
A first order phase transition in
the threshold θ ≥ 2 contact process on
random r-regular graphs and r-trees

Shirshendu Chatterjee ∗

Courant Institute of Mathematical Sciences, New York University
251 Mercer Street, New York, NY 10012-1185

and
Rick Durrett †

James B. Duke Professor of Mathematics
Box 90320, Duke University, Durham, NC 27708-0320

July 9, 2012

Abstract

We consider the discrete time threshold-θ contact process on a random r-regular
graph. We show that if θ ≥ 2, r ≥ θ + 2, ε1 is small and p ≥ p1(ε1), then starting
from all vertices occupied the fraction of occupied vertices is ≥ 1 − 2ε1 up to time
exp(γ1(r)n) with high probability. We also show that for p2 < 1 there is an ε2(p2) > 0
so that if p ≤ p2 and the initial density is ≤ ε2(p2)n, then the process dies out in time
O(log n). These results imply that the process on the r-tree has a first-order phase
transition.

AMS 2010 subject classifications: Primary 60K35; secondary 05C80.
Keywords: threshold contact process, random regular graphs, isoperimetric inequality,
first order phase transition, Binomial large deviations.

∗This work is part of his Ph.D. thesis written at Cornell University.
†Both authors were partially supported by grants DMS 0704996 and DMS 1005470 from the probability

program at NSF.

1



1 Introduction

The linear contact process was introduced by Harris in 1974 and has been studied extensively
since then, see part I of Liggett (1999). In that model, the state of the system at time t ∈
[0,∞) is ξt : Zd → {0, 1}, where 1 and 0 correspond to ‘occupied’ and ‘vacant’ respectively.
Occupied sites become vacant at rate 1, while a vacant site becomes occupied at rate λk if
it has k occupied neighbors.

In this paper, we will be concerned with particle systems that are versions of the contact
process with sexual reproduction. Each site is either occupied (state 1) or vacant (state 0).
In our first two models, occupied sites become vacant at rate 1. Perhaps the most natural
generalization of the linear contact process is the quadratic contact process in which a vacant
site with k occupied neighbors becomes occupied at rate λ

(
k
2

)
. However, we will primarily be

concerned with the threshold-θ contact process in which a vacant site becomes occupied at
rate λ if it has k ≥ θ occupied neighbors. The threshold-1 contact process has been studied
and found to have the same qualitative behavior as the linear contact process, so we expect
that the threshold-2 and quadratic contact processes will behave similarly as well.

Being attractive processes, each of our models with sexual reproduction on translation
invariant infinite graphs has a translation invariant upper invariant measure, ξ1

∞, that is the
limit as t →∞ for the system starting from all 1’s. See Liggett (1985, 1999) for more details
about this and the results we cite in the questions below. There are three basic questions
for our models.

Q1. Let ξp
t be the system starting from product measure with density p, i.e., ξp

0(x) are
independent and equals 1 with probability p. Does ξp

t die out for small p? That is, do we
have P (ξp

t (x) = 1) → 0 as t →∞ if p ≤ p0(λ)?

Q2. Let ρ(λ) = P (ξ1
∞(x) = 1) and let λc = inf{λ : ρ(λ) > 0}. Is ρ(λ) discontinuous at λc?

If so, then soft results imply that P (ξ1
∞(x) = 1) > 0 when λ = λc.

Q3. Let ξ0,β
∞ be the limit as t → ∞ for the system starting from all 0’s when sites become

occupied spontaneously at rate β along with the original dynamics. Is limβ→0 P (ξ0,β
∞ (x) =

1) = 0? If so, we say that 0 is stable under perturbation, and it follows that there are two
nontrivial stationary distributions when β > 0 is small.

One of the first processes with sexual reproduction that was studied is Toom’s NEC
(north-east-center) rule on Z2. In its original formulation, see Toom (1974, 1980), the states
of the sites are 1 and −1. Let e1, e2 be the two unit vectors. If the majority of the spins in
{x, x + e1, x + e2} is 1 at time t, then the state of x at time t + 1 is 1 with probability 1− p
and −1 with probability p. If the majority of the spins is −1 at time t, then the state of x
is −1 with probability 1− q and 1 with probability q. If p + q is small, then the system has
two stationary distributions, see e.g. Bennett and Grinstein (1985).

More relevant for us, is the reformulation of Toom’s rule as a growth model, where the
state of x changes

1 → 0 at rate 1,

0 → 1 at rate λ if x + e1 and x + e2 are both in state 1. (1)
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For the model in (1),
(a) if we let ξA

t denote the set of all 1’s at time t starting from ξA
0 = A, and

λf = inf{λ : P (ξA
t 6= ∅ for all t ) > 0}

be the critical value for survival from a finite set, then λf = ∞, because if all the 1’s in the
initial configuration are inside a rectangle, then there will never be any birth of 1’s outside
that rectangle.
(b) Durrett and Gray (1985) used the contour method to prove, see announcement of results
in Durrett (1985), λc ≤ 110.
(c) if p∗ is such that 1−p∗ equals the critical value for oriented bond percolation on Z2, then
for any p < p∗ the process starting from product measure with density p dies out.
(d) if λ > λc and β is such that 6β1/4λ3/4 < 1, and if sites become occupied spontaneously
at rate β along with the original dynamics, then there are two stationary distributions.

Chen (1992, 1994) has generalized Toom’s growth model. He begins by defining the
following pairs for each site x.

pair 1 pair 2 pair 3 pair 4
x− e1, x− e2 x + e1, x− e2 x + e1, x + e2 x− e1, x + e2

The models are numbered by the pairs that can give birth: Type I (pair 1 = SWC); Type
IV (any pair); Type III (pairs 1, 2, and 3); Type 2A (pairs 1 and 2); and Type 2B (pairs 1
and 3). Chen (1992) proves for model IV that if 0 < p < p(λ), then

P (0 ∈ ξp
t ) ≤ t−c log2λ(1/p).

He also shows for the same model that

lim
β→0

P (0 ∈ ξ0,β
∞ ) > 0

for large λ, so 0 is unstable under perturbation. In contrast, Chen (1994) shows that 0 is
stable under perturbation in model III.

Durrett and Neuhauser (1994) have considered the behavior of the quadratic contact
process, with stirring (exchange of values at adjacent sites). In their model, deaths occur at
rate 1, and births occur at rate β times the fraction of adjacent pairs that are occupied. The
mean field ODE (which assumes adjacent sites are independent) for the density u of 1’s in
this case:

du

dt
= −u + β(1− u)u2

has βc = 4 and βf = ∞, where βc and βf are analogues of λc and λf . They have shown that
in the limit of fast stirring both critical values converge to 4.5. This threshold arises because
depending on whether β > 4.5 or β < 4.5, the associated PDE

∂u

∂t
=

1

2

∂2u

∂x2
− u + βu2(1− u)

has traveling wave solution u(t, x) = w(x− ct) with positive or negative speed c. Based on
simulations they have conjectured that the phase transition is continuous.
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Evans, Guo, and Liu (in various permutations in five papers published in 2007–2009)
have considered the quadratic contact process in which particles hop at rate h (i.e., move
according to the rules of the simple exclusion process, which for unlabeled particles is the
same as sitrring). Birth rates are (1/4) times the number of adjacent pairs of occupied sites,
deaths occur at rate p. Having h > 0 means that the critical value for survival from finite
sets pf (h) > 0. When h < h0 is small, pf (h) < pc(h), the critical value for the exisence of a
stationary distribution, and the model has a discontinuous phase transition and 0 is stable
under perturbation. When h ≥ h0, pf (h) = pc(h) and the phase transition is continuous

The last three authors call their system Schlögl’s second model in honor of his (1972)
paper which introduced a model with a nonnegative integer number of particles per sites
defined by the chemical reactions

2X 
 3X X 
 0

i.e., at a site with k particles births occur at rate c0+c2

(
k
2

)
and deaths occur at rate c1k+c3

(
k
3

)
,

and particles jump to a randomly chosen neighbor at rate ν each. The system in which

X 
 2X X 
 0

is Schlögl’s first model. It is the analogue of the linear contact process, or if you are a
physicist, they are in the same universality class. Grassberger (1981) has simulated a version
of the second model in which the reaction 3X → 2X is replaced by the restriction of at most
two particles per site, and in which doubly occupied sites give birth onto adjacent sites.
He has found that this model has a second order (continuous) phase transition. See also
Grassberger (1982), which has been cited more than 300 times, or Prakash and Nicolis
(1997) for a more recent treatment.

The threshold-θ contact process with θ ≥ 1 has been studied on Zd. Liggett (1994) has
used it and a comparison to show coexistence in a threhsold voter model. See also Chapter
II.2 in Liggett (1999). Handjani (1997) has studied the phase diagram of the model, while
Mountford and Schonmann (2008) have studied asymptotics for its critical values. However,
outside the physics literature, see da Silva and de Oliveira (2011), there are no results about
the nature of the phase transition on Zd. As we explain later, Fontes and Schonmann (2008a)
have considered the process on a tree.

In this paper, we will consider the discrete time threshold-θ contact process on a random
r-regular graph, and on trees in which all vertices have degree r. In these processes, sites
having at least θ many occupied neighbors at time t become occupied at time t + 1 with
probability p. Our personal motivation, derived from participating in the 2010–2011 SAMSI
program on Complex Networks, is that a random r-regular graph is a toy model for a social
network. This model, like the original small world graph of Watts and Strogatz (1998), is
unrealistic because all vertices have the same number of neighbors. We do not expect the
qualitative behavior to change on an Erdös-Renyi graph, but this graph looks locally like a
Galton-Watson tree which makes the proofs considerably more complicated.

To see that properties of the model are sensitive to the degree distribution, recall that
Chatterjee and Durrett (2009) have shown that if one studies the linear contact process on a
random graph with a power law degree distribution, where the degree of a typical vertex is
k with probability pk ∼ Ck−α, then the critical value is 0 for any α < ∞. It is an interesting
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question to determine whether or not the linear contact process has positive critical value
when the degree distribution has an exponential tail pk ∼ C exp(−γk). Simulations of Chris
Varghese suggest that the quadratic contact process on an Erdös-Renyi random graph has
a discontinuous transition, but on the power-law random graph in which pk = Ck−2.5 for
k ≥ 3, the critical value is 0 and the transition is continuous.

Our second motivation for exploring particle systems on a random r-regular graph is that
it is the natural finite version of a r-tree (in which each vertex has degree r). We think of
a random regular graph as a “tree torus”, since the graph looks the same (in distribution)
when viewed from any vertex. While the inspiration came from aesthetics, there is a practical
consequence: the results for the threshold-θ contact process on the random r-regular graph
give as corollaries the corresponding results on r-tree.

1.1 Defining the process on the random graph

In this paper, we study the behavior of the discrete time threshold-θ contact process on the
random r-regular graph on n vertices. We construct our random graph Gn on the vertex set
Vn := {1, 2, . . . n} by assigning r “half-edges” to each of the vertices, and then pairing the
half-edges at random. If r is odd, then n must be even so that the number of half-edges,
rn, is even to have a valid degree sequence. Let P denote the distribution of Gn, which is
the first of several probability measures we will define. We condition on the event En that
the graph is simple, i.e., it does not contain a self-loop at any vertex, or more than one edge
between two vertices. It can be shown (see e.g. Corollary 9.7 on page 239 of Janson,  Luczak
and Rucinński (2000)) that P(En) converges to a positive limit as n →∞, and hence

if P̃ := P(·|En), then P̃(·) ≤ cP(·) for some constant c = c(r) > 0. (2)

So the conditioning on the event En will not have much effect on the distribution of Gn. It is
easy to see that the distribution of Gn under P̃ is uniform over the collection of all undirected
r-regular graphs on the vertex set Vn. We choose Gn according to the distribution P̃ on simple
graphs, and once chosen the graph remains fixed through time.

Having defined the graph, the next step is to define the dynamics on the graph. We write
x ∼ y to mean that x is a neighbor of y, and let

Ny := {x ∈ Vn : x ∼ y} (3)

be the set of neighbors of y. The distribution PGn
p,θ of the (discrete time) threshold-θ contact

process ξt ⊆ Vn with parameters p and θ conditioned on Gn can be described as follows:

PGn
p,θ (x ∈ ξt+1 | |Nx ∩ ξt| ≥ θ ) = p and

PGn
p,θ (x ∈ ξt+1 | |Nx ∩ ξt| < θ ) = 0,

where the decisions for different vertices at time t + 1 are taken independently. Let ξA
t ⊆ Vn

denote the threshold-θ contact process starting from ξA
0 = A, and let ξ1

t denote the special
case when A = Vn.
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1.2 Main results

The first step is to prove that threshold-θ contact process dies out for small values of p and
survives for p close to 1. It is easy to see that on any graph in which all vertices have degree
r the threshold-θ contact process dies out rapidly if p < 1/r, because an occupied site has
at most r neighbors that it could cause to be occupied at the next time step suggesting
EGn

p,θ ξ1
t ≤ n(rp)t.

1.2.1 Survival from initial density close to 1

Our next result shows that if θ ≥ 2, r ≥ θ + 2 and p is sufficiently close to 1, then with
high probability the fraction of occupied vertices in the threshold-θ contact process on Gn

starting with all 1’s stays above 1− ε1 for an exponentially long time.

Theorem 1. Suppose θ ≥ 2 and r ≥ θ + 2. There are constants ε1, γ1 > 0, and a good set
of graphs Gn with P̃(Gn ∈ Gn) → 1 so that if Gn ∈ Gn and p ≥ p1 = 1− ε1/(3r − 3θ), then

PGn
p,θ

(
inf

t≤exp(γ1n)

|ξ1
t |
n

< 1− ε1

)
≤ exp(−γ1n).

Here and in what follows, all constants will depend on the degree r and threshold θ. If they
depend on other quantities, that will be indicated.

The reason for the restriction to r ≥ θ + 2 comes from Proposition 2 (with j = r− θ + 1)
below. When r ≤ θ + 1, it is impossible to pick η > 0 so that (1 + η)/(r − θ) < 1. There
may be more than algebra standing in the way of constructing a proof. We conjecture that
the result is false when r ≤ θ + 1. To explain our intuition in the special case θ = 2 and
r = 3, consider a rooted binary tree in which each vertex has two descendants and hence,
except for the root, has degree three. If we start with a density u of 1’s on level k and no
1’s on levels m < k, then at the next step the density will be g(u) = pu2 < u on level k − 1.
When each vertex has three descendants instead of two, then

g(u) = p(3u2(1− u) + u3),

which has a nontrivial fixed point for p ≥ 8/9 (divide by u and solve the quadratic equation).
As the next result shows, there is a close relationship between the threshold-θ contact

process ξt on a random r-regular graph and the corresponding process ζt on the homogeneous
r-tree. Following the standard recipe for attractive interacting particle systems, if we start
with all sites on the tree occupied, then the sequence {ζ1

t } of sets of occupied vertices
decreases in distribution to a limit ζ1

∞, which is called the upper invariant measure, since it
is the stationary distribution with the most 1’s. Here and later we denote by 0 any fixed
vertex of the homogeneous tree. Writing Pp,θ for the distribution of ζt with parameters p
and θ, the critical value is defined by

pc(θ) := sup{p : Pp,θ(ζ
1
∞(0) = 1) = 0},

Corollary 1. Suppose θ ≥ 2, r ≥ θ + 2 and that p1 and ε1 are the constants in Theorem
1. If p ≥ p1, then there is a translation invariant stationary distribution for the threshold-θ
contact process on the homogeneous r-tree in which each vertex is occupied with probability
≥ 1− ε1.
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Fontes and Schonmann (2008a) have considered the continuous time threshold-θ contact
process on a tree in which each vertex has degree b+1, and they have shown that if b is large
enough, then λc < ∞. Our result improves their result by removing the restriction that b is
large.

1.2.2 Dying out from small initial density

If we set the death rate = 0 in the threshold-θ contact process, then we can without loss of
generality set the birth rate equal to 1 and the process reduces to bootstrap percolation (with
asynchronous updating). Balogh and Pittel (2007) have studied bootstrap percolation on
random regular graphs. They have identified an interval [p−(n), p+(n)] so that the probability
that all sites end up active goes sharply from 0 to 1. The limits p±(n) → p∗ and p+−p− is of
order 1/

√
n. If bootstrap percolation cannot fill up the graph, then it seems that our process

with deaths will be doomed to extinction. The next result proves this, and more importantly
extends the result to arbitrary initial conditions with a small density of occupied sites.

Here, since processes with larger θ have fewer survivals, it is enough to prove the result
when θ = 2.

Theorem 2. Suppose θ ≥ 2 and p2 < 1. There are constants 0 < ε2(p2), C2(p2) < ∞, and
a good set of graphs Gn with P̃(Gn ∈ Gn) → 1 so that if Gn ∈ Gn, then for any p ≤ p2, and
any subset A ⊂ Vn with |A| ≤ ε2n,

PGn
p,θ

(
ξA
dC2 log ne 6= ∅

)
≤ 2/n1/6 for large enough n.

The density of 1’s ρ(p, θ) := Pp,θ(ζ
1
∞(0) = 1) in the stationary distribution on the homo-

geneous r-tree is a nondecreasing function of p. The next result shows that the threshold-θ
contact process on the r-tree has a discontinuous phase transition.

Corollary 2. Suppose θ ≥ 2, let p1 be the constant from Theorem 1, and let ε2(·) be as in
Theorem 2. ρ(p, θ) never takes values in (0, ε2(p1)).

This result, like Theorem 2 does not require the assumption r ≥ θ + 2. On the other hand,
if ρ(p, θ) ≡ 0 for r ≤ θ + 1, the result is not very interesting in that case. Again Fontes and
Schonmann (2008a) have proved that the threshold-θ contact process has a discontinuous
transition when the degree b + 1 is large enough.

Fontes and Schonmann (2008b) have studied θ-bootstrap percolation on trees in which
each vertex has degree b+1 and 2 ≤ θ ≤ b. They have shown that there is a critical value pf

so that if p < pf , then for almost every initial configuration of product measure with density
p, the final bootstrapped configuration does not have any infinite component. This suggests
that we might have ε2(p) bounded away from 0 as p → 1.

1.2.3 Stability of 0

The previous pair of results are the most difficult in the paper. From their proofs one
easily gets results for the process with sponataneous births with probability β, i.e., after
the threshold-θ dynamics has been applied to the configuration at time t, we independently
make vacant sites occupied with probability β. For this new process, we denote the set of
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occupied vertices at time t starting with all 0’s by ξ̂0
t and its distribution conditioned on the

graph Gn by PGn
p,θ,β to have the following:

Theorem 3. Suppose θ ≥ 2. There is a good set of graphs Gn with P̃(Gn ∈ Gn) → 1 so that
if Gn ∈ Gn and p < 1, then there are constants C3(p), β3(p), γ3(p, β) > 0 so that for β < β3,

PGn
p,θ,β

(
sup

t≤exp(γ3n)

|ξ̂0
t |
n

> C3β

)
≤ 2 exp(−γ3n).

Let ζ̂0
∞ be the limiting distribution for the process on the homogeneous tree, which exists

because of monotonicity.

Corollary 3. If θ ≥ 2 and p < 1, then limβ→0 Pp,θ,β(ζ̂0
∞(0) = 1) = 0.

1.3 Isoperimetric inequalities

We now describe the “isoperimetric inequalities” that are the keys to the proofs of our results.
Let ∂U := {y ∈ U c : y ∼ x for some x ∈ U} be the boundary of U , and given two sets U
and W , let e(U,W ) be the number of edges having one end in U and the other end in W .
Given an x ∈ Vn let nU(x) be the number of neighbors of x that are in U , and let

U∗j = {x ∈ Vn : nU(x) ≥ j}.

The estimation of the sizes of e(U,U c) is an enormous subject with associated key words
Cheeger’s inequality and expander graphs. Bollobás (1988) proved the following result for
random regular graphs:

Theorem 4. Let r ≥ 3 and 0 < η < 1 be such that

24/r < (1− η)1−η(1 + η)1+η.

Then asymptotically almost surely a random r-regular graph on n vertices has

min
|U |≤n/2

e(U,U c)

|U |
≥ (1− η)r/2.

To see that the constant is reasonable, choose n/2 vertices at random to make U . In this
case we expect that |e(U,U c)| = nr/2.

While this result is nice, it is not really useful for us, because we are interested in
estimating the size of the boundaries U∗j for j ≥ 2, and in having better constants by only
considering small sets.

Proposition 1. Let E∗1(m,≤ k) be the event that there is a subset U ⊂ Vn with size |U | = m
so that |U∗1| ≤ k. There are constants C0 and ∆0 so that for any η > 0, there is an ε0(η)
which also depends on r so that for m ≤ ε0(η)n,

P
[
E∗1(m,≤ (r − 1− η)m)

]
≤ C0 exp

(
−η2

4r
m log(n/m) + ∆0m

)
.
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This result yields the next proposition which we need to prove Theorems 1 and 2. For
Theorem 1, note that if W = Vn \ ξt is the set of vacant vertices at time t, then at time t + 1
the vertices in W ∗(r−θ+1) will certainly be vacant and the vertices in its complement will be
vacant with probability 1− p. So having an upper bound for |W ∗(r−θ+1)| will be helpful. On
the other hand for Theorem 2, if U is the set of occupied vertices at time t, then at time t+1
the vertices in U∗θ will be occupied with probability p and the vertices in its complement
will certainly be vacant. So having an upper bound for |U∗θ| will be helpful.

Keeping these in mind, it is easy to see from the definitions that if j > 1 and |Z| = m,
then

rm ≥
∑

y∈Z∗1

e({y}, Z) ≥ |Z∗1 \ Z∗j|+ j|Z∗j| = |Z∗1|+ (j − 1)|Z∗j|.

So for any set Z of size m, if |Z∗j| ≥ k, then |Z∗1| ≤ rm−(j−1)k. Taking k = m(1+η)/(j−1)
so that rm− (j − 1)k = (r − 1− η)m and using Proposition 1 we get

Proposition 2. Let E∗j(m,≥ k) be the event that there is a subset Z ⊂ Vn with size |Z| = m
so that |Z∗j| ≥ k. For the constants C0, ∆0, and ε0(η) given in Proposition 1, if j > 1 and
m ≤ ε0(η)n, then

P
[
E∗j

(
m,≥

(
1 + η

j − 1

)
m

)]
≤ C0 exp

(
−η2

4r
m log(n/m) + ∆0m

)
.

2 Upper bound on the critical value pc

Proof of Theorem 1. Recall that r ≥ θ + 2. Let η = 1/3 and for ε0, ∆0 as in Propo-
sition 1 let ε1 := min{ε0(η), exp(−8∆0r/η

2)} so that log(n/[ε1n]) ≥ 8∆0r/η
2 and hence

(η2/4r) log(n/[ε1n]) ≥ 2∆0. With these choices, we apply Proposition 2 with j = r − θ + 1
to have

P
[
E∗(r−θ+1)

(
[ε1n],≥ 4[ε1n]

3(r − θ)

)]
≤ C0 exp (−∆0[ε1n]) .

Let Gn := E∗(r−θ+1)([ε1n],≤ (1+η)[ε1n]/(r−θ)). Since increasing the size of a set U increases
|U∗θ|, it follows that if Gn ∈ Gn and |U | ≥ (1− ε1)n, then

|U∗θ| ≥
(

1− 4ε1

3(r − θ)

)
n.

So if |ξt| ≥ (1− ε1)n and p ≥ 1− ε1/(3r − 3θ), then the distribution of |ξt+1| dominates a

Binomial

((
1− 4ε1

3(r − θ)

)
n, p

)
distribution, which has mean ≥

(
1− 5ε1

3(r − θ)

)
n.

(the ε2
1 term is positive). When r ≥ θ + 2, this is > (1 − ε1)n, so standard large deviations

for the Binomial distribution imply that there is a constant γ1(r, θ) > 0 so that

PGn
p,θ

(
|ξt+1| < (1− ε1)n

∣∣∣|ξt| ≥ (1− ε1)n
)
≤ exp(−2γ1n).

If we set T = bexp(γ1n)c, then the probability that |ξt+1| ≥ (1− ε1)n fails for some t ≤ T is
≤ exp(−γ1n), which completes the proof of Theorem 1.
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To prepare for the proof of Corollary 1 we need the following result which shows that
the random regular graph looks locally like a tree. See e.g., Lemma 2.1 in Lubetsky and Sly
(2010).

Lemma 2.1. Suppose r ≥ 3 and let R = b(1/3) logr−1 nc. For any x ∈ Vn, the probability
that the collection of vertices in Gn within distance R of x differs from its analogue for 0 in
the homogeneous r-tree is ≤ 10n−1/3 for large n.

Proof. Under the law P, starting with x ∈ Vn its neighbors in Gn are chosen by selecting r
half edges at random from the rn possible options. This procedure continues to select the
neighbors of the neighbors, etc. To generate all of the connections out to distance R we will
make

r[1 + (r − 1) + · · ·+ (r − 1)R−1] ≤ rn1/3/(r − 2) choices.

The probability that at some point we select a vertex that has already been touched is

≤ rn1/3

r − 2
· rn1/3/(r − 2)

n− rn1/3/(r − 2)
≤ 10n−1/3

for large n.

Proof of Corollary 1. Let r ≥ θ + 2, p ≥ p1, and t(n) = [log log n]. To prove that the upper
invariant measure is nontrivial we will show that limn→∞ Pp1,θ(ζ

1
t(n)(0) = 1) ≥ 1 − ε1. To

do this note that Lemma 2.1 together with a standard second moment argument applied to
Hn = the number of vertices of Gn whose neighborhoods are tree-like up to distance [log log n]
implies that P̃(Hn ≤ n − n7/8) → 0. So we can choose Gn ∈ Gn having the property that
Hn ≥ n− n7/8. For such a Gn, Theorem 1 implies

lim inf
n→∞

1

n

n∑
x=1

PGn
p1,θ(ξ

1
t(n)(x) = 1) ≥ 1− ε1.

Now the state of x at time t(n) can be determined by looking at the values of the process on
the space-time cone {(y, s) : d(x, y) ≤ t(n) − s}. Since the space-time cones corresponding
to n − o(n) many vertices of Gn are same as that corresponding to 0 of the homogeneous
r-tree, the desired result follows.

3 Extinction from small density, stability of 0

Proof of Theorem 2. We prove the result for θ = 2 only, as the result for θ > 2 follows
trivially from the result for θ = 2.

Pick η = η(p2) > 0 so that (1+η)p2 = (1−3η) and then pick ε2 := min{ε0(η), exp(−8∆0r/η
2)},

where ε0, ∆0 are as in Proposition 1. So for m ≤ ε2n we have (η2/8r) log(n/m) ≥ ∆0. Then
using Proposition 2 with j = 2,

P[E∗2(m,≥ (1 + η)m] ≤ C0 exp

(
−η2

8r
m log(n/m)

)
for m ≤ ε2n.
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Let Gn be the collection of graphs so that E∗2(m,≤ (1 + η)m) holds for all m ≤ ε2n. To see
that this event has high probability when n is large, note that

P(Gc
n) ≤

[ε2n]∑
m=[na]+1

C0 exp

(
−η2

8r
na log(1/ε2)

)
+

[na]∑
m=1

C0 exp

(
−η2

8r
log(n1−a)

)

≤ C0ε2n exp

(
−η2

8r
na log(1/ε2)

)
+ C0n

an−η2(1−a)/8r → 0

if a is chosen small enough.
As in the proof of Theorem 1, we will use large deviations for the Binomial distribution

to control the behavior of the process. However, this time the value of p changes with m, and
we will have to stop when the set of occupied vertices gets too small. According to Lemma
2.8.5 in Durrett (2007)

Lemma 3.1. If X has Binomial(k, q) distribution, then

P (X ≥ k(q + z)) ≤ exp(−kz2/2(q + z)).

Using this result with k = (1 + η)m and q = p2 which have kq = (1 − 3η)m, then taking
z = η < 2η/(1 + η) so that k(q + z) ≤ (1− η)m, it follows that for m ≤ ε2n and Gn ∈ Gn,

PGn
p,2

(
|ξt+1| > (1− η)m

∣∣∣|ξt| = m
)
≤ exp(−η2m/2(p2 + η)). (4)

Using this result ` = d(1/2) log n/(− log(1 − η))e times, we see that if |ξ0| ≤ ε2n and ν :=
inf{t : |ξt| ≤ n1/2}, then with high probability ν ≤ `.

To finish the process off now we note that when m ≤ ε2n,

EGn
p,2

(
|ξt+1|

∣∣∣|ξt| = m
)
≤ (1− 3η)m. (5)

Also note that if κ = d(2/3) log n/(− log(1− 3η))e and Gn ∈ Gn, then

|ξν+t| ≤ (1 + η)tn1/2 ≤ n5/6 for 1 ≤ t ≤ κ, as (1 + η)2(1− 3η) < 1 for any η > 0.

So using the inequality in (5) κ times we have PGn
p,2 (|ξν+κ| ≥ 1) ≤ 1/n1/6. So combining with

(4) we conclude that if |ξ0| ≤ ε2n and Gn ∈ Gn, then

PGn
p,2 (|ξκ+`| ≥ 1) ≤ 2/n1/6 for large enough n,

which proves the desired result with C2 = 2/(− log(1− η)).

Proof of Corollary 2. Suppose θ ≥ 2 and that the upper invariant measure for the process
on the homogeneous r-tree has ρ(p, θ) ∈ (0, (1 − 3δ)ε2(p1)) for some δ > 0. It is easy to see
that ε2(p1) < 1− ε1, and so it follows from Corollary 1 that p < p1. Pick a time τ so that the
threshold-θ contact processes on the homogeneous r-tree has Pp,θ(ζ

1
τ (0) = 1) < (1−2δ)ε2(p1).

The argument involving Lemma 2.1 in the proof of Corollary 1 can be repeated to see that
we can choose Gn ∈ Gn so that the neighborhoods of n − o(n) many vertices of Gn within
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distance τ + d(log log n)/(− log(1− η(p1)))e look exactly like the analogous neighborhood of
0 in the homogeneous r-tree. If n is large, then for the above choices of τ and Gn,

1

n

n∑
x=1

PGn
p,θ (ξ1

τ (x) = 1) ≤ (1− δ)ε2(p1).

Since the states of the vertices of Gn separated by more than 2τ are independent in ξ1
τ , it

follows that with PGn
p,θ -probability tending to 1 as n →∞,

n∑
x=1

ξ1
τ (x) ≤ ε2(p1)n. (6)

Formula (4) implies that after ` = d(log log n)/(− log(1− η(p1)))e time units

PGn
p,θ

(
n∑

x=1

ξ1
τ+`(x) ≤ n/ log n

)
→ 1 as n →∞.

So by our choice of Gn we have Pp,θ(ζ
1
τ+`(0) = 1) ≤ ρ(p)/2. Since by monotonicity

Pp,θ(ζ
1
t (0) = 1) is a decreasing function of t, we get a contradiction that proves the de-

sired result.

Proof of Theorem 3. Let η(·), ε2(·) and Gn be as in the proof of Theorem 2, and let Ut

be the set of vertices which become occupied at time t because of the dynamics of the
threshold-θ contact process. From (4) and a standard large deviations result for the Binomial
distribution, it follows that there are constants δ1(p, β), δ2(p, β) > 0 such that for m ≤ ε2(p)n
and Gn ∈ Gn,

PGn
p,θ,β

(
|Ut+1| > (1− η)m| |ξ̂0

t | = m
)

≤ exp(−δ1m), and

PGn
p,θ,β

(
|ξ̂0

t+1| > (1− η)m + 2β(n−m)
∣∣∣ |Ut+1| ≤ (1− η)m, |ξ̂0

t | = m
)

≤ exp(−δ2n). (7)

Let m̄ = (1− η − 2β)m + 2βn, and α = 2β/(η + 2β). If m = αn, then m̄ = m, but doing a
little algebra

m̄− αn = (1− η − 2β)(m− αn),

and hence m ≥ 2αn implies

m̄ ≤
(

1− η + 2β

2

)
m.

We pick β3 > 0 small enough so that β < β3 implies 2α < ε2(p)/2. Then for m = d2αne we
can use the inequalities in (7) to have

PGn
p,θ,β

(
|ξ̂0

t+1| > 2αn
∣∣∣ |ξ̂0

t | = m
)
≤ 2 exp(−2γ3n), where γ3 := (1/2) min{2αδ1, δ2}.

By monotonicity the above inequality is also true for m ≤ 2αn. So |ξ̂0
t | ≤ 2αn fails to occur

for some 0 ≤ t ≤ exp(γ3n) with probability ≤ 2 exp(−γ3n). Hence the desired result follows
with C3 := 4/η.
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Proof of Corollary 3. Let β3, α and Gn be as in the proof of Theorem 3. It suffices to show
that Pp,θ,β(ζ̂0

∞(0) = 1) ≤ 5α for β < β3. We prove this by contradiction.

Suppose, if possible, that Pp,θ,β(ζ̂0
∞(0) = 1) > 5α for some β ≤ β3. Then there is a time τ

at which Pp,θ,β(ζ̂0
τ (0) = 1) ≥ 4α. The argument involving Lemma 2.1 in the proof of Corollary

1 can be repeated to see that we can choose Gn ∈ Gn so that the neighborhoods of n− o(n)
many vertices of Gn within distance τ look exactly like the analogous neighborhood of 0 in
the homogeneous r-tree, which implies

∑n
x=1 PGn

p,θ,β(ξ̂0
τ (x) = 1) ≥ 7αn/2 for large enough n.

Thereafter, imitating the argument which leads to (6) PGn
p,θ,β(

∑n
x=1 ξ̂0

τ (x) ≥ 3αn) → 1. But
them we have a contradiction with the result in Theorem 3.

4 Estimates for e(U,U c) and |∂U |
We begin with a simple estimate for the number of subsets of Vn of size m.

Lemma 4.1. The number of subsets of Vn of size m is at most exp(m log(n/m) + m).

Proof. The number of subsets of Vn of size m is
(

n
m

)
. Using n(n − 1) · · · (n −m + 1) ≤ nm

and em > mm/m!, (
n

m

)
≤ nm

m!
≤
(ne

m

)m

= exp(m log(n/m) + m).

In order to study the distribution of |∂U |, the first step is to estimate e(U,U c). Because
of the symmetries of our random graph Gn, the distribution of e(U,U c) under P depends on
U only through |U |.

Lemma 4.2. There are numerical constants C4.2 and ∆1 = r(2 + 1/e) + 3/2 so that if U is
a subset of Vn with |U | = m and α ∈ [0, 1], then

P(e(U,U c) ≤ αr|U |) ≤ C4.2 exp
(
−r

2
(1− α)m log(n/m) + ∆1m

)
.

Proof. Let f(u) be the number of ways of pairing u objects. Then Stirling’s formula n! ∼
(n/e)n

√
2πn implies

f(u) =
u!

(u/2)!2u/2
∼
√

2(u/e)u/2,

and it follows from the limit result that C1(u/e)u/2 ≤ f(u) ≤ C2(u/e)u/2 for all integers u.
If q(m, s) = P(e(U,U c) = s), then we have

q(m, s) ≤
(

rm

s

)(
r(n−m)

s

)
s!

f(rm− s)f(r(n−m)− s)

f(rn)
.

To see this, recall that we construct the graph Gn by pairing the half-edges at random, which
can be done in f(rn) many ways as there are rn half-edges. We can choose the left endpoints
of the edges from U in

(
rm
s

)
many ways, the right endpoints from U c in

(
r(n−m)

s

)
many ways,

and pair them in s! many ways. The remaining (rm− s) many half-edges of U can be paired
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among themselves in f(rm − s) many ways. Similarly the remaining (r(n −m) − s) many
half-edges of U c can be paired among themselves in f(r(n−m)− s) many ways.

To bound q(m, s) we will use an argument from Durrett (2007) that begins on the bottom
of page 161 and we will follow it until the last display before (6.3.6). To make the connection
we note that their p(m, s) =

(
n
m

)
q(m, s) and write D = rn, k = rm and s = ηk for η ∈ [0, 1]

to get

q(m, s) ≤ Ck1/2

(
e2

η

)ηk (
k

D

)k(1−η)/2(
1− (1 + η)k

D

)(D−(1+η)k)/2

. (8)

A little calculus gives

if φ(η) = η log(1/η), then φ′(η) = −(1 + log η) and φ′′(η) = −1

η
. (9)

So φ(·) is a concave function and its derivative vanishes at 1/e. This shows that the function
φ(·) is maximized at 1/e, and hence

0 ≤ η log(1/η) ≤ 1/e for η ∈ [0, 1]. (10)

So (e2/η)ηk ≤ Bk with B = exp(2 + 1/e). If we ignore the last term of (8), which is ≤ 1,
then we have

P(e(U,U c) ≤ αrm) ≤
∑

{η: ηrm∈N, η≤α}

C(rm)1/2Brm
(m

n

)rm(1−η)/2

≤ Cr3/2m3/2Brm
(m

n

)r(1−α)m/2

,

as there are at most rm terms in the sum and (m/n)1−η ≤ (m/n)1−α for η ≤ α. The above
bound is

≤ C exp
(
−r

2
(1− α)m log(n/m) + rm log B + 3m/2

)
and we have the desired result.

Lemma 4.2 gives an upper bound for the probability that e(U,U c) is small. Our next
goal is to estimate the difference between e(U,U c) and |∂U |.

Lemma 4.3. If U is a subset of vertices of Gn such that |U | = m, then there is a constant ∆2

that depends only on r and an ε4.3(η) which also depends on r so that for any 0 < η ≤ u ≤ r,
and m ≤ ε4.3(η)n,

P ( |∂U | ≤ (u− η)|U | | e(U,U c) = u|U |) ≤ exp(−ηm log(n/m) + ∆2m).

Proof. To construct e(U,U c) we choose um times from the set of r(n−m) half edges attached
to U c. We want to show that with high probability at least (u−η)m vertices of U c are touched.
To do this it is enough to show that if the half-edges are chosen one by one, then with high
probability at most ηm of them are attached to one of the already touched vertices. We will
call the selection of half-edge associated with a vertex that has already been touched a bad
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choice. At any stage in the process there are at most (r − 1)um bad choices among at least
r(n−m)− um choices. Thus the number of bad choices is stochastically dominated by

X ∼ Binomial

(
N = um, p =

(r − 1)um

r(n−m)− um

)
.

When u ≤ r and m ≤ n/3, we have r(n−m)− um ≥ r(n− 2m) ≥ rn/3 and hence

p ≤ (r − 1)u

r/3
· m

n
≤ η

u

when m ≤ ε4.3(η)n.
A standard large deviations result for the Binomial distribution, see e.g., Lemma 2.8.4

in Durrett (2007) implies P (X ≥ Nc) ≤ exp(−NH(c)) for c > p, where

H(c) = c log

(
c

p

)
+ (1− c) log

(
1− c

1− p

)
. (11)

When c = η/u, the first term in the large deviations bound (11)

exp(−Nc log(c/p)) ≤ exp

(
−um · η

u

[
log(n/m) + log(η) + log

(
r/3

u2(r − 1)

)])
≤ exp[−ηm log(n/m) + (m/e) + mη log(3r(r − 1))]

by (10). For the second term in the large deviations bound (11) we note that 1/(1− p) > 1
and use (10) to conclude

exp

(
−N(1− c) log

(
1− c

1− p

))
≤ exp (−N(1− c) log(1− c)) ≤ exp(um/e),

which proves the desired result for ∆2 = (r + 1)/e + r log(3r(r − 1)).

5 Proof of Proposition 1

We begin by recalling some definitions given earlier and make two new ones. Let ∂U :=
{y ∈ U c : y ∼ x for some x ∈ U} be the boundary of U , and given disjoint sets U and
W let e(U,W ) be the number of edges between U and W . Given a vertex x, let nU(x) be
the number of neighbors of x that are in U and let U∗1 = {x ∈ Vn : nU(x) ≥ 1}. Let
U0 = {x ∈ U : nU(x) = 0} be the set of isolated vertices in U , and let U1 = U − U0.

Proof. Given η > 0 define the following events:

AU = {|U1| ≥ (η/2r)|U |},
BU = {|U∗1| ≤ (r − 1− η)|U |}, (12)

DU = {e(U,U c) ≤ (r − 2− η)|U |}.

There are three steps in the proof.
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I. Estimate the probability of F1 = ∪{U :|U |=m} (BU ∩ Ac
U) .

II. Estimate the probability of F2 = ∪{W :(η/2r)m≤|W |≤m}DW .

III. Estimate the probability of F3 = ∪{U :|U |=m}BU ∩ F c
1 ∩ F c

2 .

Step I: On the event Ac
U , |U0| > (1− η/2r)|U | and so e(U,U c) ≥ r|U0| ≥ (r − η/2)|U |. Also

on the event BU , |∂U | ≤ |U∗1| ≤ (r − 1− η)|U |. From these two observations we have

P(BU ∩ Ac
U) ≤ P(|∂U | ≤ (r − 1− η)|U |, e(U,U c) ≥ (r − η/2)|U |)
≤ P(e(U,U c)− |∂U | ≥ (1 + η/2)|U |). (13)

Combining (13) with the bound in Lemma 4.3, we see that if |U | = m ≤ ε4.3(1+η/2)n, then

P(BU ∩ Ac
U) ≤ exp [−(1 + η/2)m log(n/m) + ∆2m] . (14)

Using (14) and the inequality in Lemma 4.1 if m ≤ ε5n, then

P(F1) ≤
(

n

m

)
exp [−(1 + η/2)m log(n/m) + ∆2m]

≤ exp [−(η/2)m log(n/m) + (1 + ∆2)m] . (15)

If m is small enough, then the above estimate is exponentially small, and so with high
probability there is no subset U of size m for which BU ∩ Ac

U occurs.

Step II: Our next step is to estimate the probability that there is a set U of size m for which
AU occurs and e(U1, U

c
1) ≤ (r − 2 − η)|U1|. If AU occurs for some subset U of size m, then

|U1| ∈ [ηm/2r, m]. Using Lemma 4.2 with α = 1 − (2 + η)/r and the inequality in Lemma
4.1,

P(F2) = P
(
∪m′∈[ηm/2r,m] ∪{W :|W |=m′} {e(W, W c) ≤ (r − 2− η)m′}

)
≤

∑
m′∈[ηm/2r,m]

(
n

m′

)
C4.2 exp

[
−
(

2 + η

2

)
m′ log(n/m′) + ∆1m

′
]

≤
∑

m′∈[ηm/2r,m]

C4.2 exp (−(η/2)m′ log(n/m′) + (1 + ∆1)m
′) . (16)

The function φ(η) = η log(1/η) is increasing on (0, 1/e) (see (9)), so if m ≤ n/e and m′ ∈
[ηm/2r, m],

m′ log(n/m′) ≥ (ηm/2r) log(2rn/ηm) ≥ (η/2r)m log(n/m),

since (η/2r) log(2r/η) > 0. Using the facts that there are fewer than m terms in the sum
over m′ and the inequality m ≤ em for m ≥ 0, we have

P(F2) ≤ C4.2 exp
(
−(η2/4r)m log(n/m) + (2 + ∆1)m

)
. (17)

when m ≤ n/e. If m is small enough, then the right-hand side of (17) is exponentially
small, and so with high probability there is no subset U of size m for which AU occurs and
e(U1, U

c
1) ≤ (r − 2− η)|U1|.
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Step III: Noting that U∗1 is a disjoint union of U1 and ∂U we see that if BU occurs, then

(r − 1− η)|U | ≥ |U∗1| = |U1|+ |∂U |.

Using |U | = |U0|+ |U1| now we have

∆(U) ≡ |∂U | − (r − 2− η)|U1| − (r − 1− η)|U0| ≤ 0. (18)

Also if |U | = m, then by the definition of F1, BU ∩F c
1 ⊂ BU ∩AU , and on the event AU ∩F c

2 ,
we have |U1| ≥ (η/2r)|U | and e(U1, U

c
1) > (r − 2− η)|U1|. Combining these observations,

P(BU ∩ F c
1 ∩ F c

2 ) ≤ P(BU ∩ AU ∩ F c
2 ) (19)

≤ P(∆(U) ≤ 0, e(U1, U
c
1) > (r − 2− η)|U1|).

Now by the definitions of U0 and U1, we have e(U0, U
c) = r|U0| and hence

e(U,U c) = r|U0|+ e(U1, U
c
1), (20)

and a little algebra shows that

{∆(U) ≤ 0} = {e(U,U c)− |∂U | ≥ (1 + η)|U0|+ e(U1, U
c
1)− (r − 2− η)|U1|}.

Also e(U1, U
c
1) < r|U1|. So

P(∆(U) ≤ 0, e(U1, U
c
1) > (r − 2− η)|U1|) (21)

=
∑

γ∈(0,2+η)

P (e(U1, U
c
1) = (r − 2− η + γ)|U1|, e(U,U c)− |∂U | ≥ (1 + η)|U0|+ γ|U1|) .

Combining (19) and (21), and recalling that |U1| ∈ [ηm/2r, m],

P(BU ∩ F c
1 ∩ F c

2 ) =
∑

γ∈(0,2+η)

∑
k∈[ηm/2r,m]

P(Gγ,k)P(Hγ|Gγ,k), (22)

where Gγ,k = {e(U1, U
c
1) = (r − 2− η + γ)|U1|, |U1| = k} and

Hγ = {e(U,U c)− |∂U | ≥ (1 + η)|U0|+ γ|U1|}.

In view of (20), if R = r − 2 − η and L = (R + γ)k + r(m− k), then e(U,U c) = L on Gγ,k.
So

P(Hγ|Gγ,k) = P(e(U,U c)− |∂U | ≥ γk + (1 + η)(m− k) | e(U,U c) = L, |U1| = k).

Since under the conditional distribution P(·|e(U,U c) = L) all the size-L subsets of half-
edges corresponding to U c are equally likely to be paired with those corresponding to U ,
the conditional distribution of e(U,U c) − |∂U | given e(U,U c) and |U1| does not depend on
|U1|. So we can drop the event {|U1| = k} from the last display and use Lemma 4.3 with η
replaced by η′ = (γk + (1 + η)(m− k))/m to see that if m ≤ ε4.3(η

′)n, then

P(Hγ|Gγ,k) ≤ exp (−{γk + (1 + η)(m− k)} log(n/m) + ∆2m) . (23)
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In order to estimate P(Gγ,k), we again use (20) to conclude

P(Gγ,k) = P(e(U1, U
c
1) = (r − 2− η + γ)k, |U1| = k)

= P(e(U,U c) = (r − 2− η + γ)k + r(m− k), |U1| = k)

≤ P(e(U,U c) = rm− (2 + η − γ)k),

Using Lemma 4.2 with α = 1− (2 + η − γ)k/rm,

P(Gγ,k) ≤ C4.2 exp

(
−2 + η − γ

2
k log(n/m) + ∆1m

)
. (24)

Combining (22), (23) and (24) if m ≤ ε0(η)n, where ε0(η) = min{ε4.3(1 +η/2), ε4.3(η
′)}, then

P(BU ∩ F c
1 ∩ F c

2 ) ≤
∑

γ∈(0,2+η)

∑
k∈[ηm/2r,m]

C4.2 exp((∆1 + ∆2)m)

· exp

[
−
{(

1 +
η + γ

2

)
k + (1 + η)(m− k)

}
log(n/m)

]
. (25)

To simplify the second exponential we drop the γ/2 from the first term and reduce the η to
η/2 in the second in order to combine them into (1 + η/2)m. Noting that there are fewer
than rm terms in the sum over γ and at most m terms in the sum over k, and using the
inequality m2 ≤ em for m ≥ 0, the above is

≤ C4.2rm
2 exp [−(1 + η/2)m log(n/m) + (∆1 + ∆2)m]

≤ C4.2r exp [−(1 + η/2)m log(n/m) + (1 + ∆1 + ∆2)m] . (26)

Recalling that E∗1(m,≤ (r − 1− η)m) = ∪{U :|U |=m}BU we have

P(E∗1(m,≤ (r − 1− η)m)) ≤ P(F1) + P(F2) +
∑

{U :|U |=m}

P(BU ∩ F c
1 ∩ F c

2 ).

Combining (15), (17) and (26), and using
(

n
m

)
≤ exp(m log(n/m) + m) from Lemma 4.1 we

see that the above is

≤ exp[−(η/2)m log(n/m) + (1 + ∆2)m]

+ C4.2 exp
[
−(η2/4r)m log(n/m) + (2 + ∆1)m

]
+ C4.2r exp [−(η/2)m log(n/m) + (2 + ∆1 + ∆2)m]

≤ C exp[−(η2/4r)m log(n/m) + (2 + ∆1 + ∆2)m], (27)

which is the desired result.
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