixation for
colicin production. These results were demonstrated
empirically and by simulation by Levin (1988), while
the work of Lenski & Hattingh (1986) provides
analytical justification for a very similar model.

In a spatially structured environment the situation
is fundamentally different: colicin production can
invade from low densities provided that the
additional mortality it imposes on the colicin-sensitive
type is above a critical threshold value, determined by
the cost of producing colicin. An interesting extension
of the reasoning can occur when more than two types
are present. In particular, two types that produce
colicin at slightly different rates (or with different
toxicities) can coexist with a third, colicin-sensitive,
type in a dynamic equilibrium. This occurs when one
of the two colicin-producing types (A4) has a
subcritical benefit to cost ratio but a higher intrinsic
birth rate than the other colicin-producing type (B).
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F1G. 8. Densities vs. time in the three species colicin system. Parameters are the same as in Fig. 7. Key: —[]—, species 1; ——, species

2; —(O—, species 3.
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Thus, in head-to-head competition, 4 > B> C > A4
where C is the colicin-sensitive type. Unlike other
systems in which non-transitive hierarchies arise,
coexistence is not possible in the well-mixed version
of the system; but it is easily achievable in the spatially
explicit version.
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