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Using several variants of a stochastic spatial model introduced by Silvertown et al., we
investigate the effect of spatial distribution of individuals on the outcome of competition.
First, we prove rigorously that if one species has a competitive advantage over each of the
others, then eventually it takes over all the sites in the system. Second, we examine tradeoffs
between competition and dispersal distance in a two-species system. Third, we consider a
cyclic competitive relationship between three types. In this case, a nonspatial treatment leads
to densities that follow neutrally stable cycles or even unstable spiral solutions, while a spatial
model yields a stationary distribution with an interesting spatial structure. ] 1998 Academic Press

1. INTRODUCTION

Key to an understanding of biological diversity is an
understanding of interspecific competition. Yet, classical
theories of ecological competition ignore spatial parti-
tioning, and treat communities as well-mixed assem-
blages of species interacting freely with one another. In
such an environment, coexistence is severely constrained
(MacArthur and Levins, 1967; Levin, 1970), and bio-
diversity is much reduced. In spatially heterogeneous
environments, diversity can be much higher, and con-
siderable insight into the role of space in enhancing
coexistence has been gained through the use of mathe-
matical models. For example, reaction�diffusion equa-
tions (Levin, 1974; Mimura, 1983; Cosner and Cantrell,
1991) permit consideration of space but are not well-
suited to situations in which a pattern arises due to local
stochastic events. On the other hand, ``metapopulation''

models (Levins, 1969; Chesson, 1985; Hanski and
Gilpin, 1996), in which space is represented as a set of
patches with no spatial structure, allow consideration of
local interactions and stochasticity but ignore explicit
space.

Stochastic spatial models, sometimes called ``interact-
ing particle systems,'' are a combination of these two
approaches. They are constructed of patches with an
explicit spatial arrangement, as in reaction diffusion
equations, and incorporate the discrete individuals and
stochastic events of metapopulation models. Continuing
a line of research begun in Durrett and Levin (1994a), we
are interested in determining when and how the predic-
tions of a stochastic spatial model differ from those of the
two alternatives mentioned above.

Our attention will focus here on several models related
to the one Silvertown et al. (1992) constructed to
simulate the competitive interaction of five grass species,
in which they used experimentally determined rates of
invasion. Unfortunately, their choice of parameters led to
a system with rather predictable behavior. They report
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on page 529 that: ``Three of the five species went extinct
very rapidly in the models with a random initial arrange-
ment of species. The two survivors Agrostis and Holcus
were the same as the species that survived for the longest
period in all of the aggregated models.''

One can demonstrate the result in the last paragraph
without ever turning on a computer; it follows from a
general mathematical result that applies to a class of
examples.

The measured invasion probabilities have the property
that Agrostis dominates every other species i, meaning
that it has higher probability of invading type i than of
being invaded by type i. In Section 3, we show that unless
random events early in the simulation wipe out all of its
members, a species that dominates each of the others will
always take over all the sites in the system as time tends
to infinity.

We do not claim that the conclusion in the last
paragraph is surprising, but its proof relies in a crucial
way on the fact that all species use the same dispersal dis-
tribution. In Section 4 we consider a system with two
species, the first dispersing at rate 1 to the four nearest
neighbors, while the second is dispersing at rate $<1,
sending its offspring to a site chosen at random from
those within a distance R.

As the capital letter might suggest, we are thinking of
R as large. In our simulations we take R=- 10 so that
a site has 36 neighbors, and find that if $>$c r0.84 then
the long range disperser wins, while if $<$c the short
range disperser wins. Again this conclusion accords with
the intuition that comes from the competitive exclusion
principle. However, it shows in addition that an
increased dispersal distance by one species can overcome
a competitive disadvantage.

The main thrust of this paper is to consider what hap-
pens when our competition scheme has no dominant
species; that is, when competition is nonhierarchical. The
simplest system in which this can only occur is for three
species that have a cyclic relationship: 1>2>3>1,
where i> j is short for i dominates j. Following the
approach in Durrett and Levin (1994a), our first step in
understanding a stochastic spatial model is to look at
the behavior of the ``mean field ODE'' that is derived by
pretending that adjacent sites are independent. Meta-
population enthusiasts can arrive at the same equation
by considering a system of N sites that interact equally
and letting N � �.

The cyclic competition model, in which the mean field
ODE has a family of neutrally stable periodic orbits
around an interior fixed point, is an extension of Case 3
of Durrett and Levin (1994a). In that paper the label
Case 3 was applied to a spatial version of Maynard

Smith's evolutionary game, which led to a mean-field
ODE with a family of homoclinic orbits beginning and
ending at 0. This is somewhat exotic behavior for the
ODE, so we henceforth appropriate the term Case 3 to
refer to the more common situation when the ODE has
periodic orbits: i.e., solutions that for some period T>0
satisfy ui (t+T)=ui (t) for all t�0.

In Section 5 we examine the cyclic competition model
and find that in the spatial model well-separated regions
oscillate out of phase, with the consequence that if the
system size is large enough the global density is roughly
constant in time. By looking at the behavior of densities
measured in windows of sizes 30, 120, and 480, we con-
clude: Densities fluctuate wildly on small length scales,
oscillate smoothly on moderate length scales, and after
an initial transient are almost constant on large scales.
Furthermore, the system reaches an equilibrium state
with an interesting spatial structure.

The last paragraph indicates the type of behavior we
expect in general for Case 3 systems. The moderate
length scale referred to above is called the correlation
length by physicists because correlations decay exponen-
tially fast at multiples of this scale. For precise definitions
of the correlation length in terms of the behavior of
covariances in the model, see Rand and Wilson (1995)
and Keeling et al. (1996).

For our third and final model, we consider a version of
the cyclic system in which i invades j successfully at rate
(1&$)pij , while an empty site results from an unsuccess-
ful invasion with probability $pij . This change causes the
solutions of the mean-field ODE to spiral outward with
``the system coming in turn ever closer to the points with
1 alone, 2 alone, and 3 alone, yet never actually converg-
ing to one point.'' The last quote is from May and
Leonard (1975), who went on to conclude that ``biologi-
cally this behavior is nonsense.'' In Section 5, we show
that the nonsensical behavior vanishes in a spatial model.
There we take the very extreme viewpoint that $=0.666,
that is, two-thirds of the invasions result in empty sites,
but find that even with this extreme choice there is little
change in the behavior of the system. Again, there is an
equilibrium with an interesting spatial structure, but the
average densities observed in windows that are a large
multiple of the correlation length are almost constant in
time.

The last behavior is remarkable in that the spatial dis-
tribution of individuals stabilized an otherwise unstable
situation. To try to explain the mechanism suppose that
the densities satisfy

�ui

�t
=2ui+ fi (u),
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where 2ui=�2ui��x2
1+ } } } +�2ui��x2

n . Such ``diffusion
approximations'' of stochastic spatial processes are
standard; see Durrett and Levin (1994a), Durrett and
Neuhauser (1994), and Durrett and Swindle (1994). If
we let h(t, x)=H(u1(t, x), } } } , un(t, x)) then an easy
calculation (see Durrett, 1993) gives

�h
�t

=2h+Ht& :
m, i, j

�2H
�uiuj

�ui

�xm

�uj

�xm
, (C)

where Ht=dH(u(t, x))�dt is the rate of change of the
function H along the relevant solution of the ODE.

The last computation is most effective when H is
chosen to be a Lyapunov function for the ODE. For
example, in the first cyclic model, H(u)=&�i \i log ui is
(for a suitable choice of the \i) constant along orbits of
the ODE, so Ht=0. This choice of H is convex so the last
term (including the minus sign) is strictly negative unless
all the ui are spatially uniform.

If we consider the system in a bounded set with
Neumann or ``no flux'' boundary conditions then
I(t)=� h(t, x) dx is decreasing and an easy argument by
contradiction shows that for the first system the solutions
become constant in space. That is,

sup
x, y

|ui (t, x)&ui (t, y)| � 0 as t � �.

The reason for this is that the last term in (C) drives
h(t, x) to the minimum of h, which occurs at a fixed point.
In the first cyclic system, the term Ht offers no resistance
since it is identically 0. In the second cyclic system Ht>0
so there is a competition between the two terms and
potential for a nontrivial spatial arrangement to stop the
tendency of h(t, x) to increase.

Before turning to a detailed discussion of the claims we
have made, we must acknowledge that we are not the
only ones who have looked at pattern formation in
stochastic spatial models. A few examples from the recent
literature are McCauley et al. (1993), Wilson et al.
(1993), Neubert et al. (1995), Rand et al. (1995), and
Wilson (1996). Our investigations here are different in
that we focus on building a theoretical framework that
allows one to predict the behavior of stochastic spatial
models from properties of the mean field ordinary dif-
ferential equation.

2. MODEL DEFINITION

Silvertown et al. (1992) introduced a cellular auto-
maton to simulate the competitive interaction of five

grass species. In their model, space is represented by a
grid of sites, Z2, the points in the plane with integer coor-
dinates. Each site is thought of as a small square of land
that will be occupied by exactly one of the species
1, 2, ..., K. The state of the process at time t is described
by giving the state of each site y, !t( y).

Silvertown et al. (1992) formulated their model in dis-
crete time t=0, 1, 2, .... To describe their rules, suppose,
for example, that site x is occupied by type 1 at time n,
has one neighbor in state 1, two neighbors in state 2, and
one neighbor in state 3. In this case, the state of x will
change to state 2 with probability p21 . (2�4), change to
state 3 with probability p31 } (1�4), and stay in state 1 with
the remaining probability.

In a discrete time model or synchronous updating, all
the sites are updated simultaneously, so the density of
sites occupied by one type can change substantially in
one time step. To avoid this problem, and for other
reasons that we will give below, we will perform
asynchronous updating in which only one site changes at
one time. We now formulate our process using the
language of continuous-time Markov chains.

(i) An individual of species i produces new offspring
of its type at rate ;i . That is, the times tn between the
production of offspring are independent and have
P(tn>t)=e&t;i.

(ii) An offspring of type i produced at x is sent to y
with probability qi (x, y)=,i ( | y&x| ) where | y&x| is
the distance from x to y. To avoid unnecessary complica-
tions, we will suppose that ,i (1)>0 and that there is an
R<� so that ,i (r)=0 when the distance r>R. In other
words, there is a finite dispersal range, but nearest
neighbors are always accessible.

(iii) If site y is occupied by type j, and type i disperses
to that site, a successful invasion occurs (i.e., the state of
y changes from j to i) with probability pij ; if invasion does
not occur, the site y is unchanged.

If we were to ignore space and assume that the states
of the sites in the grid are always independent, then the
fraction of sites occupied by species i, ui , would satisfy

dui

dt
=:

j

ui[;ipij&;j pji]uj . (2.1)

Recall that each cell is occupied by exactly one type, so
�i ui (t)=1 for all t. The analogous equation in discrete
time is

ui (n+1)&ui (n)=:
j

ui (n)[;ipij&;jpji]uj (n). (2.2)
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Given a choice between (2.2) and (2.1), one would expect
in general to have more success in studying (2.1), since it
is a differential equation rather than a difference equa-
tion. For similar reasons, we choose to work with the
continuous time stochastic spatial model instead of the
discrete time one.

A careful comparison of the properties of discrete and
continuous time growth models is given in Chap. 5 of
Durrett (1988). The general conclusion there, and one
which has been stated by many other authors, is that for
stochastic models there is very little difference between
discrete and continuous time. The Persian carpets
generated by the synchronous cellular automata of
Nowak and May (1992, 1993) but destroyed by
asynchronous updating (see Huberman and Glance,
1993; Nowak et al., 1994) show that there can be a big
difference between the two updating schemes for deter-
ministic systems.

In this case the problem is that asynchronous updating
injects randomness into a purely deterministic system,
which kills delicate patterns. A much simpler example
that illustrates this is the addition mod two cellular
automaton defined by

!n+1(x)=(!n(x&1)+!n(x+1)) mod 2. (2.3)

The deterministic system starting from a single 1 pro-
duces a self-similar fractal pattern called the Sierpinski
gasket. However, in the presence of even a small amount
of random errors, the pattern degenerates into a random
looking mess. See Section 5d of Durrett (1988) and
references therein.

The reader should not extrapolate from the last two
examples and conclude that cellular automata are radi-
cally different in discrete and continuous time. As Nowak
et al. (1994) observe, in their spatial games ``most of the
basic conclusions are unaffected by whether we use dis-
crete or continuous time.'' In addition, extensive simula-
tions by Griffeath confirm that basic properties of the
Greenberg�Hastings automaton do not depend on the
updating method being used.

3. ASYMPTOTIC BEHAVIOR

As in our earlier work (Durrett and Levin, 1994a), our
interest will be in contrasting the behavior of the
stochastic spatial model with that of the ordinary dif-
ferential equation (2.1). In either approach, only the
value of the product *ij=;i pij , which represents the rate

at which i invades j, is important; so we let aij=*ij&*ji

to arrive at the more compact equation

dui

dt
=:

j

uiaijuj . (3.1)

We begin our study of the competition model with the
concrete situation investigated by Silvertown et al. In
their case *ij is given by

i j=1 1 2 3 4 5

1 Agrostis 0 0.09 0.32 0.23 0.37
2 Holcus 0.08 0 0.16 0.06 0.09
3 Poa 0.06 0.06 0 0.44 0.11
4 Lolium 0.02 0.06 0.05 0 0.03
5 Cynosurus 0.02 0.03 0.05 0.03 0

Our analysis, however, is much more general. We say
that species i dominates species j and we write i� j if
aij=*ij&*ji�0. When the difference is >0, we say i
strictly dominates j and write i> j.

In Silvertown's case, Agrostis strictly dominates all
other species, so it should not be surprising that it takes
over the system. Our next result, which applies to the
original discrete time model of Silvertown et al. or to the
continuous time system we have introduced here, among
a wide class of problems of the type just introduced.

(3.2) Theorem. Assume that the dispersal distribution
,i does not depend on i and that type 1 is strictly dominant
over type i for 2�i�K. If we let A1

t denote the event that
type 1 is still alive at time t then P(A1

t , !t(x){1) � 0 as
t � �.

This result says simply that if all species disperse
equally, a competitive dominant type will almost cer-
tainly outcompete all others. To explain the mathemati-
cal content, note that if we start with infinitely many sites
in state 1 then P(A1

t )=1 for all t>0 and (3.2) says that
type 1 comes to dominate at every site. If we only start
with finitely many 1's then bad luck in the early stages
can wipe out all the 1's. Theorem 3.2 says that if this does
not happen then the 1's will take over the system.

The outcome in (3.2) is the one we should expect. It is
also the one predicted in the mean field case by the
ordinary differential equations, (2.1), or the difference
equations, (2.2). To see this for the ODE, note that
the domination condition implies that all the a1i>0,
so u1(t) is increasing. Being increasing and bounded
by 1, limt � �u1(t) exists; but this is only possible if
du1�dt � 0, which implies �i>1 ui (t) � 0. The same argu-
ment works for the difference equation (2.2). The only
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change is that u1(n+1)&u1(n) � 0 should replace
du1 �dt � 0.

Sketch of proof of (3.2). We use ideas of Grannan
and Swindle (1991), and their improvement by
Mountford and Sudbury (1992). In a sense the argument
is similar to the one in the last paragraph. We show that
a suitably defined density of 1's is a submartingale. Sub-
martingales are a stochastic version of increasing sequen-
ces of real numbers, in that if they are bounded above
then they converge. An easy argument by contradiction
then shows that in the limit we either have no 1's or all
1's. For more details see the Appendix

4. BALANCING COMPETITION AND
DISPERSAL

Up to this point, all species have been assumed to dis-
perse according to the same probability distribution. For
most real systems, this will not be the case. Indeed, adap-
tations for dispersal and for competitive ability typically

FIG. 1. Silvertown competition model with two species with different dispersal distributions is shown. The simulation is for various values of $:
(g) 0.80, (S, upper) 0.82, (m) 0.83, (M) 0.85, (S, lower) 0.87, and (G), 0.90.

are negatively correlated (Tilman, 1994); coexistence
occurs in some systems because one set of species are
adapted (in part, through long range dispersal) to find
and exploit new gaps readily, while others rely on com-
petitive displacement of the early colonists. In the mean
field picture, as described by the ODE in (2.1), or in the
metapopulation approach, see part III of Hanski and
Gilpin (1996), one can investigate the effect of altering
the dispersal frequency. However, only a spatial model
allows exploration of the tradeoffs between dispersal dis-
tance and competitive ability.

Suppose, for simplicity, that there are two species, with
the first species dispersing only to nearest neighbors, and
the second species sending its offspring to a site chosen at
random from those within distance R. Since only the
value of the product *ij=;ipij is important, we can take
p12= p21=1 without loss of generality. By changing the
time scale we can set ;2=$ and ;1=1.

To analyze the system we begin with the question:
``Can 1's invade a system dominated by 2's?'' To answer
this we observe that if type 1 is present at a very small
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FIG. 2. Silvertown competition model, $=0.8. Simulations for different initial densities of Species 1: (g) 0.1, (m) 0.2, (q) 0.3, (g+) 0.4, and (V) 0.5.

density and the range R of the interaction is large, then
each 1 is replaced by a 2 at a rate that is almost $, and
each 1 gives birth at rate 1 to a new 1, which is sent to a
neighboring site chosen at random. These are the
dynamics of the basic contact process (see Chap. VI of
Liggett, 1985, or Durrett and Levin, 1994b, for a descrip-
tion), so we conclude that if $<$c r0.606 the 1's are not
capable of invading a system dominated by 2's. That is,
long-range dispersal of a resident type can overcome a
modest competitive advantage for an invader that has a
more narrow dispersal range.

Reversing roles, if we start with species 2 at very low
density in a system otherwise filled with 1's, and the range
of the interaction is large, then while the density of 2's is
very small, all of the 2's will be isolated; i.e., all of their
nearest neighbors will be 1's. In this case 2's are destroyed
at rate 1 but give birth at rate $; so if $<1 the 2's are not
capable of invading a system dominated by 1's.

Combining the last two paragraphs we see that if the
range of the interaction is large there is an interval of
values for $, approximately [0.606,1], where neither type

can invade the other. Because of this we will classify the
system as belonging to Case 2 of Durrett and Levin
(1994a). Strictly speaking this is not correct since in the
ODE (1,0) is globally attracting for $<1, and (0,1) is
globally attracting when $>1; while Case 2 was charac-
terized by bistability in the mean field dynamics, which is
absent here. However, properties of the long range limit
and simulations suggest the system has the classic type-2
behavior:

(4.1) Claim. There is a value $c(R) so that 1's take
over when $<$c(R), while 2's take over when $>$c(R).

Here, ``1's take over'' means that the conclusion of
(3.2) holds. That is, if A1

t is the event that the 1's have not
died out by time t then P(A1

t , !t(x){1) � 0.
We do not know how to compute $c(R) analytically or

even how to find an approximation valid for large R, so
we turn to simulations. We chose R=- 10, in which case
a given point x has 36 neighbors indicated by the o's in
the following diagram:
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In our simulations we used a 200_200 grid with peri-
odic boundary conditions. That is, the sites on the left edge
of the grid are viewed as adjacent to ones on the right
edge and those on the bottom are viewed as adjacent to
those on the top.

Figure 1 gives the fraction of sites occupied by 1's for
six values of $, starting from an initial configuration in
which each site is randomly assigned the values 1 or 2
with equal probability. Note that for $�0.83 the 2's die
out, while for $�0.85 the 1's die out. Furthermore, the
time to resolve the outcome increases as we approach the
value $c r0.84, where the two competitors are evenly
matched.

In Fig. 1, we have examined what happens from a ran-
dom initial configuration with an equal density of 1's and
2's, so in Fig. 2 we set $=0.8 and take a closer look at
what happens when starting from product measures
(independent sites) with different initial densities of 1's.
The 1's win when the initial density is 0.2, 0.3, 0.4, or 0.5
on this 200_200 grid but lose when the initial density is
0.1. However, the latter is a ``finite size effect.'' When the
grid is enlarged to 400_400 then 1's win.

As explained on page 376 of Durrett and Levin (1994),
the mechanism by which 1's win involves events on two
time scales. Soon after the process starts the 1's form
small clusters in which they are the dominant species,
then on a much longer time scale they grow and take
over the system. If we keep the size of the system fixed
and decrease the density of 1's then eventually the 2's will
win because the small number of 1's initially will not
produce any clusters in which they are the dominant
species and they will rapidly become extinct. However,
for any fixed positive initial density of 1's, if the grid size
is large enough then 1's will establish themselves and take
over the system with high probability.

5. NONTRANSITIVE COMPETITION

Until now, we have only considered situations in
which one species dominates all others. However, the
rules of combat need not be so simple, and nontransitive

FIG. 3. Solutions curves of the differential equation (5.1) when
;1=0.3, ;2=0.7, and ;3=1.0.

competition schemes can lead to sustained periodic
behavior in mean field dynamics (Gilpin, 1975; May and
Leonard, 1975). This situation becomes even more inter-
esting in a spatial context. Nonhierarchical competition
is in general of broad importance, as priority effects may
determine competitive outcomes.

In this paper, we consider a three-species system with
a competitive loop: 1<2<3<1. This may at first
appear to be a rather special and esoteric situation, but
its generality becomes clearer when it is recognized that
late successional species (the competitive dominants)
typically would be replaced by early successional species
following a disturbance. Thus, if, for example, species 1,
2, and 3 are respectively grass, bushes, trees, or some
other representation of the successional cycle, the order-
ing 1<2<3<1 makes sense in terms of competitive
replacement. Bramson and Griffeath (1989) have con-
sidered this system with n�3 competitors in one dimen-
sion. Griffeath alone (1989) and with his co-workers
Fisch and Gravner (1991a, 1991b) has studied related
cellular automata. Tainaka (1993, 1995) has considered
a variation on the model in which 1's mutate into 3's with
the paradoxical result that this enhances the density
of 1's.

In our situation, if we suppose 1<2<3<1 and let

;1=*13 ;2=*21 ;3=*32 ,

36 Durrett and Levin



File: 653J 133808 . By:XX . Date:10:02:98 . Time:15:04 LOP8M. V8.B. Page 01:01
Codes: 2264 Signs: 863 . Length: 54 pic 0 pts, 227 mm

FIG. 4. Densities of Species 1 in Silvertown's model when viewed in (h) 30_30, (m) 120_120, and (&& &) 480_480 windows.

then the system (2.1) can be written as

du1

dt
=u1(;1u3&;2u2)

du2

dt
=u2(;2u1&;3u3) (5.1)

du3

dt
=u3(;3u2&;1u1).

If for example we take ;1=0.3, ;2=0.7, and ;3=1.0 then
the ODE behaves as indicated in Fig. 3. There is a family
of periodic orbits around the fixed point (0.5, 0.15, 0.35).

To show that in general we get pictures similar to the
example, we begin by dividing each equation by the
product of the betas that appear in it to conclude that
any fixed point \ has

\3

;2

=
\2

;1

=
\1

;3

.

Multiplying by ;1 ;2;3 , we conclude that

\1=
;3

;1+;2+;3

\2=
;1

;1+;2+;3

\3=
;2

;1+;2+;3

.

To see that there is a family of periodic orbits surround-
ing the fixed point we write H(u)=�i \i log ui and note
that

�H
�t

=:
i

\i

ui

dui

dt

=c\u3

;2

&
u2

;1++c\u1

;3

&
u3

;2++c\u2

;1

&
u1

;3+=0,
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FIG. 5. Snapshot of the three-species Silvertown model from Fig. 4 simulated on a 90_90 grid.

where c=;1;2 ;3�(;1+;2+;3). Thus H is constant
along solutions of the ODE.

The analysis is similar to that of May and Leonard
(1975) who considered the symmetric system

dN1

dt
=N1[1&N1&:N2&;N3]

dN2

dt
=N2[1&;N1&N2&:N3] (5.2)

dN3

dt
=N3[1&:N1&;N2&N3].

If we introduce N=N1+N2+N3 we can rewrite this
equation as

dN1

dt
=N1(1&N)&(:&1)N1N2&(;&1)N1N3

dN2

dt
=N2(1&N)&(:&1)N2N3&(;&1)N2N1 (5.3)

dN3

dt
=N3(1&N)&(:&1)N3N1&(;&1)N3N2 .

Setting #=:+;&2, we add the equations to get

dN
dt

=N(1&N)&#[N1N2+N2 N3+N3N1] (5.4)

which is (14) on page 278 of May and Leonard (1975)
(except for a typo which puts a + sign in front of # in
their paper). When :+;=2, we have #=0 and (5.4)
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implies that the plane N1+N2+N3=1 is invariant.
When we consider the equation in (5.3) on this plane
then the first term vanishes and we get an equation that
looks very much like (5.1). The two systems are not iden-
tical: (5.1) has three parameters while (5.4) has two.
However, the qualitative behavior of their solutions is
the same: (5.4) has invariant sets of the form
�i log ui=K, or as May and Leonard (1975) write them,
u1 u2 u3=eK.

Gilpin (1975), who also studied (5.2), observed that
the ``system is neutrally stable on the plane
N1+N2+N3=1, therefore stochastic effects (environ-
mental noise) will cause it to decay to a single species
system.'' This conclusion does not apply to the stochastic
spatial model. Well separated regions oscillate out of
phase, and the result is a stable equilibrium density for
each of the three types.

Figure 4 gives the percentage of sites occupied by
species 1 for the first 500 units of time when we look at
the system in windows of size 30_30 or 120_120, or
average over the whole 480_480 system (which again
has periodic boundary conditions). Note that in the
smallest viewing window, the densities oscillate; but
when the averages are taken over the largest length scale,
the oscillations are confined to the initial period when the
system is converging to equilibrium.

To help explain this behavior, we introduce Fig. 5
which gives a snapshot of the process on a 90_90 grid at
time 500. Here the three types 1, 2, 3 are represented by
white, gray, and black. Note the degree of spatial
organization. When we view the system on the scale of
the typical patch size we see oscillation, but when it is
viewed on much longer scales we see the spatial average
instead.

As we mentioned earlier, Rand and Wilson (1995) and
Keeling et al. (1996) have considered the problem of find-
ing what physicists would call the correlation length.
This is the ``most interesting'' scale on which to view the
system. Densities computed in boxes with sides of the
correlation length vary smoothly in time, but undergo
substantial changes.

6. SPIRALS OF DOOM OR CYCLES OF
RENEWAL?

May and Leonard (1975) devote much of their paper
to the more generic case :+;>2, :<1 that has (see
p. 244) ``asymptotic solutions in which the system cycles
from being composed almost wholly of population 1, to
almost wholly 2, to almost wholly 3, back to 1, but with

FIG. 6. Solutions curves of May and Leonard's differential equa-
tion (5.2) when :=0.8 and ;=1.3.

the time to complete the cycle becoming longer and
longer (being proportional to the length of time the
system has been running), and with the system coming in
turn ever closer to the points with 1 alone, 2 alone, and
3 alone yet never actually converging on any one point.''
Figure 6 gives a picture of the solution curves of the
ordinary differential equation.

In their discussion section, May and Leonard conclude
that, ``Biologically the behavior illustrated in Figs. 4 and
5 [in their paper] is nonsense. Mathematically, for con-
tinuous variables Ni (t) the system never asymptotically
attains any of the points (1, 0, 0), (0, 1, 0), (0, 0, 1).
However, once it is conceded that the variables represent
animals, and therefore cannot fall below unity, it is clear
that the system will, after a few cycles, converge on some
single population extinguishing the other two.'' This
reasoning, of course, works for plants as well as animals.

Our next goal is to demonstrate that in the corre-
sponding stochastic spatial system the behavior is much
different. To do this, we begin by defining an interacting
particle system so that the mean field ODE, i.e., the one
we obtain by assuming adjacent sites are independent,
is exactly (5.4), the system investigated by May and
Leonard (1975). In the new system we let each site x # Z2

be in state 0 = vacant or 1, 2, 3 to indicate occupancy by
one of the three types. To describe the dynamics we let
R�1 and declare that two sites x and y are neighbors if
the distance between them | y&x|�R.

(i) Vacant sites become occupied by type i at rate fi ,
where fi is the fraction of neighbors that are in state i.

(ii) Occupied sites x at rate ;&1 attempt to
colonize (or attack) a randomly chosen neighbor y.
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FIG. 7. Densities of Species 1 in a 240_240 simulation of the spatial analogue of the ODE in Fig. 7.

(iii) If y is occupied by the type that the one at x can
outcompete then the individual at y is killed. It is
replaced by the type at x with probability (1&:)�(;&1),
but the site becomes vacant otherwise.

While the ODE in Fig. 6 is considerably different from
the one in Fig. 3, the behavior of the corresponding spa-
tial models is similar. Figure 7 shows a simulation of the
process with :=2�3 and ;=2 on a 240_240 grid. The
densities of the three species oscillate but only between 28
and 360, which is comparable with the behavior in the
model with no vacancies on a similar size grid, see Fig. 4.

7. DISCUSSION

The role of space in the dynamics of competition is
vital to an understanding of the mechanisms controlling
biodiversity (Tilman, 1996; Pacala and Levin, 1996). The
problem is one whose importance has been recognized
for half a century (Watt, 1947), and which has been a
centerpiece of theoretical investigation for three decades
(Smith, 1972; Levin, 1974). Advances in the theory of
interacting particle systems, and in high speed computa-
tion, allow new insights into these issues, and open the

door for enhanced understanding of the mechanisms
controlling biodiversity.

In Durrett and Levin (1994a) we began a program of
classifying stochastic spatial models according to the
behavior of the corresponding mean field ODE, which is
derived by pretending that all sites are independent. That
paper treated Case 1 (Attracting Fixed Points), Case 2
(Bistability) and Case 3, in which there was a family
of homoclinic orbits beginning and ending at the origin.
In this paper, we redefine Case 3 to be periodic orbits
and consider several examples, focussing on models
related to one that Silvertown et al. (1992) constructed
to simulate the competitive interaction of five grass
species.

We reached three major conclusions. First, we proved
rigorously that if one species has a competitive advantage
over each of the others then it takes over all the sites in
the system. While the last conclusion is obvious, it does
take some ingenuity to prove, and it depends crucially on
the fact that all species use the same dispersal distribu-
tion. Therefore, our second investigation focused on
the tradeoffs between competitive ability and dispersal
distance. As in earlier studies that studied the effects
of dispersal frequency, we found that a type with longer
dispersal distance can overcome a superior competitor.
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However, coexistence remains impossible in the two-
species system.

Nontransitive competition introduces the most inter-
esting complications. Gilpin (1975) and May and
Leonard (1975), for example, have considered cyclical
competition networks which have unstable spiral solu-
tions that lead to extinction of all but a single species. In
a spatially distributed environment, however, a spatio-
temporal mosaic develops in which different regions
oscillate out of phase. The result is coexistence of all
species and densities that are almost constant when
observed in boxes with sides that are a large multiple of
the ``correlation length.'' This is the type of behavior we
expect in ``Case 3,'' when the mean field ODE has peri-
odic orbits.

APPENDIX: PROOF OF (3.2)

On an infinite grid we cannot in general talk about the
number of sites occupied by type 1, so we begin by intro-
ducing a substitute notion. Let u # Z2 be the center of our
viewing window, let % be a small positive number, and let

Zu
t = :

z : !t(z)=1

e&% |z&u|.

Here !t(Z) can be either the original discrete time model
of Silvertown or our continuous time model. However,
we will first do the entire proof in continuous time and
then indicate the extension to discrete time.

(A.1) Lemma. If % is sufficiently small then Zu
t is a

submartingale.

Proof. Consider a pair of sites x and y so that
!t(x)=1 and !t( y)=i>1 with ,( | y&x| )>0; hence
|x& y|�R. The dynamics imply that

(a) x invades y at rate *1i,( | y&x| )

(b) y invades x at rate *i1,( | y&x| ).

Event (b) decreases the sum by e&% | y&u| while (a)
increases the sum by e&% |x&u| which by the triangle
inequality is larger than e&%( | y&u|+R). From this it
follows that if e&%Rp1i�pi1 for all i, which will hold for
small %, then Zu

t is a submartingale.

To prepare for the generalization to discrete time we
ask the reader to check that from this point on all we use
is (A.1) and not the form of the model. Since Zu

t is a sub-
martingale and is bounded by C%=�z e&% |z| it follows
(see, e.g., Chap. 4 of Durrett, 1995) that as t � � we have

(A.2) Corollary. With probability one, Zu
t � Zu

�

where EZu
��EZu

0 .

Our next claim is that

(A.3) Lemma. P(Zu
�=0 or C%)=1. If we let

\u=P(Zu
�=C%) then for any L<�

lim
t � �

P(!t(x)=1 for all x # [&L, L]2)=\u .

Proof. We begin by observing that for any x and y

lim
t � �

P(!t(x)=1, !t( y)=i>1)=0 (A.4)

for if not then infinitely often Zu
t will experience jumps of

size at least e&%( | y&u|+R), contradicting the convergence
in (A.2). The conclusion in (A.4) implies that when T is
large we have with high probability either !T (x)=1 for
all x # [&L, L]2, or !T (x)>1 for all x # [&L, L]2. In
the first case Zu

T rC% , while in the second Zu
T r0. The

desired result follows. K

To complete the proof of (3.2) now, we let N 1
s be the

number of sites occupied by 1's at time s, and note that
elementary Markov chain theory implies that N 1

s � �
on the event A1

�=�t>0A1
t that the 1's do not die out.

When N 1
s is large, there is high probability of finding a

large square at time s+1 that is completely occupied by
1's. Thus if =>0 and t=s+1 is large we can with prob-
ability �1&= choose a random U(|) at time t so that
ZU

1 �C% (1&=). Using this with (A.2) and (A.3) we have
that

lim sup
u � �

P(Au , !t(x){1)�2=.

Since = is arbitrary, the desired result follows.

Proof for discrete time. Consider a pair of nearest
neighbor sites x and y so that !t(x)=1 and !t( y)=i>1.
The dynamics imply that

(a) x invades y with probability p1i �4

(b) y invades x with probability pi1 �4.

(b) decreases the sum by e&%| y&u| while (a) increases the
sum by e&%|x&u|�e&%( |x&u|+1). From this it follows that
if e&%p1i�pi1 for all i then Zu

t is a submartingale. Once
(A.1) is established the rest of the argument is the same.
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