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Abstract

In 1971, Schelling introduced a model in which families move if they have too
many neighbors of the opposite type. In this paper we will consider a metapopulation
version of the model in which a city is divided into N neighborhoods each of which
has L houses. There are ρNL red families and ρNL blue families. Families are happy
if there are ≤ ρcL families of the opposite type in their neighborhood, and unhappy
otherwise. Each family moves to each vacant house at rates that depend on their
happiness at their current location and that of their destination. Let Tri(pR, pB) be
a trinomial distribution with probability pR and pB of red and blue, and probability
1− pR − pB of empty. Suppose first that ρc > 0.25963. In this case, if neighborhoods
are large then there are critical values ρb < ρd < ρc. so that for ρ < ρb the two
types are distributed randomly in equilibrium, i.e, neighborhoods are Tri(ρ, ρ). When
ρ > ρb a new segregated equilibrium (1/2)Tri(ρ1, ρ2) + (1/2)Tri(ρ2, ρ1) appears with
ρ1 > ρc > ρ2. When ρb < ρ < ρd there is a bistability, but for ρ > ρd the segregated
state is the unique stationary distribution. When ρc < 0.25963, Tri(ρ, ρ) may be the
stationary distribution when ρ is close to 1/2, and if so there is a region of bistability.

1 Model Description

In 1971, Schelling [1] introduced one of the first agent-based models in the social sciences.
Families of two types inhabit cells in a finite square, with 25%–30% of the squares vacant.
Each family had a neighborhood that consists of a 5× 5 square centered at their location If
the fraction of neighbors of the opposite type was too large then they move to the closest
location that satisfies their constraints. Schelling simulated this and many other variants of
this model (using dice and checkers) in order to argue that if people have a preference for
living with those of their own color, the movements of individual families invariably led to
complete segregation. [2]
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As Clark and Fossett [3] explain “The Schelling model was mostly of theoretical interest
and was rarely cited until a significant debate about the extent and explanations of residential
segregation in U.S. urban areas was engaged in the 1980s and 1990s. To that point, most
social scientists offered an explanation that invoked housing discrimination, principally by
whites.” At this point Schelling’s article has been cited more than 800 times. For a sampling
of results from the social sciences literature see Fossett’s lengthy survey [4], or other more
recent treatments [5, 6, 7]. About ten years ago physicists discovered this model and analyzed
it a number of variants using techniques of statistical mechanics, [8]–[14]. However to our
knowledge the only rigorous work is [15] which studies the one-dimensional model in which
the threshold for happiness is ρc = 0.5 and two unhappy families within distance w swap
places at rate 1.

Here, we will consider a metapopulation version of Schelling’s model in which there are N
neighborhoods that have L houses, but we ignore spatial structure within the neighborhoods,
and their physical locations. We do this to make the model analytically tractable, but these
assumptions are reasonable from a modeling point of view. Many cities in the United States
are divided into neighborhoods that have their own identities. In Durham, these neigh-
borhoods have names like Duke Park, Trinity Park, Watts-Hillendale, Duke Forest, Hope
Valley, Colony Park, etc. They are often separated by busy roads and have identities that
are reinforced by email newsgroups that allow people to easily communicate with everyone
in their neighborhood, so it is the overall composition of the neighborhood that is important
not just the people who live next door. In addition, when a family decides to move they can
easily relocate anywhere in the city.

Families, which we suppose are indivisible units, come in two types that we call red and
blue. There are ρNL of each type, leaving (1 − 2ρ)NL empty houses. This formulation
was inspired by Grauwin et al. [16], who studied segregation in a model with one type of
individual whose happiness is given by a piecewise linear unimodal function of the density
of occupied sites in their neighborhood. To define the rules of movement, we introduce the
threshold level ρc such that a neighborhood is happy for a certain type of agent if the fraction
of agents of the opposite type is ≤ ρc. For each family and empty house, movements occur
at rates that depend on the state of the source and destination houses:

from/to Happy Unhappy
Happy r/(NL) ε/(NL)

Unhappy 1/(NL) q/(NL)

where q, r < 1 and ε is small, e.g., 0.1 or smaller. Note that there are O(NL) vacant houses
so each family moves at a rate O(1). In words, happy families, are very reluctant to move to
a neighborhood in which they would be unhappy, while unhappy families move at rate 1 to
neighborhoods that will make them happy. As we will see later, the equilibrium distribution
does not depend on the values of q and r.

2 Convergence to a deterministic limit

To describe the dynamics more precisely, let ni,j, i, j ≥ 0, i + j ≤ L be the number of
neighborhoods with i red and j blue families, and let n = NL be the total number of houses.
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The configuration of the system at time t can be fully described by the numbers ui,j = ni,j/N ,
which is a probability measure on

ΩL = {(i, j) ∈ Z2 : i, j ≥ 0, i + j ≤ L}.

Thus we have a stochastic process νN
t taking values in M1(ΩL), the space of probability

measures on ΩL, or if the reader prefers, a large vector of ui,j(t) of frequencies that change
over time.

If one computes infinitesimal means and variances then it is natural to guess (and not
hard to prove) that if we keep L fixed and let N →∞, then νN

t converges to a deterministic
limit. Motivated by individual-based models in finance, Daniel Remenik [17] has proved a
general result which takes care of our example. In order to state that result we use the same
notation as in Remenik’s work, despite the fact that it is somewhat difficult to parse.

To describe the jump rates, we need some notation. Let `c = [ρcL], where [x] is the
largest integer ≤ x. In words, a family is happy if there are ≤ `c families of the opposite
type in their neighborhood. Let

∆(i1, i2) =


r i1 ≤ lc, i2 ≤ `c

ε i1 ≤ lc, i2 > `c

1 i1 > `c, i2 ≤ `c

q i1 > lc, i2 > `c

be the matrix of movement rates, which depends on the number of houses of the opposite
type at the source i1 and destination i2. Let

λ(a1, b1; a2, b2) =
1

L
[a1(L− a2 − b2)∆(b1, b2) + b1(L− a2 − b2)∆(a1, a2)]

be N times the total rate of movement from one (a1, b1) neighborhood to one (a2, b2) neigh-
borhood.

The distribution of the outcome of migration from ω1 = (a1, b1) to ω2 = (a2, b2), written
as a measure on the new pair of states, is

b(ω1, ω2; dω′
1 ⊗ dω′

2) =
a1(L− a2 − b2)∆(b1, b2)

Lλ(a1, b1; a2, b2)
δ(a1−1,b1;a2+1,b2)

+
b1(L− a2 − b2)∆(a1, a2)

Lλ(a1, b1; a2, b2)
δ(a1,b1−1;a2,b2+1)

where δx is a point-mass at x. In words, the new states will be ω′
1 = (a1 − 1, b1) and

ω′
2 = (a2 + 1, b2) or ω′

1 = (a1, b1 − 1) and ω′
2 = (a2, b2 + 1) with the indicated probabilities.

Theorem 1. The measure valued processes νN
t will converge weakly to the solution of the

ODE:

dνt(i, j)

dt
=− νt(i, j)

∑
ω∈Ω

[λ(i, j; ω) + λ(ω; i, j)]νt(ω) (1)

+
∑

ω,ω′∈Ω

λ(ω; ω′)[b(ω, ω′; {i, j} × Ω) + b(ω, ω′; Ω× {i, j})] νt(ω)νt(ω
′).
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The notation is a little cumbersome, but the result is not complicated. The first term comes
from the fact that a migration from (i, j) → ω or ω → (i, j) destroys an (i, j) neighborhood,
while the second reflects the fact that a migration ω → ω′ may create an (i, j) neighborhood
at the source or at the destination.

3 Special case L = 2

To illustrate the use of Theorem 1, we consider the case L = 2. When L = 2, a neighborhood
with both types of families must be (1, 1), so the situation in which `c ≥ 1 is trivial because
there are never any unhappy families. In the case L = 2 and `c = 0, it is easy to find
the equilibrium because there is detailed balance, i.e., the rate of each transition is exactly
balanced by the one in the opposite direction.

rates transitions
rν2

1,0 = 4rν0,0ν2,0 (1, 0)(1, 0) 
 (0, 0)(2, 0)
rν2

0,1 = 4rν0,0ν0,2 (0, 1)(0, 1) 
 (0, 0)(0, 2)
2ν0,0ν1,1 = εν1,0ν0,1 (1, 1)(0, 0) 
 (1, 0)(0, 1)
ν1,0ν1,1 = 2εν2,0ν0,1 (1, 1)(1, 0) 
 (0, 1)(2, 0)
ν0,1ν1,1 = 2εν0,2ν1,0 (1, 1)(0, 1) 
 (1, 0)(0, 2)

After a little algebra, we find that the fixed point must have the form:

ν2,0 = ν0,2 = x ν1,1 = 2εx ν1,0 = ν0,1 = y ν00, = y2/4x.

At first, it may be surprising that the rate r has nothing to do with the fixed point, but if you
look at the first two equations you see that the r appears on both sides. The parameter q does
not appear either, but in this case it is for the trivial reason that transitions (1, 1)(1, 0) →
(1, 0)(1, 1), which occur at rate q, do not change the state of the system.

Using now the fact that the equilibrium must preserve the red and blue densities, we can
solve for x and y to conclude that the only fixed point must have the form above with

y =
1−

√
8(1− ε)ρ2 − 4(1− ε)ρ + 1

1− ε

x =
(2− 2ε)ρ− 1 +

√
8(1− ε)ρ2 − 4(1− ε)ρ + 1

2(1 + ε)(1− ε)
.

Since the formulas are somewhat complicated, Figure 1 shows how νi,j vary as a function of
ρ.

Unfortunately, when L ≥ 3, the Markov process on M1(ΩL) is no longer be reversible.
One can, of course, solve for the stationary distribution numerically. Figure 2 shows limit
behavior of the system with L = 20, and ρc = 0.3, i.e., `c = 6 for initial densities ρ = 0.1,
0.2, 0.25 and 0.35. In the first two cases, most of the families are happy. In the third
situation, the threshold `c = 6 while the average number of reds and blues per neighborhood
is 5, but since fluctuations in the make of neighborhoods can lead to unhappiness, there is
a tendency toward segregation. In the fourth case segregation is almost complete with most
neighborhoods having 0 or 1 of the minority type.
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4 Neighborhood-Environment Approach

Finding the stationary distribution requires solving
∑L

i=0 L + 1 − i = (L + 1)(L + 2)/2
equations, which is 231 when L = 20 and 5151 when L = 100. In this section, we will adopt
a different approach, which allows us to explicitly compute the stationary distribution. We
concentrate on the evolution of neighborhood 1 and consider neighborhoods 2–N to be its
environment, which can be summarized by the following 4 parameters: (1) the average
number of happy red and blue families per neighborhood, and (2) the average number of
vacant sites happy for red or blue, again per neighborhood. If we let ni,j be the number of
(i, j) neighborhoods then those parameters for red families can be written as:

h1
R =

∑
j<lc

ni,ji, h0
R =

∑
j<lc

ni,j(L− i− j) (2)

Here, and in what follows, we will cut the number of formulas in half by not writing the
analagous quantities for blues. From the four parameters h1

R, hR
0 , hB

1 and hB
0 , we can calculate

the rate at which reds arrive (superscript +) and leave (superscript −), sites in neighborhood
1 that are happy H and unhappy U for red. Letting NR, NB, and N0 be the total number
of red families, blue families, and empty sites,

H+
R = [rh1

R + (NR − h1
R)]/NL H−

R = [rh0
R + (N0 − h0

R)]/NL

U+
R = [εh1

R + q(NR − h1
R)]/NL U−

R = [h0
R + q(N0 − h0

R)]/NL

From this, we see that the transition rates for neighborhood 1 are

if j0 ≤ `c if j0 > `c

(i0, j0) → (i0, j0 + 1) (L− i0 − j0)H
+
R (L− i0 − j0)U

+
R

(i0, j0) → (i0, j0 − 1) i0H
−
R i0U

−
R

If we specify the four parameters, then it is (almost) easy to compute the stationary
distribution. Divide the state space Ω = {(i, j) : i, j ≥ 0, i + j ≤ L} into four quadrants
based on red and blue happiness. Writing 0 for H and 1 for U , we have

Q0,0 = {i ≤ `c, j ≤ `c}, Q0,1 = {i > `c, j ≤ `c}
Q1,0 = {i ≤ `c, j > `c}, Q1,1 = {i > `c, j > `c}

If we let Tri(pR, pB) be the trinomial distribution

L!

i!j!(L− i− j)!
pi

Rpj
B(1− pR − pB)L−i−j (3)

then inside Qk,`, the detailed balance condition is satisfied by Tri(pR, pB) where

pR =
αk,`

1 + αk,` + βk,`

and pB =
βk,`

1 + αk,` + βk,`
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where the αk,l and βk,l are as follows:

α0,0 = α0,1 =
H+

R

H−
R

α1,0 = α1,1 =
U+

R

U−
R

β0,0 = β1,0 =
H+

B

H−
B

β0,1 = β1,1 =
U+

B

U−
B

.

Unfortunately, the Kolmogorov cycle condition, is not satisfied around loops that visit
two or more quadrants, so there is no reversible stationary distribution.

5 Self-consistent distributions

The next step is to identify the stationary distribution of neighborhood 1, that are self-
consistent. That is, when we calculate the expected values of h1

R, h0
R, h1

B and h0
B in equilib-

rium then they agree with the original parameters. The first step, accomplished in Section
1 of the supplementary materials is to show that such a measure cannot put mass on both
Ω0,0 and Ω1,1.

Theorem 2. Suppose there is no mass on Ω1,1. For a ∈ (0, 1/2] let

ρ1(a, ρ) =
−1 + (a + ρ)(1− ε) +

√
[1− (a + ρ)(1− ε)]2 + 4a(1− ε2)ρ

2a(1− ε2)
. (4)

Let ρ1(0, ρ) = ρ/(1− ρ(1− ε)) and for a ∈ [0, 1/2] let

µ = (1− 2a)Tri(ρ0, ρ0) + aTri(ρ1, ρ2) + aTri(ρ2, ρ1)

The distribution µ, it is self consistent if and only if it has the form above with parameters
ρ1 > ρc, ρ2 = ερ1 < ρc and ρ0 = ρ1/[1 + (1− ε)ρ1] < ρc.

To clarify the last sentence: the definition of ρ1 does not guarantee that the three condi-
tions are satisfied for all values of a ∈ [0, 1/2], so the inequalities are additional conditions.
To explain the definition of ρ1(0, ρ), note that ρ1(a, ρ) → ρ/(1− ρ(1− ε) as a → 0. A little
algebra shows that

ρ1(1/2, ρ) =
2ρ(1− ε)

1− ε2

Since families do not change type, we must have

ρ = (1− 2a)
ρ1

1 + (1− ε)ρ1

+ aρ1 + aερ1

This equation shows that the mapping a → ρ1(a, ρ) so it must be monotone, and in this case
it is increasing.

Corollary 1. If ρ < ρc(1−ε2)/2(1−ε) then ρ1(1/2, ρ) < ρc and hence Tri(ρ, ρ) is the unique
stationary distribution.
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The possible self-consistent stationary distributions are similar in the second case but
the formulas are different.

Theorem 3. Suppose there is no mass on Ω0,0 and for a ∈ (0, 1/2] let

ρ̂1 =
ε + (1− ε)(a + ρ)−

√
[ε + (1− ε)(a + ρ)]2 − 4a(1− ε2)ρ

2a(1− ε2)
. (5)

Let ρ̂1(0, ρ) = ρ/(ε + (1− ε)ρ)), and for a ∈ [0, 1/2] let

µ̂ = aTri(ρ̂1, ρ̂2) + aTri(ρ̂2, ρ̂1) + (1− 2a)Tri(ρ̂3, ρ̂3)

The distribution µ̂ is self-consistent if and only if it has the form above with parameters
ρ̂1 > ρc, ρ̂2 = ερ̂1 < ρc and ρ̂3 = ερ̂1/[1− (1− ε)ρ̂1] > ρc.

Again the formula for ρ̂1(0, ρ) comes from taking the limit a → 0. A little algebra shows

ρ1(1/2, ρ) =
2ρ(1− ε)

1− ε2

i.e, the same formula as in the previous case, but this time a → ρ1(a, ρ) is decreasing. In
Section 3 of the supplementary materials we show that the situations in Theorems 2 and 3
correspond to ρ < ρc and ρ ≥ ρc.

6 Stability calculations

Since the measures in each quadrant are trinomial, the probabilities will decay exponentially
away form the mean (

αk,`

1 + αk,` + βk,`

,
βk,`

1 + αk,` + βk,`

)
L

Thus, unless one of the coordinates is close to ρc, the measure will be very small near the
boundaries between the quadrants. This gives us a separation of time scales in the process.

Ansatz. Probability mass flows slowly, at rate exp(−cL), between quadrants, while equi-
librium is restored in time O(1), so the process is always in one of self-consistent stationary
distributions.

We called our solution exact in the title of this paper, because we will not go through the
pain of proving that here, and only give the answer that results if we assume this is correct.

Using “large deviations” for the trinomial distribution, which in this case is just using
Stirling’s formula, we conclude:

Theorem 4. Suppose there is no mass on Ω1,1 and hence ρ < ρc. The flow into Q0,0 from
Q0,1 and Q1,0 is larger than the flow out if and only if(

1− ερ1

1− ρ1

)ρc

< 1 + (1− ε)ρ1. (6)

Suppose there is no mass on Ω0,0 and hence ρ ≥ ρc. The flow out of Q1,1 to Q0,1 and Q1,0 is
larger than the flow in if and only if(

ρ̂1

1− ρ̂1

)1−ρc

< (1− (1− ε)ρ̂1)
−1. (7)
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7 Phase Transition

To illustrate the use of the results in the last two sections, we will now consider the special
case ρc = 0.2 and ε = 0.1. To follow the calculation it will be useful to refer to Figure 3. There
the two curves are ρ1(0, ρ) and ρ̂1(0, ρ), while the straight line is ρ1(1/2, ρ) = ρ̂1(1/2, ρ).

When ρc = 0.2 and ε = 0.1, the inequality in (6) holds for ρ1 < 0.2183. The upper bound
on the interval of ρ1’s,

2ρ(0.9)/(0.99) = 0.2183 when ρb = 0.120065,

so we have uniqueness for ρ < ρb. The lower bound on the interval of ρ1’s,

ρ/(1− 0.9ρ) = 0.2183 when ρd = 0.18245.

When ρb < ρ < ρd there will be an ac ∈ (0, 1/2) so that the a in the mixture will decrease
for a < ac and increase for a > ac. so we have bistability. When ρ = ρd, ac = 0 and the
Tri(ρ, ρ) fixed point loses its stability.

If ρc > 0.25963 then the inequality in (7) is always true. When ρc = 0.2, the two
quantities are equal when ρ1 = 0.8724. The upper bound on the interval of ρ̂1’s,

ρ/(0.1 + 0.9ρ) = 0.8724 when ρ̂b = 0.40607,

so bistability develops at this point. The lower bound on the interval of ρ̂1’s,

2ρ(0.9)/(0.99) = 0.8724 when ρ̂d = 0.47982.

At this point, the segregated fixed point loses its stability, and the answer again becomes
Tri(ρ, ρ).

8 Conclusions

Here, we have considered a metapopulation version of Schelling’s model, which is arguably a
better model for studying the dynamics of segregation in a city than a nearest neighborhood
interaction on the two dimensional square lattice. Due to the simple two-level structure of
the model, we are able to describe the phase transition in great detail. As ρ increases there is
a discontinuous phase transition too a segregated state at ρd preceded by an interval (ρb, ρd)
of bistability. Surprisingly the phase transition occurs at a value ρd < ρc, i.e., at a point
where randomly distributed individuals are happy. This occurs because random fluctuations
create segregated neighborhoods, which, as our stability analysis shows, are more stable than
the random ones.

As ρ nears 1/2, there is another discontinuous transition at ρ̂d which returns the equi-
librium to the random state Tri(ρ, ρ). This transition is preceded by an interval (ρ̂b, ρ̂d) of
bistability. To explain the return to Tri(ρ, ρ) intuitively, we note that when families are
distributed randomly, everyone is unhappy and moves at rate 1, maintaining the random
distribution. In our concrete example, ρc = 0.2, ε = 0.1, the faction of vacant houses at
ρ̂d only 4.036%, so it is very difficult to make segregated neighborhoods where one type is
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happy. The stability analysis implies that these segregated neighborhoods are created at a
slower rate than they are lost.

In Durham there are four or five dozen neighborhoods with roughly 100 houses in each.
Fluctuations in the trinomial distributions are of order 10, so the phase transition will not
be as sharp as in the L →∞ limit. However, our simulations show that even when L = 20,
our predictions match the qualitative behavior of the model.
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Figure 1: Equilibrium for the case L = 2 plotted against ρ.
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Figure 2: Limiting behavior of limit differential equation, with ρc = 0.3, ε = 0.01, ρ = 0.1, 0.2, 0.25, and 0.35.
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Supplementary Materials for Durrett and Zhang

1 Proof of Theorem 2

The first step is to show

Lemma 1. A measure of the form

aTri(ρ0, ρ0) + bTri(ρ1, ρ2) + bTri(ρ2, ρ1) + cTri(ρ3, ρ3)

is self consistent only if ac = 0, i.e. it cannot put positive mass on both Q0,0 and Q1,1.

Proof. Suppose a, c 6= 0. Then by self consistency, ρ0 = α0,0/(1 + 2α0,0) and ρ̂3 = α1,1/(1 +
2α1,1). Since ρ0 < ρc < ρ̂3, we must have α0,0 < α1,1. However, since ε < q, r < 1,

α0,0 =
rh1

R + NR − h1
R

rh0
R + ε(N0 − h0

R)
>

εh1
R + q(NR − h1

R)

h0
R + q(N0 − h0

R)
= α1,1

since the numerator of the first fraction is larger than the numerator of the second, and the
denominator of the first fraction is smaller than the denominator of the second and we have
a contradiction.

Theorem 2 concerns the case in which there is no mass on Q1,1 and the measure has the
form

(1− 2a)Tri(ρ0, ρ0) + aTri(ρ1, ρ2) + aTri(ρ2, ρ1)

with ρ0 < lc, ρ2 < lc < ρ1. Our goal is to show that any self-consistent distribution of this
form falls into the one-parameter family described in Theorem 2. The first step is recalling
that under this case the environmental parameters are as follows:

h1
R = h1

B = (1− 2a)ρ0 + aρ1

NR − h1
R = NB − h1

B = aρ2

h0
R = h0

B = (1− 2a)(1− 2ρ0) + a(1− ρ1 − ρ2)

N0 − h0
R = N0 − h0

B = a(1− ρ1 − ρ2).

Thus in Q0,0:

α0,0 = β0,0 =
r[(1− 2a)ρ0 + aρ1] + aρ2

r[(1− 2a)(1− 2ρ0) + a(1− ρ1 − ρ2)] + εa(1− ρ1 − ρ2)

=
r(1− 2a)ρ0 + a(rρ1 + ρ2)

r(1− 2a)(1− 2ρ0) + (r + ε)a(1− ρ1 − ρ2)
.

In Q0,1, α0,1 = α0,0 while

β0,1 =
ε[(1− 2a)ρ0 + aρ1] + qaρ2

[(1− 2a)(1− 2ρ0) + a(1− ρ1 − ρ2)] + qa(1− ρ1 − ρ2)

=
ε(1− 2a)ρ0 + a(ερ1 + qρ2)

(1− 2a)(1− 2ρ0) + (1 + q)a(1− ρ1 − ρ2)

1



since it is an unfriendly environment for blue individuals. Similarly, in Q1,0, α1,0 = β0,1 and
β1,0 = β0,0. For self-consistency, the following equations have to be satisfied:

(i)
α0,0

1 + α0,0 + β0,0

= ρ0, (ii)
α0,1

1 + α0,1 + β0,1

= ρ1, (iii)
β0,1

1 + α0,1 + β0,1

= ρ2.

To treat (i) we first note that if α0,0 = β0,0 = A/B where

A = r(1− 2a)ρ0 + a(rρ1 + ρ2)

B = r(1− 2a)(1− 2ρ0) + (r + ε)a(1− ρ1 − ρ2).

With the notations above, one can easily see that

1 + α0,0 + β0,0 =
B + 2A

B

and condition (i) is equivalent to A = (B + 2A)ρ0 or

r(1− 2a)ρ0 + a(rρ1 + ρ2) = [r(1− 2a) + 2a(rρ1 + ρ2) + (r + ε)a(1− ρ1 − ρ2)]ρ0. (1)

Subtracting r(1− 2a)ρ0 and then dividing by a on both side of (1), we have

ρ0(r + ε)(1− ρ1 − ρ2) = (rρ1 + ρ2)(1− 2ρ0). (2)

This implies

1− ρ1 − ρ2 =
(rρ1 + ρ2)(1− 2ρ0)

ρ0(r + ε)
. (3)

Conditions (ii) and (iii) imply that α0,1/β0,1 = ρ1/ρ2, so we have

ρ1

ρ2

=
(1− 2a)(1− 2ρ0) + (1 + q)a(1− ρ1 − ρ2)

r(1− 2a)(1− 2ρ0) + (r + ε)a(1− ρ1 − ρ2)
× r(1− 2a)ρ0 + a(rρ1 + ρ2)

ε(1− 2a)ρ0 + a(ερ1 + qρ2)
. (4)

Plugging (3) in to (4), we can simplify the equation and get

ρ1

ρ2

=
1

r + ε
· (1− 2a)ρ0(r + ε) + (1 + q)a(rρ1 + ρ2)

r(1− 2a)ρ0 + a(rρ1 + ρ2)
× r(1− 2a)ρ0 + a(rρ1 + ρ2)

ε(1− 2a)ρ0 + a(ερ1 + qρ2)
. (5)

Canceling out r(1− 2a)ρ0 + a(rρ1 + ρ2) and cross multiplying gives us

ρ2[(1− 2a)ρ0(r + ε) + (1 + q)a(rρ1 + ρ2)] = ρ1[ε(1− 2a)ρ0(r + ε) + a(r + ε)(ερ1 + qρ2)]. (6)

For further simplification, note that we can rewrite equation (6) as

(1− 2a)ρ1(r + ε)(ρ2 − ερ1) + a(1 + q)ρ2(rρ1 + ρ2)− a(r + ε)ρ1(ερ1 + 1ρ2) = 0,

which is equivalent to

(1− 2a)ρ1(r + ε)(ρ2 − ερ1) + a[(1 + q)ρ2 + (r + ε)ρ1](ρ2 − ερ1) = 0,
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and
(ρ2 − ερ1) · [(1− 2a)ρ0(r + ε) + a(r + ε)ρ1 + (1 + q)aρ2] = 0. (7)

Since (1− 2a)ρ0(r + ε) + a(ε + r)ρ1 + (1 + q)aρ2 > 0, (7) implies that

ρ2 = ερ1. (8)

Now plugging (8) back into (2), we have ρ0(1− (1 + ε)ρ1) = ρ1(1− 2ρ0) and

ρ0 =
ρ1

1 + (1− ε)ρ1

. (9)

To find ρ1 note that aρ1 + aρ2 + (1− 2a)ρ0 = ρ since the system preserves density, combine
this with (8) and (9):

a(1 + ε)ρ1 + (1− 2a)
ρ1

1 + (1− ε)ρ1

= ρ.

Simplifying the equation above, we have:

a(1− ε2)ρ2
1 + [1− (a + ρ)(1− ε)]ρ1 − ρ = 0.

Thus ρ1 should be the positive solution of this quadratic equation:

ρ1 =
−1 + (a + ρ)(1− ε) +

√
[1− (a + ρ)(1− ε)]2 + 4a(1− ε2)ρ

2a(1− ε2)
(10)

and we have proved Theorem 2.

2 Proof of Theorem 3

We move now to the case when there is no mass on Q0,0. The measure in this case can be
written as:

aTri(ρ̂1, ρ̂2) + aTri(ρ̂2, ρ̂1) + (1− 2a)Tri(ρ̂3, ρ̂3)

and the environmental parameters are now as follows:

h1
R = h1

B = aρ̂1

NR − h1
R = NB − h1

B = (1− 2a)ρ̂3 + aρ̂2

h0
R = h0

B = a(1− ρ̂1 − ρ̂2)

N0 − h0
R = N0 − h0

B = (1− 2a)(1− 2ρ̂3) + a(1− ρ̂1 − ρ̂2).

As in case 1, in Q1,1 we can compute the ratios α and β as follows:

α1,1 = β1,1 =
εaρ̂1 + q[(1− 2a)ρ̂3 + aρ̂2]

a(1− ρ̂1 − ρ̂2) + q[(1− 2a)(1− 2ρ̂3) + a(1− ρ̂1 − ρ̂2)]

=
(1− 2a)ρ̂3 + a(ερ̂1 + qρ̂2)

q(1− 2a)(1− 2ρ̂3) + (1 + q)a(1− ρ̂1 − ρ̂2)
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while in Q0,1, β0,1 = β1,1 and

α0,1 =
raρ̂1 + [(1− 2a)ρ̂3 + aρ̂2]

ra(1− ρ̂1 − ρ̂2) + ε[(1− 2a)(1− 2ρ̂3) + a(1− ρ̂1 − ρ̂2)]

=
(1− 2a)ρ̂3 + a(rρ̂1 + ρ̂2)

ε(1− 2a)(1− 2ρ̂3) + (r + ε)a(1− ρ̂1 − ρ̂2)
.

In case 2, a self-consistent distribution has to satisfy the following conditions:

(i)′
α1,1

1 + α1,1 + β1,1

= ρ̂3; (ii)′
α0,1

1 + α0,1 + β0,1

= ρ̂1, (iii)′
β0,1

1 + α0,1 + β0,1

= ρ̂2.

As before write α1,1 = Â/B̂ where

Â = q(1− 2a)ρ̂3 + a(ερ̂1 + qρ̂2)

B̂ = q(1− 2a)(1− 2ρ̂3) + (1 + q)a(1− ρ̂1 − ρ̂2).

Thus
B̂ + 2Â = q(1− 2a) + (1 + q)a(1− ρ̂1 − ρ̂2) + 2a(ερ̂1 + qρ̂2)

and we need Â = (B̂ + 2Â)ρ̂3 for condition (i)′, which can also be written as

q(1− 2a)ρ̂3 + a(ερ̂1 + qρ̂2) = q(1− 2a)ρ̂3 + (1 + q)a(1− ρ̂1 − ρ̂2)ρ̂3 + 2a(ερ̂1 + qρ̂2)ρ̂3.

Then again subtracting q(1− 2a)ρ̂3 and dividing by a on both sides:

ερ̂1 + ρ̂2 = (1 + q)(1− ρ̂1 − ρ̂2)ρ̂3 + 2(ερ̂1 + qρ̂2)ρ̂3

which can be simplified as

(1 + q)ρ̂3(1− ρ̂1 − ρ̂2) = (1− 2ρ̂3)(ερ̂1 + qρ̂2)

⇒(1− ρ̂1 − ρ̂2) =
(1− 2ρ̂3)(ερ̂1 + qρ̂2)

(1 + q)ρ̂3

.
(11)

From conditions (ii)′ and (iii)′, α0,1/β0,1 = ρ̂1/ρ̂2. Thus

ρ̂1

ρ̂2

=
q(1− 2a)(1− 2ρ̂3) + (1 + q)a(1− ρ̂1 − ρ̂2)

ε(1− 2a)(1− 2ρ̂3) + (r + ε)a(1− ρ̂1 − ρ̂2)
× (1− 2a)ρ̂3 + a(rρ̂1 + ρ̂2)

q(1− 2a)ρ̂3 + a(ερ̂1 + qρ̂2)
. (12)

Then using exactly the same calculation as in the proof of Theorem 2 by plugging (11) into
(12), we get

ρ̂1

ρ̂2

= (1 + q)
q(1− 2a)ρ̂3 + a(ερ̂1 + qρ̂2)

ε(1− 2a)(1 + q)ρ̂3 + (r + ε)a(ερ̂1 + qρ̂2)
× (1− 2a)ρ̂3 + a(rρ̂1 + ρ̂2)

q(1− 2a)ρ̂3 + a(ερ̂1 + qρ̂2)

which implies:

ρ̂2[(1−2a)(1+q)ρ̂3+(1+q)a(rρ̂1+ ρ̂2)] = ρ̂1 (ε(1− 2a)(1 + q)ρ̂3 + (r + ε)a(ερ̂1 + qρ̂2)) (13)
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after we cancel the term of q(1 − 2a)ρ̂3 + a(ερ̂1 + qρ̂2). Simplifying (13) with exactly the
same procedure as in the proof of Theorem 2, we have

(ρ̂2 − ερ̂1) · [(1− 2a)(1 + q)ρ̂3 + (r + ε)aρ̂1 + (1 + q)aρ̂2] = 0. (14)

It is clear that the second term in the product on the left side of (14) is positive, which
implies:

ρ̂2 = ερ̂1. (15)

Using this in (11) gives
2ρ̂3(1− ρ̂1 − ερ̂1) = (1− 2ρ̂3)(2ερ̂1)

which can be simplified to

ρ̂3 =
ερ̂1

1− ρ̂1(1− ε)
. (16)

Noting that a(ρ̂1 + ρ̂2) + (1− 2a)ρ̂3 = ρ and using (15) and (16), we have

a(1 + ε)ρ̂1 + (1− 2a)
ερ̂1

1− (1− ε)ρ̂1

= ρ

and 0
a(1− ε2)ρ̂2

1 − [ε + (1− ε)(a + ρ)]ρ̂1 + ρ = 0. (17)

The coefficient of ρ̂2
1 and the constant term are positive and the coefficient of ρ̂1 is negative,

and we expect the roots to be real so the quadratic equation above has two positive solutions,
say 0 < x1 < x2. Suppose ρ̂1 equals to the bigger solution x2. Then the smaller solution
x1 < x2 = ρ̂1 < 1. Note that a(1 + ε)ρ̂1 + (1− 2a) ερ̂1

1−(1−ε)ρ̂1
= ρ, which implies

a(1 + ε)ρ̂1 ≤ ρ.

Thus we have
x1x2 < x2 = ρ̂1 ≤

ρ

a(1 + ε)
.

However, from equation (17):

x1x2 =
ρ

a(1− ε2)
=

ρ

a(1 + ε)

1

1− ε
>

ρ

a(1 + ε)

and we get a contradiction. Thus ρ̂1 has to be the smaller solution x1 of the equation above
and

ρ̂1 =
ε + (1− ε)(a + ρ)−

√
[ε + (1− ε)(a + ρ)]2 − 4a(1− ε2)ρ

2a(1− ε2)
(18)

which completes the proof of Theorem 3.

5



3 Density of Self-Consistent Distributions

Our next step is to show that whenever a self-consistent distribution falls into form of
Theorem 2 we must have the corresponding overall density

ρ = aρ1 + aρ2 + (1− 2a)ρ0

satisfies ρ < ρc. And similarly when it falls into case 2 we must have the density ρ > ρc.
For a self-consistent distribution in case 1, ρ2 = ερ1 and ρ0 = ρ1/[1 + (1 − ε)ρ1]. Note

that

2ρ0 − (1 + ε)ρ1 =
2ρ1

1 + (1− ε)ρ1

− (1 + ε)ρ1

=
2ρ1 − (1 + ε)ρ1 − (1 + ε)(1− ε)ρ2

1

1 + (1− ε)ρ1

=
(1− ε)ρ1[1− (1 + ε)ρ1]

1 + (1− ε)ρ1

since (1 + ε)ρ1 = ρ1 + ρ2 ≤ 1, 2ρ0 ≥ (1 + ε)ρ1 = ρ1 + ρ2. Combine this with the fact that
ρ0 < ρc, we have ρ = (1− 2a)ρ0 + a(ρ1 + ρ2) ≤ ρ0 < ρc.

Similarly, for self-consistent distribution in Theorem 3, we have ρ̂3 = ερ̂1/[1− (1− ε)ρ̂1],
then

2ρ̂3 − (1 + ε)ρ̂1 =
2ερ̂1

1− (1− ε)ρ̂1

− (1 + ε)ρ̂1

=
2ερ̂1 − (1 + ε)ρ̂1 + (1 + ε)(1− ε)ρ̂2

1

1− (1− ε)ρ̂1

=
(1− ε)ρ̂1((1 + ε)ρ̂1 − 1)

1− (1− ε)ρ̂1

< 0.

Thus (1 + ε)ρ̂1 ≥ 2ρ̂3 > 2ρc, and ρ = (1− 2a)ρ̂3 + a(ρ̂1 + ρ̂2) ≥ ρc.

4 Stability Calculations

To have the formulas at hand we recall the statement.

Theorem 2. Suppose there is no mass on Q1,1. For a ∈ (0, 1/2] let

ρ1(a, ρ) =
−1 + (a + ρ)(1− ε) +

√
[1− (a + ρ)(1− ε)]2 + 4a(1− ε2)ρ

2a(1− ε2)
. (19)

Let ρ1(0, ρ) = ρ/(1− ρ(1− ε)) and for a ∈ [0, 1/2] let

µ = (1− 2a)Tri(ρ0, ρ0) + aTri(ρ1, ρ2) + aTri(ρ2, ρ1)

The distribution µ, it is self consistent if and only if it has the form above with parameters
ρ1 > ρc, ρ2 = ερ1 < ρc and ρ0 = ρ1/[1 + (1− ε)ρ1] < ρc.

Suppose ρ < ρc, The first task is to determine when the ρi given in Theorem 2 satisfy
the desired inequalities. Let b = 1 − (a + ρ)(1 − ε). When a is small,

√
b2 + 4a(1− ε2)ρ ≈

b + 2a(1− ε2)ρ/b so

ρ1(a, ρ) ≈ 2a(1− ε2)ρ

2a(1− ε2)b
→ ρ

1− ρ(1− ε)
as a → 0.
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From this we see that when a = 0,

ρ0 =
ρ/(1− ρ(1− ε))

(1− ρ(1− ε) + ρ(1− ε))/(1− ρ(1− ε))
= ρ.

When a = 1/2 the quantity under the square root is

C = [1− (1/2 + ρ)(1− ε)]2 + 2(1− ε2)ρ.

We claim this is the same as

D = [1− (1/2− ρ)(1− ε)]2.

To check this note that

C −D = −4ρ(1− ε) + 2ρ(1− ε)2 + 2(1− ε2)ρ

= ρ[−4 + 4ε + 2(1− 2ε + ε2 + 2(1− ε2)] = 0.

Putting D under the square root

ρ1(1/2, ρ) =
2ρ(1− ε)

(1− ε2)
. (20)

In order for the measure constructed above to be valid we must have

ρc > ρ0 =
ρ1

1 + (1− ε)ρ1

. (21)

which implies

ρ1 <
ρc

1− (1− ε)ρc

(22)

When (21) fails mass will flow out of Q0,0, so the solution will be

(1/2)Tri(ρ1, ρ2) + (1/2)Tri(ρ2, ρ1).

We will now investigate the stability of our proposed equilibria. Suppose we have a
trinomial

L!

i!j!(L− i− j)!
pi

Rpj
B(1− pR − pB)L−i−j.

Using Stirling’s formula n! ∼ nne−n
√

2πn, dropping the square root terms, and noticing the
e−n terms cancel in a multinomial coefficient, this becomes

LL

iijj(L− i− j)L−i−j
pi

Rpj
B(1− pR − pB)L−i−j.

We are interested in what happens when i = ρcL. Dividing top and bottom by LL and
inserting the definitions

= ρ−ρcL
c (θ)−θL(1− ρc − θ)1−ρc−θpρcL

R pθL
B (1− pR − pB)(1−ρc−θ)L

=

(
pR

ρ

)ρL (pB

θ

)θL
(

1− pR − pB

1− ρ− θ

)(1−ρ−θ)L

(23)
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Taking logs and dividing by L we want to maximize:

ρc log(pR/ρc) + θ log(pB/θ)− (1− ρc − θ) log

(
1− pR − pB

1− ρc − θ

)
.

Taking the derivative with respect to θ

d

dθ
= log(pB/θ) + θ(−1/θ)− log

(
1− pR − pB

1− ρc − θ

)
− (1− ρc − θ) · −1

1− ρc − θ
.

The derivative is 0 when
θ

pB

=
1− ρc − θ

1− pR − PB

, (24)

i.e., the trials that do not result in R are allocated between B and 0 (i.e., neither R nor B)
in proportion to their probabilities. Solving gives

(1− ρc − θ)pB = θ(1− pR − pB) or θ =
(1− ρc)

(1− pR)
pB.

Using (24) in (23), the maximum probability is(
pR

ρc

)ρcL (
1− pR

1− ρc

)(1−ρc)L

. (25)

In Q0,0 where pR = pB = ρ0 < ρc this is

θ =
(1− ρc)

1− ρ0

ρ0 < ρ0 < ρc.

In Q0,1 where pR = ρ1 > ρc and pB = ερ1 < ρc, the maximizing θ is

(1− ρc)

(1− ρ1)
ερ1.

Using (22) this is

≤ (1− ρc)
ερc

1− (1− ε)ρc

· 1 + ερc

1− (1− ε)ρc

< ρc,

since ρc ≤ 1/2.
Putting the information from the last paragraph into (25), and discarding the denomi-

nators we want to show

ρρcL
0 (1− ρ0)

(1−ρc)L < ρρcL
1 (1− ρ1)

(1−ρc)L.

Remembering ρ0 = ρ1/(1 + (1 − ε)ρ1) and noting 1 − ρ0 = (1 − ερ1)/(1 + (1 − ε)ρ1) this is
equivalent to (

ρ1

1 + (1− ε)ρ1

)ρcL (
1− ερ1

1 + (1− ε)ρ1

)(1−ρc)L

< ρρcL
1 (1− ρ1)

(1−ρc)L.
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Cancelling and rearranging we want(
1− ερ1

1− ρ1

)(1−ρc)

< 1 + (1− ε)ρ1,

which proves the first part of Theorem 4.

Theorem 3. Suppose there is no mass on Q0,0 and for a ∈ (0, 1/2] let

ρ̂1 =
ε + (1− ε)(a + ρ)−

√
[ε + (1− ε)(a + ρ)]2 − 4a(1− ε2)ρ

2a(1− ε2)
(26)

let ρ̂1(0, ρ) = ρ/(ε + (1− ε)ρ)), and for a ∈ [0, 1/2] let

µ̂ = aTri(ρ̂1, ρ̂2) + aTri(ρ̂2, ρ̂1) + (1− 2a)Tri(ρ̂3, ρ̂3)

The distribution µ̂ is self-consistent if and only if it has the form above with parameters
ρ̂1 > ρc, ρ̂2 = ερ̂1 < ρc and ρ̂3 = ερ̂1/[1− (1− ε)ρ̂1] > ρc.

To explain the definition of ρ̂(0, ρ), let b = ε + (a + ρ)(1− ε). When a is small,√
b2 − 4a(1− ε2)ρ ≈ b− 2a(1− ε2)ρ/b,

so we have

ρ̂1(a, ρ) ≈ 2a(1− ε2)ρ

2a(1− ε2)b
→ ρ

ε + ρ(1− ε)
as a → 0.

Note that when a = 0, we have

ρ̂3 =
ερ/(ε + (1− ε)ρ)

ε/(ε + (1− ε)ρ)
= ρ.

At the other extreme a = 1/2, the quantity under the square root is

Ĉ = [ε + (1− ε)(1/2 + ρ)]2 − 2(1− ε2)ρ.

We claim that this is equal to

D̂ = [ε + (1− ε)(1/2− ρ)]2.

To check this, note that

Ĉ − D̂ = 4ε(1− ε)ρ + (1− ε)2 · 2ρ− 2(1− ε2)

= ρ[4ε− 4ε2 + 2− 2ε + 2ε2 − 2 + 2ε2] = 0.

Putting D̂ under the square root,

ρ̂1(1/2, ρ) =
2ρ(1− ε)

1− ε2
,

which agrees with (20), but now the possible values of ρ1 are [ρ̂1(1/2, ρ), ρ̂1(0, ρ)].
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To determine the rate of flow between Q1,0 and Q1,1, we use (25). We choose these
quadrants so that again the boundary is at i = `c. In Q1,0 we have pR = ρ̂2 and pB = ρ̂1, so
the maximum occurs at

θ =
(1− ρc)

1− pR

pB =
(1− ρc)

1− ερ̂1

ρ̂1.

In Q1,1, we have pR = pB = ρ̂3, so the maximum occurs at

θ =
1− ρc

1− ρ̂3

ρ̂3 > ρ̂3 > ρc.

Thus to show that there will be no mass on Q1,1 we want to show

ρ̂ρcL
2 ρ̂

(1−ρc)L
1 < ρ̂ρcL

3 (1− ρ̂3)
(1−ρc)L.

Filling in the definitions we need

ερcLρ̂L
1 <

(
ερ̂1

1− (1− ε)ρ̂1

)ρcL (
1− ρ̂1

1− (1− ε)ρ̂1

)(1−ρc)L

.

Cancelling, rearranging, and raising both sides to the 1/L power, we want(
ρ̂1

1− ρ̂1

)(1−ρc)

< (1− (1− ε)ρ̂1)
−1. (27)

If ρ̂1 ≤ 1/2 the inequality is satisfied since

LHS ≤ 1 < RHS.

When ε = 0.1 the maximum possible value is ρmax = 0.9/0.99.

ρmax/(1− ρmax) = .9/.09 = 10

(1− .9ρmax)
−1 = 5.5

When ρc = 0.25963 the two quantities are equal at ρmax, so the inequality always holds when
ρc > 0.25963 but when ρc < 0.25963 it fails for ρ close to 1/2.
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