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Super-Tree Random Measures

Hassan Allouba,1 Rick Durrett, John Hawkes,3 and Edwin Perkins4

Received January 12, 1996; revised May 29, 1996

We use supercritical branching processes with random walk steps of geometrically
decreasing size to construct random measures. Special cases of our construction
give close relatives of the super-)spherically symmetric stable) processes.
However, other cases can produce measures with very smooth densities in any
dimension.
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1. INTRODUCTION

Let { p k : keN} be a probability distribution on {1, 2,...} with pt < 1. Let
H = ̂ kkpk ( > 1 ) and suppose Y.i<k2Pk«x>- ^n this paper we will use a
branching process with offspring distribution {pk} to construct random
measures using the following recipe:

(i) We start at time 0 with the "progenitor," one individual of
generation 0, who immediately splits into k individuals (of
generation 1) with probability pk.

(ii) The y'th individual of generation n is displaced from its parent by
an amount anXnj where the X,, j are i.i.d. random vectors in R''
and the a,, are positive numbers.

(iii) We assign mass // -n at the location of each individual in genera-
tion n to construct a random measure v,,(ca, dx) and let n -» oo.
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Of course the first thing we have to shown is that the limit exists. Let
S denote a generic random variable equal in law to £,7n=1 a n X n , 1 , and X
denote a generic random variable equl in law to each XnJ.

Theorem 1. Suppose ^,^=, a,,Xn, converges a.s. Then with probability
one the sequence of measures vn(co, dx) converges weakly to a random
measure v(co,x) on Rrf which has P(v(R d )>0) = 1 and Ev(A) = P(SeA)
for all Borel sets A.

Our main interest here will be in the case a,, = pn where 0<p<l, but
it will also be interesting to look at a,, — n-q where q>0, and some of our
results can be proved for general sequences. To explain our motivation for
the construction and the title of the paper consider the special case

In this case the convergence hypothesis in Theorem 1 is trivial to check (see
the comment following Theorem 7). We claim that when p=n~lla this is
a close relative of a super-( spherically symmetric a-stable) process at time
<T = Zr=iy" ~" when started from a pointmass at 0 at time 0. To see this,
note that (i) f i - n / a X n J corresponds to running a symmetric stable process
for time n~" and (i) if we go back to time t = o—/Li~" then we find about
fj." =\/(a — t) individuals, which is the same as "the number of individuals"
in a superprocess (finite variance branching) at time t who have offspring
alive at time a. To make the phrase in quotes precise we must either use
the historical process (see Dawson and Perkins,(3) Prop. 3.5) or think in
terms of approximating branching processes.

If p = fj. ~/;/a then the number of ancestors at time t = ££ =, ^ ~kli < a =
T.'k = i^~k/s scales like (a — t)~[//l. This corresponds to the number of
ancestors at time t of those individuals alive at time a in a superprocess
with critical branching laws in the domain of attraction of a one-sided
stable law of index l + f i for 0</?^1 (see Dawson and Perkins,(3)

Prop. 3.5). Note, however, we can now have any value of b>0.
Until otherwise indicated, and this won't be until Theorem 7, we will

assume

Our first results about the measures constructed above computes the
Hausdorff dimension of their support. First, we recall the usual heuristic
argument for computing such dimensions (see e.g., Mandelbrot(13). At the
time the progenitor splits we get a mean number /u of copies of the original
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measure scaled by p. Thus scaling space by l/p gives mean /u copies of the
original and we expect the Hausdorff dimension to be

providing of course that D < d . To check the heuristic, note that multi-
plying a (/-dimensional cube by 2 results in 2d copies and d= (log 2d)/iog 2.
Similarly, multiplying the standard Cantor set by 3 results in 2 copies and
its dimension is log 2/log 3.

The next result says that the heuristic answer is right as long as the
distribution of S is not too singular. First we need some definitions. Let m.,
denote the xy-Hausdorff measure and let dim(/4) denote the Hausdorff
dimension of a set A in Rd. The carrying dimension of a measure m on Rd

is }' (cardim(m) = y) if for any />}' there is a Borel set B such that
m(B') = 0 but m..'(B) = Q, while for any /<> ' and any Borel set £,
m(Bc) = 0 implies m,.-(B)= oc. If m is a nonzero finite measure, define the
energy dimension of m to be

It follows easily from a well-known Density Theorem for Hausdorff
measures that

(see Dawson,(1) 7.2.1 and 7.2.2), and therefore

If cardim(m) = endim(w), we call this common value the dimension of m
(dim(w)) and say that dim(m) exists. In this case, (1.3) shows that m can
be supported by a Borel set of dimension dim(/w) but will assign zero mass
to any set of dimension less than dim(w). This terminology is not standard
but is suitable for our purposes.

Theorem 2. Assume (1.1) , let S denote an independent copy of S,
and let Ps denote the law of S.

(a) cardim(v) <min(A cardim(Ps)).

(b) endim(v)>min(Z>, endim(Ps)).

(c) If dim(Ps) exists then so does dim(v) a.s. and dim(v) = min(Z),
d i m ( p s ) ) a.s.

(d) If S — S' has a bounded density then dim(v) = min(£>, d) a.s.
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Of course the hypothesis of (d) is satisfied if X— X1 or X has a bounded
density (X1 is an independent copy of X) and, in particular, is satisfied if
X has a symmetric stable distribution. As an example when (c) applies but
(d) does not, suppose J=l , P(X= 1) = P(X= -I) = 1/2, andpe(0, 1/2).
It is then well-known that dim(Ps) = log 2/log(l/p) (in fact this is also the
dimension of the closed support). To see the lower bound for endim(/'i.)
note that P(\S — S'\ < p N ) 2 N is bounded and bounded away from 0 as N
becomes large. The obvious covering arguments gives the upper bound for
cardim(Ps). Therefore (c) implies that dim(v) = min(logj«, log 2)/log( 1//>).

Note that the heuristic computation leading to (1.2) says nothing
about the form of the distribution of X, except for the implicit assumption
that the particles don't land on top of each other. If you find the fact
"dimension is independent of the motion" surprising in (d), or think it is
wrong, note that when we make our identification with super-(stable
processes) p = { t 1 / x (or fi~l>la-).

The previous Theorem does not assert the existence of a density when
dim(v) = d. However, a simple argument, see e.g., Kallenberg,(11) (Thm. 2.8,
Sec. 2.3) shows:

Theorem 3. If (1.1) holds, S-S' has a bounded density, and D>d,
then almost surely v is absolutely continuous with respect to Lebesgue
measure.

Note that when £exp(zY • XnJ) = exp( - \t\x) and p = p~/y/a, these con-
clusions agree with known results for super-(spherically symmetric oc-stable)
processes with 1 + yS-stable branching: the dimension of the support is a//?
if d > a . / ( ] (see Dowson,(2) Chap. 7), while there is a density iff d < x . / p (see
Dawson,(3) Thm. 8.3.1).

We considered the Borel support in Theorem 2 because the closed
support (i.e., the smallest closed set K with v(Kc) = 0) can be much larger.
Let B(z, r) = {y: \y — z\ <r] be the open ball of radius r centered at z.

Theorem 4. Suppose that for some y > 0 and each e > 0 there are
strictly positive constants C(e) and r(e) such that

If npy^ 1, then the closed support of v is Rd almost surely.

Note that (1.5) holds if the distribution of X is spherically symmetric
and for some 0 < c1 ^ c2 < oo,



Super-Tree Random Measures 777

This theorem again agrees with known results for super-( spherically sym-
metric oc-stable) processes. If / > = ^ ~ / - b / x for some fte(0, 1] and ae(0, 2],
and X has a symmetric a-stable law, then (1.6) holds with y = a, ,«/>* =
^ ' ~ / f > l (with equality if /?=!). Therefore the closed support of v is
almost surely R''. The corresponding result for super-( spherically symmetric
a-stable) processes may be found in Evans and Perkins(8) (Cor. 5.3 and the
ensuing Example (i)).

Note that for any / / > l > p > 0 we have ( i p y > l when y is close
enough to 0, so for any D < d there are examples where the dimension of
the Borel support is D but the closed support is Rd. One can construct a
nonrandom measure with these properties by taking a fixed nonzero
measure v0 whose support has dimension D and then considering

where 6X denotes translation by x and { q n } is a sequence that is dense
in Rd. Since a particle of generation n gives rise to a copy of the original
measure scaled by n-n this is probably a reasonable mental picture.

Our next result complements Theorem 4 and gives an upper bound on
the dimension of the closed support.

Theorems. Suppose P ( \ X \ > r ) < C r ~ y for all r>0 and npY <\.
Then with probability one the closed support of v is compact and has
Hausdorff dimension at most

Note that the assumption npy < 1 is the opposite of the one in Theorem 4
and guarantees that the denominator in D is positive. Theorems 2 and 5
imply that when P(\X\>r)-*Q faster than any polynomial and dim(Ps) = d
(e.g., X Gaussian), then the dimension of the closed support is the same as
that the Borel support. We believe that if npy<\, S—S' has a bounded
density, and (1.6) holds, then the closed support has dimension D A d but
proving this seems difficult.

Theorem 3 establishes the existence of a density but does not give
much information about its properties. The next result shows that as the
"dimension" D gets larger the measure gets smoother.

Theorem6. Suppose that |R</ \t\
k \Ee"'s\ dt< oo. If keZ+ satisfies

k<D/2 — d then almost surely v has a density function that has a con-
tinuous k\h derivative.
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The condition in Theorem 6 may look difficult to check but noting

one sees that it holds for the stable laws and a number of other examples
with smooth densities.

If we suppose, for example, that J \Eexp(it • Xn ,1)| dt < oo then the
inversion formula implies that Xn,1 (and hence XnA — Xn , 2) has a bounded
continuous density. In this case Theorem 3 implies there is a density
when D > d while Theorem 6 implies there is a continuous density when
D > 2d. This gap comes from the fact that we use the decay of the random
characteristic function <j>(t, (a) - j e" vv(o», dx) as | r | ->oo to establish the
smoothness of v and this is not sharp. For example in the case of one-
dimensional super-Brownian motion (d=l, X,,j are normal, p=n - 1 / 2 ,
D = 2], Theorem 6 does not allow us to conclude there is a continuous den-
sity even though results of Konno and Sh iga ( 1 2 ) (see also Reimers ( 1 4 )

suggest that it is Holder continuous of any index y < 1/2. In this case, the
weakness is in the harmonic analysis and not in the probability. Our
estimate E(\</>(t)\2) < C \t\ -D (which follows easily from (5.3) later) is sharp
but this is not enough for the existence of a continuous density in this case.
Roelly-Coppoletta,(15) (Thm. 1.12, p. 54), had similar troubles with this
technique.

In the case of the stable laws, we can compute the characteristic func-
tion of S = ̂ =la,,Xl, , exactly and this enables us to get results for
general sequences a,,. We therefore now drop the assumption (1.1).

Theorem 7. Suppose Eexp(it-X,, f) = e~1"1 and ^,, = Sm = ,,+ i «», is
finite. If

then almost surely v has a Ck density.

First note that £m = i a*,,< °° is necessary and sufficient for the sum
defining 51 to converge a.s. (Compute the characteristic function of the sum
S and recall that for independent random variables, convergence of the
infinite sum in distribution implies that it converges almost surely—see e.g.
Durrett,(4) Exercise 3.24 in Chap. 1.)

If an = p" then A,,~Cp"* and we have convergence when
H-l'2p-« + '» < 1. That is, (log^)/2 >(k + d) l o g ( l / p ) or D/2-d>k which
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is the same as the conclusion of Theorem 6. If a,, = n rx with r > 1 then
A,,~Cn(~r so we have convergence for all k and the density is C''•. It is
easy to show

Theorem 8. Suppose the X,,j are independent standard normals and
an = n~r'2. If r > 3 then v has compact support.

So we have situations in which the random measure v has a C'f density
with compact support.

Theorem 8 is a simple sufficient condition for compact support. By
working harder it is possible (for standard normal {A',,}) to derive a
necessary and sufficient condition on {a,,} which, in the context of
Theorem 8, shows v has compact support if r > 1 and dense support if
r ^ 2. This latter result, which may yet appear in a future paper of two of
us, in fact shows that if the condition fails then the support is a.s. dense.
The sufficiency as a simple consequence of Dudley's metric entropy condi-
tion for the continuity of Gaussian processes, applied to the positions of
the particles as a Gaussian process indexed by a family tree. Steve Evans
has pointed out to us that in certain related settings one can derive the
necessity of the condition from his results on Gaussian processes indexed
by local fields (Evans(6) ,(7)).

The last and most complicated thing to describe is the genesis of this
paper. Allouba and Durrett "invented" this construction in the course of
Allouba's dissertation research. They wrote to Perkins for some help with
lower bounds on the dimension of the support, only to find that Hawkes
and Perkins had extensive notes written in 1990 which contained proofs of
Theorems 1 and 2; and the stronger form of Theorem 8 discussed earlier
for the special case in which the X,:J are i.i.d. normal with mean 0 and
variance 1. Further collaboration including a visit by Durrett to Vancouver
in August 1995 led to the results presented here.

The authors would like to express their appreciation to Steve Evans
for explaining his results on local fields and thus inspiring us to tackle the
non-Gaussian case. They are also grateful for a NSERC Collaborative
Projects Grant which supported an informal conference at which the
conversations with Evans occurred and which supported Durrett's visit to
Vancouver.

2. CONSTRUCTION OF THE RANDOM MEASURE

The notation and approach here follows that of Hawkes. ( 1 0 ) Let Z+ be
the set of positive integers, let F,, = Z { 1 , 2 "} for «>1, .F0 = {0}, and
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F=\J^=0Fn. F» is the set of all possible individuals in generation n. If
feFn we write |/| =«.

Let /=Z f
+

1 > 2--* be the set of all possible infinite lines of descent. We
equip Z + with the discrete topology and 7 with the product topology. Let
88(1) be the Borel subsets of /. Our approach will be to first construct a
random measure on (/, &(!)) then transfer the measure to (R^, £&'') where
rd = the Borel subsets of Rd. Let { p k , k>0} be a probability distribution
with

To construct a branching process we let ZJ, feF, defined on some prob-
ability space (Qh,^h,Ph), be i.i.d. with P(Z' = k) = pk. Here, b is for
branching.

Let feFm and n>m. If for g e F,, we let g m denote the first m coor-
dinates of g (with g 10 = 0) then

gives the descendants of/ in generation n. For J cFn let

where \A\ denotes the cardinality of A. In words we assign mass p -n to
each point of K'n. Well-known results for branching processes imply that
under assumption (*) we have

Theorem 9. If

and in L2, and has P(Wr>0) = 1, EW, =ii -m.

If feFm we let D(f) and D(f) be the possible descendants of / in F
and / respectively. That is,
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To define a random measure on (7,^(7)) we begin by fixing to outside a
null set, Fc, off which Wf((o) exists for all / in F, and setting

Results of Hawkes ( 1 0 ) imply that

Theorem 10. For a> e F, Y(a>, •) extends to a finite measure supported
by the branching set

Let {XJ, feF} be i.i.d. random variables taking values in R''. As for
the branching random variables it is convenient to give a name,
(Qd , Pd, Pd), to the space on which they are defined. Here d is for displace-
ment. We will construct our random measure on the product space

Let an be a fixed sequence of positive real numbers. For feF,, we let

be the spatial location of/ Let 1 = (1, 1,...) and suppose that

This, of course, implies that for each i e /

converges for <ade A, with P d A i ) = 1. Here A, = {a>: (i, u>)e A}, where

To have S' defined everywhere we set S" = oo on A1:. Here oo is a point not
in R'', which we think of as the point "at infinity" usually added to compac-
tify it. We let K=R d u {00} and y be the cr-algebra generated by rd and
{oo}. Note that (/, co) -» S'(co) is a r(7) x fd/-measurable map from 7x£2
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to V. We abuse the notation slightly and consider &h and 2Fd as the obvious
sub-sigma fields of &.

For a>ber, Y(coh, •} defines a measure on (/, £$(/)) so we can define
a random measure on (V,"V} by setting

for A e V and coeFxQg, and setting v(a>, A) = Q if cah $ F. The displace-
ment random variables are independent of the branching ones and we have

so we have v(co, {00}) = 0 for Ph x Pd a.e. co. Note that

so P(v(co, Rd) > 0) = 1 and Ev(co, Rd) = 1. Conditioning on fb, we have for
A e md,

Now take means to conclude Ev(A) = P(SeA).
Equation (2.3) defines our random measure. Our next task in this sec-

tion is to show that v is the measure defined in the Introduction. Let

We regard vn(co) as a sequence of random variables taking values in the
space M F ( R d ) of finite measures on (Rd, &d) endowed with the topology of
weak convergence. Let fn,, be the er-field generated by {Zx, |/|<«} and
[X-1, \f\^n], which are the random variables we need to construct the fist
« generations and determine the locations of the particles.

Proof of Theorem 1. Let Tn = £ ~=„ +, am X11'", and let
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To explain this definition, note that

To see this, write v(A) as an inegral with respect to Y, decompose the
integral as a sum of integrals over D(f), feK°, condition on <$„ v Jb

and use Fubini's Theorem as in the calculation of the unconditional mean.
A standard result from martingale theory implies that the right-hand side
of these converges a.s. and in L1 to v(a>, A).

To estimate the difference between v,, and v,, let

Recall that if

then d is a complete metric inducing the weak topology on MF(Rd). See
Ethier and Kurtz,(5) (p. 150). If yeLip,, then

This shows d(vn, vn) -»0 a.s. Choose a countable set {if/,} of bounded con-
tinuous functions such that rfn -> q in MF(Rd) if and only if nn,(i/',) -* n(^'/)
for all /eN. Since v n (y i ) -> v((yi) for all / a.s., we have v,, -> v a.s. It follows
from before that v,, -> v a.s. The other assertions in Theorem 1 have already
been established.

We end this Section by calculating the mean measure of v x v. This will
be important in the proofs of Theorems 3 and 6. Let

Tn be as before and let T'n be independent of (Sn, Tn) and have the same
law as T,,.



784 Allouba, Durrett, Hawkes, and Perkins

Lemma 1. Let $: Rdx Rd -> R be bounded and measurable. Then

Proof. If suffices to consider <j> > 0. Let K( i , j) = sup{n: im — jm for all
m ^ «} be the generation number of the last common ancestor of / and j,
with K(I, j) = 0 if z'] = j1 and let

be the "probability" that K ( i , j ) > n . It is easy to see that

The expected value we wish to compute equals

Use Fubini's theorem so see the wth summand equals

We now use (2.5) to complete the proof.

3. DIMENSION OF THE BOREL SUPPORT

Assume (1.1). By the converse to the Borel-Cantelli Lemma this implies
Y,m=ip(\x\>P~m) is finite, which in turn implies that £(log+ \X\)< oo.
Markov's inequality now gives
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Let <5e(0, 1) and let r,,(d)1 co be defined by

Note that (3.1) implies that for fixed d,

Imitating definitions from the previous section, we let

The reader should note that these quantities and the other ones wearing
hats next depend on S even though we have not recorded this dependence
in the notation.

A straightforward generalization of well-known results for branching
processes (see e.g., Harris,(9) (p. 13) or Durrett,(4) (pp. 218, 219)) implies
that under assumption (*).

Theorem 11. If

and has

As before, we can define a random measure of (/, &(I)) by setting

for co g /", a set of probability 1 on which $} exists for all feF, and results
of Hawkes(10) imply that

Theorem 12. For coe/1 with Ph(f) = l, f(co, •) extends to a finite
measure supported by the branching set

Again, we can define a random measure on (K, i^) by setting
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for Ae'f and coePxQd, and setting vs(co,A) = 0 if (ohif. We have
v\K>,A) ^v(a), A) and

Let J^ = Ur-,^, 4, = sup{|S«-S'|: /e^, geJ^, ge£(/)}
and

It follows from our definitions that /?„<&„ and from (3.2) that

3.1. Upper Bound on the Carrying Dimension

Let oji and \>a>p. From (3.3) and (3.7) it follows that if
n > N 0 ( c o ) then \£°\**c" and J,,<(Tn. When this occurs the support of vs

can be covered by c" balls of radius a". If

with £ > 0 then cn(crn)x = c -ne ->0. This shows that vd is supported by a set
of zero a-dimensional Hausdorff measure. Letting S=\/k2, &->oo, and
using (3.6) and Borel-Cantelli we see that the same is true of v. Since s > 0,
c>ju, and a>p are arbitrary, we conclude that the carrying dimension of
v is less than or equal to (log ,«)/log( !//>).

Let J>cardim(Ps.) and let B support Ps and satisfy dim(5) < d. Then
v(Bc) = 0 a.s. because its mean is zero by Theorem 1. This shows that
cardim(v)<cardim(Ps) a.s. and completes the proof of Theorem2(a).

3.2. Lower Bound on the Energy Dimension

Let 0<a< min(D, endinXP^)). If S and S" are as in Theorem 2 and
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is the Riesz a-energy of v, then (2.4) implies

and this is finite by the choice of a. This shows S\(v) < oo a.s. and we can
conclude endim(v) > a. This proves Theorem2(b), and (c) is then immediate
from this and (a).

To prove (d) it suffices to show that if s-S" has a bounded density/,
then we have endim(/"<,.) ~$-d. Let a<d and note that

This completes the proof of Theorem 2, so we turn to the proof of
Theorem 3.

Proof of Theorem 3. The first step is to let Q(x, r) be the cube of side
2r centered at x and show

The quantity in question is

By (2.4), this equals

As S — 5" has a bounded density, this is bounded by

which is finite because d<D = (\ogft)/\og(\/p).
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To get from (3.8) to the desired conclusion, recall the martingale proof
of the Radon-Nikodym theorem. Let tj be a measure with support in the
unit cube. Let A be Lebesgue measure on [0, 1]d. Let t]r be the part of r\
absolutely continuous with respect to 1, and let rjs = i\ — r\r be the singular
part. Subdivide the unit cube into 2'"' cubes Inwith side 2-n in the obvious
way. Then we have (see Durrett,(4) p. 209).

Theorem 13. Mn = ri(In)//.(/,n) on /n defines a martingale with

Thus if r\s > 0, Fatou's lemma implies

Applying this reasoning to the random measure v restricted to a translate
of the unit cube, and noting that if p m > 2 - n > p m +1, then the cube
Q(x, pm) contains the cube of side 2-n to which x belongs, we see that if
v has a singular part then the quantity inside the expectation in (3.8) con-
verges to co. This contradicts (3.8) (use Fatou's lemma) and Theorem 3 is
proved.

4. PROPERTIES OF THE CLOSED SUPPORT

To prove Theorem 4, we recall B(x, r) = {y: \x — y\ <r} take r< l ,
and prove

Lemma 2. Suppose np } y >\ . If x e Rd and £ > 0, then

Proof. Consider the truncated process defined in Section 3, let
2n = \&°\ be the associated nonhomogeneous branching process and Qx =
{£„ >0 for all n} be the survival event. The first step is to pick 6 > 0 small
enough so that the survival probability, P ( Q K ) ~ > 1 — e/4. To see that this
is possible note that since p0 = Q we always have (1, 1,... l ) e K ° n , so
p(2 f l>0)>i-52*= 1 /«-2 .

Next we note that £„//«"-> W a.s. with P(^>0) = P(f3or,) so we can
pick an a > 0 and a larger integer N} so that
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Choose N2 > NI such that

Let nn(co) be the first n > N 2 such that 2.,,^-an" and there is an / in
K° such that SJ <=B(x, r/2) (n0 = oo if no such n exists). All particles in the
«th generation of the truncated process lie in the ball of radius

So under our assumption (1.4) on the tail of the distribution of \X\, for
n > N 2 (make N2 larger if necessary) each particle in the wth generation of
the truncated process has probability at least C(R^,x, r) pny of having a
child (in the nontruncated process) in B(x,r/2). On {2,,>a//" Vw> Nt}
= A, for n > N2 we have

It follows that H0 < oo a.s. on A. Clearly n0 is a (^,)-stopping time and
we may choose a gn0-measurable random index / such that on («0< oo},
/e^° and Sf eB(x, r/2). We claim now that the descendants of/ in the
truncated population will produce positive mass in B(x, r). Note that on
{«0<oo}, (4.2) shows that

and so v\B(x, r)) > v\D(f}} = Wf. Therefore

This completes the proof.

86C/iO/3-l6
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Proof of Theorem 5. We begin with a result about the maxima of the
displacements for generation n, (4.3), which leads in turn to a bound on the
maximum diameter of the set of descendents of individuals in generation n,
(4.4), and in turn to an upper bound on the dimension of the closed
support.

Lemma 3.

Proof. It follows from (2.1) that if Ofj. then \K°n\/c" -» 0 a.s. Letting
a>clly, using a basic inequality from measure theory and our assumption
about the tail of \X\

Our choice of a implies ca ft < 1 so the right hand side is summable. Since
for any e > 0 we can choose a <JLI l//1 + s the desired result follows from the
Borel-Cantelli lemma.

Let JC = Un°°-i K°, Jn = sup{|S*-S'|:/eJC> *e*£, g e D ( f ) } .
From (4.3) it follows easily that we have

Lemma 4. Suppose pjul/y <\. Then

Proof. Let a>/j.lly with ap < 1. (4.3) implies that for n^-N(co)

and hence if n > N ( c a ) then an<I]£=,,/>'V". This implies

and the desired result follows.

To prove Theorem 5 now, let c > n and a > pn' >'. From (2.1) and (4.4)
it follows that if n > N 0 ( c o ) then \K°\^c" and A,,<a". When this occurs
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the closed support of v can be covered by cn balls of radius a" and, in
particular, is compact. If

with £>0 then cn(anY = c - n e ->0 . This shows that the a-dimensional
Hausdorff measure of the closed support of v is 0. Since £>0, c>/u, and
IT > pfi1/y are arbitrary, the Hausdorff dimension is less than or equal to
-dog/*)/Iog(AU1/y).

By repeating the last proof with minor modifications we can prove
Theorem 8, as we now show:

Proof of Theorem 8. Our first step is to bound the displacements on
level n.

Lemma 5. Suppose the Xf are i.i.d. standard normals. Then there is
a constant A = A(n) such that

Proof. It follows from (2.1) that if c>// then |£°|/c"-»0 a.s. Using
a basic inequality from measure theory and a standard result about the tail
of the normal distribution (see e.g., Durrett,(4) (Thm. 1.3, Chap. 1)

If we choose A so that ce A'/2 < 1 then the right-hand side is summable
and the desired result follows from the Borel-Cantelli lemma.

To prove Theorem 8 now, we note that (4.5) implies

Lemma 6. If £^=, a,,^fn < oo then v has compact support.

5. SMOOTHNESS RESULTS

The key to the developments here is the random characteristic function
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Specifically our aim will be to show that

Once this is done the desired conclusions can be obtained from the following
well-known result (see Rud in , ( 1 6 ) Thm. 7.25).

Lemma 7. Let iff(t) = \ e n - x p ( d x ) where p is a finite measure. If
\ \t\k \\l/(t)\ dt<ao Then p(dx) =f(x) dx where / has continuous kth order
partial derivatives given by

Note that $(t) = jcos(?-x) v(co, dx) + i'Jsin(f • x) v(co, dx) and |a + 6i|2

= a2 + b2, so using (2.4) and the accompanying notation, we have

Introducing the notation

we can condition on the value of S,, to write

since E e i t ( x + T » > = Ecos(t-(x+Tn)) + iEsm(t-(x+T,l)) and hence cn(x)2 +
sn(x)2 = \en(x)\2. Since en(x) = e i t . x Ee l l - T ; we have \ e n ( x ) \ 2 =\Ee i t T

n \ 2 , i.e.,
|e,,(x)|2 is constant. Combining this with the previous computations we
have
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Using the fact that for positive numbers cm we have

(to prove this square both sides) and Jensen's inequality we have

Integrating and using Fubini's theorem we have

Proof of Theorem 6. When an = pn, clearly T,Jpn is equal in law to
T0. Since we have supposed

changing variables t = s /p n , dt = ds/pn d we have

So (5.4) becomes

when n }/2p (k + d) < 1, Taking logs and rearranging gives (k + d) \og(\jp)
<log^)/2 or D/2-d>k.

Proof of Theorem 7, Suppose Eeit.x = e ~"|a.

Writing things in polar coordinates and then changing variables r = s/A 'n
/x,

dt = ds/A1,/*
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The last integral is finite since we always have k + d>\ . Plugging this
result into (5.4) we have

which proves the desired result.
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