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A WAITING TIME PROBLEM ARISING FROM THE

STUDY OF MULTI-STAGE CARCINOGENESIS

By Rick Durrett∗, Deena Schmidt∗,† and Jason Schweinsberg‡

Cornell University and University of California, San Diego

We consider the population genetics problem: How long does it
take before some member of the population has m specified muta-
tions? The case m = 2 is relevant to onset of cancer due to the inac-
tivation of both copies of a tumor suppressor gene. Models for larger
m are needed for colon cancer and other diseases where a sequence
of mutations leads to cells with uncontrolled growth.

1. Introduction. It has long been known that cancer is the end result
of several mutations that disrupt normal cell division. Armitage and Doll [1]
did a statistical analysis of the age of onset of several cancers and fit power
laws to estimate the number of mutations. Knudson [14] discovered that the
incidence of retinoblastoma grows as a linear function of time in the group of
children who have multiple cancers in both eyes, but as a slower quadratic
function in children who only have one cancer. Based on this, Knudson
proposed the concept of a tumor suppressor gene. Later it was confirmed
that in the first group of children, one copy is already inactivated at birth,
while in the second group both copies must be mutated before cancer occurs.
Since that time, about 30 tumor suppressor genes have been identified. They
have the property that inactivating the first copy does not cause a change,
while inactivating the second increases the cells’ net reproductive rate, which
is a step toward cancer.

Over the last decade, a number of studies have been carried out to identify
molecular pathways in the development of colorectal cancer. Among the
earliest premalignant lesions are aberrant crypt foci (ACF). ACF are widely
believed to be precursors to the adenomatous polyps, which in turn lead to
colon carcinoma. The widespread use of colonoscopy is motivated by the fact
that the early stages in this process can be seen long before cancer occurs.
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2 R. DURRETT ET AL.

Luebeck and Moolgavakar [17] have used a multistage model to fit the age-
specific incidence of colorectal cancers in the Surveillance, Epidemiology,
and End Results registry, which cover 10% of the US population. They find
a good fit for a four-stage model.

Calabrese et al. [5] examined 1022 colorectal cancers sampled from nine
large regional hospitals in southeastern Finland. To better estimate the num-
ber of mutations before transformation, they separated out the ones with
microsatellite instability (MSI+) and germline DNA mismatch repair muta-
tions characteristic of hereditary nonpolyposis colorectal cancer (HNPCC).
Ages at MSI+ cancers were consistent with five or six oncogenic mutations,
and seven or eight mutations for their sporadic (i.e., nonhereditary) coun-
terparts.

In this paper, we propose a simple mathematical model for cancer de-
velopment in which cancer occurs when one cell accumulates m mutations.
Consider a population of fixed size N . Readers who are used to the study
of the genetics of diploid organisms may have expected to see 2N here, but
our concern is for a collection of N cells. We assume that the population
evolves according to the Moran model, which was first proposed by Moran
[18]. That is, each individual lives for an exponentially distributed amount of
time with mean one, and then is replaced by a new individual whose parent
is chosen at random from the N individuals in the population (including the
one being replaced). For more on this model, see Section 3.4 of [11].

In our model, each individual has a type 0 ≤ j ≤ m. Initially, all indi-
viduals have type 0. In the usual population genetics model, mutations only
occur at replacement events. However, thinking of a collection of cells that
may acquire mutations due to radiation or other environmental factors, we
will instead suppose that during their lifetimes, individuals of type j − 1
mutate to type j at rate uj . We call such a mutation a type j mutation.
Let Xj(t) be the number of type j individuals at time t. For each positive
integer m, let τm = inf{t : Xm(t) > 0} be the first time at which there is an
individual in the population of type m. Clearly τ1 has the exponential dis-
tribution with rate Nu1. Our goal is to compute the asymptotic distribution
of τm for m ≥ 2.

We begin by considering the case m = 2 and discussing previous work.
Schinazi [20, 21] has considered related questions. In the first paper he com-
putes the probability that in a branching process where individuals have
two offspring with probability p and zero with probability 1− p, a mutation
will arise before the process dies out. In the second paper, he uses this to
investigate the probability of a type 2 mutation when type 0 cells divide a
fixed number of times with the possibility of mutating to a type 1 cell that
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WAITING TIMES FOR CANCER 3

begins a binary branching process.
More relevant to our investigation is the work of Komarova, Sengupta,

and Nowak [16], Iwasa, Michor, and Nowak [13], and Iwasa et al. [12]. Their
analysis begins with the observation that while the number of mutant in-
dividuals is o(N), we can approximate the number of cells with mutations
by a branching process in which each individual gives birth at rate one and
dies at rate one. Let Z denote the total progeny of such a branching process.
Since the embedded discrete time Markov chain is a simple random walk,
we have (see e.g., p. 197 in [7])

P (Z > n) = 2−2n

(

2n

n

)

∼ 1√
πn

.

If we ignore interference between successive new type 1 mutations, then
their total progeny Z1, Z2, . . . are i.i.d. variables in the domain of attraction
of a stable law with index 1/2, so maxi≤M Zi and Z1 + · · · + ZM will be
O(M2). Therefore, we expect to see our first type 2 mutation in the family
of the Mth type 1 mutation, where M = O(1/

√
u2). Standard results for

simple random walk imply that the largest of our first M families will have
O(M) type 1 individuals alive at the same time, so for the branching process
approximation to hold, we need 1/

√
u2 << N , where here, and throughout

the paper, f(N) << g(N) means that f(N)/g(N) → 0 as N → ∞. Type 1
mutations occur at rate Nu1, so a type 2 mutation will first occur at a time
of order 1/Nu1

√
u2.

As long as the branching process approximation is accurate, the amount of
time we have to wait for a type 1 mutation that will have a type 2 individual
as a descendant will be approximately exponential, since mutations occur
at times of a Poisson process with rate Nu1 and the type 1 mutations that
lead to a type 2 are a thinning of that process in which points are kept with
probability ∼ √

u2, where here, and throughout the paper, f(N) ∼ g(N)
means that f(N)/g(N) → 1 as N → ∞. The duration of the longest of
M type 1 families is O(M), so the time between when the type 1 mutation
occurs and when the type 2 descendant appears is O(1/

√
u2). This will be

negligible in comparison to 1/Nu1
√

u2 as long as Nu1 << 1, so the waiting
time for the first type 2 individual will also be approximately exponential.
This leads to a result stated on pages 231–232 of Nowak’s book [19] on
Evolutionary Dynamics. If 1/

√
u2 << N << 1/u1, then

(1.1) P (τ2 ≤ t) ≈ 1 − exp(−Nu1
√

u2t).

Figure 1 shows the distribution of τ2 · Nu1
√

u2 in 10,000 simulations of
the Moran model when N = 103 and u1 = u2 = 10−4. Here Nu1 = 0.1
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and N
√

u2 = 10, so as the last result predicts, the scaled waiting time is
approximately exponential.

We do not refer to the result given in (1.1) as a theorem because their argu-
ment is not completely rigorous. For example, the authors use the branching
process approximation without proving it is valid. However, this is a minor
quibble, since as the reader will see in Section 2, it is straightforward to fill
in the missing details and establish the following more general result:

Theorem 1. Suppose that Nu1 → λ ∈ [0,∞), u2 → 0, and N
√

u2 → ∞
as N → ∞. Then τ2 ·Nu1

√
u2 converges to a limit that has density function

f2(t) = h(t) exp

(

−
∫ t

0
h(s) ds

)

where h(s) =
1 − e−2s/λ

1 + e−2s/λ

if λ > 0 and f2(t) = e−t if λ = 0.

Here h(t) is the hazard function, i.e., if we let F2(t) = exp
(

−
∫ t
0 h(s) ds

)

be the tail of the distribution then h(t) = f2(t)/F2(t). Figure 2 shows the
distribution of τ2 ·Nu1

√
u2 in 10,000 simulations of the Moran model when

N = 103, u1 = 10−3, and u2 = 10−4. Nu1 = 1 so the limit is not exponential,
but Theorem 1 gives a good fit to the observed distribution.

Before turning to the general case, we should clarify one point. In our
model mutations occur during the lifetime of an individual, but in the fol-
lowing discussion we will count births to estimate the probability a desired
mutation will occur. This might seem to only be appropriate if mutations oc-
cur at birth. However, since each individual lives for an exponential amount
of time with mean 1, the number of “man-hours”

∫ T0

0 X1(s) ds before the
family dies out at time T0 is roughly the same as the number of births. In
any case the following discussion is only a heuristic that helps explain the
answer, but does not directly enter into its proof.

To extend the analysis to the m-stage waiting time problem, suppose
M distinct type 1 mutations have appeared. If the family sizes of these M
mutations can be modeled by independent branching processes, the total
number of offspring of type 1 individuals will be O(M2). Because each type
1 individual mutates to type 2 at rate u2, there will be O(M2u2) mutations
that produce type 2 individuals. The total progeny of these individuals will
consist of O(M4u2

2) type 2 individuals. We can expect to see our first type

3 individual when M4u2
2 = O(1/u3) or M = O(u

−1/2
2 u

−1/4
3 ). Thus, for the

branching process approximation to hold, we need u
−1/2
2 u

−1/4
3 << N . Since

type 1 mutations occur at rate Nu1, the expected waiting time will be of

imsart-aap ver. 2007/04/13 file: wfk0705.tex date: July 5, 2007



WAITING TIMES FOR CANCER 5

order
1/Nu1u

1/2
2 u

1/4
3 .

To help develop a good mental picture, it is instructive to consider the
numerical example in which N = 105, u1 = 10−6, u2 = 10−5, and u3 = 10−4.
By the reasoning above, we will first see a type 3 mutation when the number
of type 2’s is of order 100 = 1/

√
u3, since in this case there will be of order

10, 000 = 1/u3 type 2 births before the family dies out. To have a type 2
family reach size 100, we will need 100 mutations from type 1 to type 2,
and for this we will need of order 100/u2 = 107 type 1 births, which will
in turn occur if the type 1 family reaches size of order 107/2 ≈ 3162. Note
that X2(t) << X1(t) and within the time that the large time 1 family exists,
100’s of type 2 families will be started and die out. This difference in the
time and size scales for the processes Xi(t) is a complicating factor in the
proof, but ultimately it also allows us to separate the type 1’s from types 2
to m and use induction.

Extrapolating the calculation above to m stages we let

(1.2) rj,m = u
1/2
j+1u

1/4
j+2 · · · u1/2m−j

m

for 1 ≤ j < m, and set rm,m = 1 and r0,m = u1r1,m. Let qj,m be the
probability a type j individual gives rise to a type m descendant. We will
show that qj,m ∼ rj,m, so we will need of order 1/rj,m mutations to type j
before time τm.

Theorem 2. Fix an integer m ≥ 2. Suppose that:
(i) Nu1 → 0.
(ii) For j = 1, . . . ,m−1, there is a constant bj > 0 such that uj+1/uj > bj

for all N .
(iii) There is an a > 0 so that Naum → 0.
(iv) Nr1,m → ∞.

Then for all t > 0,

(1.3) lim
N→∞

P (τm > t/Nr0,m) = exp(−t).

As discussed above, condition (iv) which says 1/r1,m << N is needed for
the branching process assumption to be valid, and condition (i) is needed for
the waiting time to be exponential, because if (i) fails then the time between
the type 1 mutation that will have a type m descendant and the birth of the
type m descendant can not be neglected. If uj = µ for all j, (ii) is trivial.
In this case r1,m = µa(m), where a(m) = 1 − 2−(m−1). Conditions (i) and
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6 R. DURRETT ET AL.

(iv) become N−1/a(m) ≪ µ ≪ N−1, and when condition (i) is satisfied, (iii)
holds.

Conditions (ii) and (iii) are technicalities that allow us to prove the re-
sult without having to suppose that uj ≡ µ, which would not be natu-
ral in modeling cancer. In the presence of (ii), condition (iii) ensures that
maxj≤m uj << N−a for some a > 0. This is natural because even in the late
stages of progression to cancer, the per cell division mutation probabilities
are small.

Condition (ii) is motivated by the fact that in most cancers we expect
uj to be increasing in j. The simple extension of this given in (ii) is useful
so that we do not rule out some interesting special cases. In modeling the
tumor suppressor genes mentioned earlier it is natural to take u1 = 2µ and
u2 = µ, i.e., at the first stage a mutation can knock out one of the two copies
of the gene, but after this occurs there is only one copy subject to mutation.
A case with u1/u2 = 30 occurs in Durrett and Schmidt’s study of regulatory
sequence evolution [9].

Condition (iv) ensures that an individual of type m will appear before any
type 1 mutation achieves fixation. In the case m = 2 Nowak et al. called this
stochastic tunneling. A given type 1 mutation fixates with probability 1/N
and type 1 mutations occur at rate approximately Nu1, so fixation occurs
before a type m individual appears if Nr1,m → 0, and then once a type 1
mutation fixates, the problem reduces to the problem of waiting for m − 1
additional mutations. In the borderline case considered in the next result,
either a type m individual could appear before fixation, or a type m mutation
could be achieved through the fixation of type 1 individuals followed by the
generation of an individual with m − 1 additional mutations.

Theorem 3. Fix an integer m ≥ 2. Assume conditions (i), (ii), and
(iii) from Theorem 2 hold. If (Nr1,m)2 → γ > 0, and we let

(1.4) α =
∞
∑

k=1

γk

(k − 1)!(k − 1)!

/ ∞
∑

k=1

γk

k!(k − 1)!
> 1

then for all t > 0, limN→∞ P (u1τm > t) = exp(−αt).

Figure 3 shows the distribution of u1τ2 in 10,000 simulations of the Moran
model when N = 103 and u1 = 10−4, and u2 = 10−6. Nu1 = 0.1 and
N
√

u2 = 1, so the assumptions of Theorem 3 hold with γ = 1. Numeri-
cally evaluating the constant gives α = 1.433 and as the figure shows the
exponential with this rate gives a reasonable fit to the simulated data.

Theorem 3 will be proved by reducing the general case to a two-type model
with ū1 = u1 and ū2 = u2q2,m ∼ r2

1,m. We will show that it suffices to do
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calculations for a model in which type 1 mutations are not allowed when the
number of type 1 individuals X1(t) is positive. In this case, if we start with
X1(0) = Nǫ then N−1X1(Nt) → Zt where Zt is the Wright-Fisher diffusion
process with infinitesimal generator x(1 − x)d2/dx2. When X1(Nt) = Nx,
mutations to type 2 that eventually lead to a type m individual occur at
rate approximately

N · Nx · u2q2,m ∼ N2r2
1,mx → γx,

so if we let u(x) be the probability that the process Zt hits 0 before reaching
1 or generating a type m mutation, then u(x) satisfies

(1.5) x(1 − x)u′′(x) − γxu(x) = 0, u(0) = 1, u(1) = 0

The constant α = limǫ→0(1 − u(ǫ))/ǫ. Its relevance for the problem is that
starting from a single type 1 individual, the probability of reaching N or
generating a type m mutation is ∼ α/N . Since mutations to type 1 occur
at rate ∼ Nu1, the waiting time is roughly exponential with rate u1α.

One can check (see Lemma 6.8 below) that (1.5) can be solved by the
following power series around x = 1:

(1.6) u(x) = c
∞
∑

k=1

γk

k!(k − 1)!
(1 − x)k.

Picking c so that u(0) = 1, it follows that α has the form given in (1.4).
Another approach to solving the differential equation (1.5) is to rewrite it
as

(1.7)
1

2
v′′(x) − γ

2(1 − x)
v(x) = 0, v(0) = 1, v(1) = 0,

which can be solved by running a Brownian motion and using a Feynman-
Kac functional. Changing variables Wt = 1−Bt, formula 3.19.5 (b) on p. 225
of [4] tells us that if H = inf{s : Ws 6∈ (ǫ, 1)}
(1.8)

E1−x

(

exp

(

−γ

2

∫ H

0

ds

Ws

)

;WH = 1

)

=
(1 − x)S1(2

√

γ(1 − x), 2
√

γǫ)

S1(2
√

γ, 2
√

γǫ)

where S1(x, y) = (xy)−1(I1(x)K1(y)−K1(x)I1(y)) and I1 and K1 are mod-
ified Bessel functions of the first and second kinds respectively. Because
I1(y) → 0 as y → 0 and K1(y) → ∞ as y → 0, letting ǫ → 0 in (1.8) gives√

1 − xI1(2
√

γ(1 − x))/I1(2
√

γ), which can be reduced to (1.6).
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8 R. DURRETT ET AL.

The rest of this paper is organized as follows. In section 2, we give the
proof of Theorem 1. In section 3, we collect some results for a two-type
population model that will be useful later in the paper. In section 4, we
calculate by induction the probability that a given type 1 individual has
a type m descendant. In section 5, we combine this result with a Poisson
approximation result of Arratia, Goldstein, and Gordon [2] to prove Theorem
2. Theorem 3 is proved in sections 6 and 7. Throughout our proofs, C denotes
a constant whose value is unimportant and will change from line to line.

2. Proof of Theorem 1. If we let X1(t) be the number of type 1
individuals at time t then

(2.1) P (τ2 > t) = E exp

(

−u2

∫ t

0
X1(s) ds

)

We will compare X1(t) with a continuous-time branching process with im-
migration, Y (t). When X1(t) = k, type 1 mutations occur at rate (N −k)u1,
while birth events in which a type 1 individual replaces a type 0 individual
occur at rate k(N − k)/N , so we have jumps

k → k + 1 at rate (k + Nu1) ·
N − k

N

k → k − 1 at rate k · N − k

N

In the branching process with immigration, Y (t), we have jumps

k → k + 1 at rate k + Nu1

k → k − 1 at rate k

Therefore, the process {X1(t), t ≥ 0} is a time-change of {Y (t), t ≥ 0},
in which time runs slower than in the branching process by a factor of
(N − k)/N . That is if

T (t) =

∫ t

0

N − X1(s)

N
ds ≤ t

then the two processes can be coupled so that X1(t) = Y (T (t)), for all t ≥ 0.
The time change will have little effect as long as X1(t) is o(N). The next
lemma shows that on the relevant time scale, the number of mutants stays
small with high probability.

Lemma 2.1. Fix t > 0, ǫ > 0, and let Mt = max0≤s≤t/(Nu1

√
u2) X1(s).

We have

lim
N→∞

P

(

Mt > ǫN

)

= 0.
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Proof. Since mutant individuals give birth and die at the same rate,
the process {X1(s), s ≥ 0} is a submartingale. Because the rate of type 1
mutations is always bounded above by Nu1, we have EX1(s) ≤ Nu1s for
all s. By Doob’s Maximal Inequality,

P (Mt > ǫN) ≤ EX1(t/Nu1
√

u2)

ǫN
≤ t

ǫN
√

u2
,

which goes to zero as N → ∞, since N
√

u2 → ∞.

Using the time change in (2.1) we have

P (τ2 > t/Nu1
√

u2) = E exp

(

−u2

∫ t/Nu1

√
u2

0
Y (T (s)) ds

)

Changing variables r = T (s) which means s = U(r) where U = T−1, ds =
U ′(r) dr and the above is

= E exp

(

−u2

∫ T (t/Nu1

√
u2)

0
Y (r)U ′(r) dr

)

When Mt ≤ Nǫ, T ′(t) ≥ 1 − ǫ, so the inverse function has slope U ′(r) ≤
1/(1− ǫ). Thus in view of Lemma 2.1 it is enough to prove the result for the
branching process, Y (t).

Use Q to denote the distribution of {Y (t), t ≥ 0}, and let Q1 denote the
law of the process starting from a single type 1 and modified to have no
further mutations to type 1. We first compute g2(t) = Q1(τ2 ≤ t). Wodarz
and Komarova [22] do this, see pages 37–39, by using Kolmogorov’s forward
equation to get a partial differential equation

∂φ

∂t
(t, y) = (y2 − (2 + u2)y + 1)

∂φ

∂y
(t, y)

for the generating function φ(t, y) =
∑

j Q1(X1(t) = j,X2(t) = 0)yj of the
system in which type 2’s are not allowed to give birth or die. They use the
method of characteristics to reduce the PDE to a Ricatti ordinary differential
equation. To help readers who want to follow their derivation, we note that
the last equation on page 38 is missing a factor of j in the last term and in
the change of variables from y to z on page 39, 2 should be r.

Here, we will use Kolmogorov’s backward differential equation to derive
an ODE, which has the advantage that it generalizes easily to the m stage
problem. By considering what happens between time 0 and h

g2(t + h) = g2(t)[1 − (2 + u2)h] + h[2g2(t) − g2(t)
2] + h · 0 + u2h · 1 + o(h)
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10 R. DURRETT ET AL.

where the four terms correspond to nothing happening, a birth, a death, and
a mutation of the original type 1 to type 2. Doing some algebra and letting
h → 0

(2.2) g′2(t) = −u2g2(t) − g2(t)
2 + u2

If we let r1 > r2 be the solutions of x2 + u2x − u2 = 0, i.e.,

(2.3) ri =
−u2 ±

√

u2
2 + 4u2

2

we can write this as

g′2(t) = −(g2(t) − r1)(g2(t) − r2)

Let p2 = g2(∞) be the probability that a type 2 offspring is eventually
generated in the branching process. Letting t → ∞ in (2.2) and noticing
that t → g2(t) is increasing implies g′2(t) → 0 we see that

0 = −u2p2 − p2
2 + u2

so 0 ≤ g2(t) < r1 and we have

1 =
g′2(t)

(r1 − g2(t))(g2(t) − r2)
=

1

r1 − r2

(

g′2(t)
g2(t) − r2

+
g′2(t)

r1 − g2(t)

)

Integrating

ln(g2(t) − r2) − ln(r1 − g2(t)) = (r1 − r2)t − ln A

where A is a constant that will be chosen later, so we have

g2(t) − r2

r1 − g2(t)
= (1/A)e(r1−r2)t

A little algebra gives

g2(t) =
r1 + Ar2e

(r2−r1)t

1 + Ae(r2−r1)t

We have g2(0) = 0 so A = −r1/r2 and

g2(t) =
r1(1 − e(r2−r1)t)

1 − (r1/r2)e(r2−r1)t
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To prepare for the asymptotics note that (2.3) and the assumption that

u2 → 0 imply that r1−r2 =
√

u2
2 + 4u2 ∼ 2

√
u2, r1 ∼ √

u2, and r1/r2 → −1
so

g2(t) ≈
√

u2(1 − e−2
√

u2t)

1 + e−2
√

u2t

or to be precise, if t
√

u2 → s then

(2.4) g2(t) ∼
√

u2 ·
1 − e−2s

1 + e−2s

Lemma 2.2. The waiting time for the first type 2 in a system with type
1 mutations at rate Nu1 satisfies

(2.5) Q(τ2 ≤ t) = 1 − exp

(

−Nu1

∫ t

0
Q1(τ2 ≤ s) ds

)

Proof. Type 1 mutations are a Poisson process with rate Nu1. A point
at time t − s is a success, i.e., produces a type 2 before time t with proba-
bility Q1(τ2 ≤ s). By results for thinning a Poisson process, the number of
successes by time t is Poisson with mean Nu1

∫ t
0 Q1(τ2 ≤ s) ds. The result

follows from the observation that Q(τ2 ≤ t) is the probability of at least one
success in the Poisson process.

To find the density function, we recall g2(t) = Q1(τ2 ≤ t) and differentiate
to get

Nu1g2(t) exp

(

−Nu1

∫ t

0
g2(s) ds

)

Changing variables the density function f2 of τ2 · Nu1
√

u2 is given by

f2(t) =
g2(t/Nu1

√
u2)√

u2
exp

(

−Nu1

∫ t/Nu1

√
u2

0
g2(s) ds

)

Changing variables r = sNu1
√

u2 in the integral the above is

=
g2(t/Nu1

√
u2)√

u2
exp

(

−
∫ t

0

g2(r/Nu1
√

u2)√
u2

dr

)

If Nu1 → 0 then (2.4) implies that the above converges to exp(−t). If
Nu1 → λ the limit is h(t) exp(−

∫ t
0 h(s) ds) where

h(s) =
1 − e−2s/λ

1 + e−2s/λ

which completes the proof of Theorem 1.
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12 R. DURRETT ET AL.

3. A two-type model. We collect here some results for a simple two-
type population model, which we call model M0. We assume that all individ-
uals are either type 0 or type 1, and the population size is always N . There
are no mutations, and the population evolves according to the Moran model,
so each individual dies at rate 1 and then is replaced by a randomly chosen
individual in the population. Usually we will assume that the process starts
with just one type 1 individual at time zero, but occasionally we will also
need to consider starting the process with j type 1 individuals. Denote by
Pj and Ej probabilities and expectations when the process is started with
j type 1 individuals, and write P = P1 and E = E1. Let X(t) denote the
number of type 1 individuals at time t.

Let Tk = inf{t : X(t) = k} be the first time at which there are k type 1
individuals, and let T = min{T0, TN} be the first time at which all individu-
als have the same type. Let Lk be the amount of time for which there are k
type one individuals, which is the Lebesgue measure of {t < T : X(t) = k}.
Let Rk be the number of times that the number of type 1 individuals jumps
to k from k−1 or k+1. Let R = 1+

∑N−1
k=1 Rk be the total number of births

and deaths of type 1 individuals. Durrett and Schmidt [8] studied this model
and showed that

(3.1) E[Rk|T0 < TN ] ≤ 2(N − k)2

N(N − 1)

and

(3.2) E[Rk|TN < T0] ≤
2k(N − k)

N
.

Equation (3.1) is (16) of [8], while (3.2) comes from the beginning of the
proof of Lemma 3 in [8].

Because P (TN < T0) = 1/N , it follows from (3.1) and (3.2) that

(3.3) E[Rk] =
(N − 1)E[Rk|T0 < TN ] + E[Rk|TN < T0]

N
=

2(N − k)

N
≤ 2

and therefore

(3.4) E[R] = 1 +
N−1
∑

k=1

E[Rk] ≤ 2N.

If 1 ≤ j ≤ N − 1, then letting A denote the event that there are at least j
type 1 individuals at some time, (3.4) gives

(3.5) Ej [R] = Ej [R1A] ≤ E[R1A]

P (A)
= jE[R1A] ≤ jE[R] ≤ 2jN.
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WAITING TIMES FOR CANCER 13

Turning to the quantities Lk, note that when there are k type 1 individuals,
births and deaths are each happening at rate k(N − k)/N , so the number
of type 1 individuals changes again after an exponential time with mean
N/[2k(N − k)]. Therefore (3.3) gives

(3.6) E[Lk] =
N

2k(N − k)
E[Rk] =

1

k
.

Since Pj(Tk < T0) = j/k for 1 ≤ j < N , we have

(3.7) Ej [Lk] ≤ E1[Lk|Tk < T0] =
E1[Lk]

P1(Tk < T0)
= 1,

where to emphasize the change in initial condition, we have written E as
E1. Since T =

∑N−1
k=1 Lk, it also follows from (3.6) that

(3.8) E[T ] =
N−1
∑

k=1

1

k
≤ C log N,

and it follows from (3.7) that for j = 1, . . . ,N − 1,

(3.9) Ej[T ] ≤ N.

Finally, we will use branching process theory to obtain the following com-
plement to (3.8).

Lemma 3.1. There exists a constant C such that P (T > t) ≤ C/t for
all 0 ≤ t ≤ N .

Proof. Consider a continuous-time branching process started with one
individual in which each individual dies at rate one and gives birth at rate
one. Let T ′ be the time at which the process becomes extinct. By a theorem
of Kolmogorov [15], proved in section I.9 of [3], and the fact that a Markovian
continuous-time branching process can be reduced to a discrete time Galton-
Watson process by only examining it at integer times, we see that there is
a constant C ′ such that P (T ′ > t) ≤ C ′/t for all t ≥ 0.

When there are k individuals in the branching process, births and deaths
happen at rate k. When there are k individuals in the model M0, births
and deaths happen at rate k(N − k)/N , which is at least k/2 as long as
k ≤ N/2. Since the probability that the number of individuals in model M0

ever exceeds N/2 is at most 2/N , we have P (T > t) ≤ 2C ′/t + 2/N for all
t, which implies the result.

imsart-aap ver. 2007/04/13 file: wfk0705.tex date: July 5, 2007



14 R. DURRETT ET AL.

4. The probability of a type m descendant. We now consider
model M1, which evolves in the same way as the process described in the
introduction except that initially there is one type 1 individual and N − 1
type 0 individuals, and no further type 1 mutations occur. The number of
individuals of nonzero type in model M1 therefore evolves exactly like the
number of type 1 individuals in model M0, defined at the beginning of the
previous section, but in model M1 mutations to types greater than one are
possible. The probability, which we denote by qm, that a type m individual
is eventually born in model M1 is the same as the probability that a given
type one individual in the process described in the introduction has a type
m descendant. Our main goal in this section is to prove the following result.

Proposition 4.1. Fix an integer m ≥ 2. Assume conditions (ii), (iii),
and (iv) of Theorem 2 hold. Then qm ∼ r1,m.

We will use Proposition 4.1 to prove Theorem 2. To prove Theorem 3,
we will need the following corollary. Here we denote by qj,m the probability
that a type m individual eventually appears in a process with initially one
type j individual, N −1 type 0 individuals, and mutations to type 1 are not
allowed.

Corollary 4.1. Fix an integer m ≥ 2. Assume conditions (ii) and (iii)
of Theorem 2 hold and that (Nr1,m)2 → γ > 0. Then q2,m ∼ r2,m.

Proof. We apply the m − 1 case of Proposition 4.1, with u3, . . . , um in
place of u2, . . . , um−1. Since we are assuming (ii) and (iii), we need only to
show that Nr2,m → ∞. However, (ii) and (iii) imply

Nr2,m

Nr1,m
=

u
1/2
3 u

1/4
4 . . . u

1/2m−2

m

u
1/2
2 u

1/4
3 . . . u

1/2m−2

m−1 u
1/2m−1

m

> b
1/2
2 b

1/4
3 . . . b

1/2m−2

m−1 u−1/2m−1

m → ∞.

This result and the assumption (Nr1,m)2 → γ > 0 imply Nr2,m → ∞.

We will prove Proposition 4.1 using a branching process approximation.
We will approximate model M1 by a continuous-time multitype branching
process in which individuals of type 1 ≤ j < m die at rate 1, give birth at
rate 1, and mutate to individuals of type j + 1 at rate uj+1. Let pj,m be the
probability that a type j individual eventually has a descendant of type m
in the branching process and let pm = p1,m.

Lemma 4.1. If conditions (ii) and (iii) of Theorem 2 hold, then pj,m ∼
rj,m.
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Proof. We proceed by induction starting at j = m and working down
to j = 1. Clearly pm,m = 1, so the result is valid for j = m. Now assume the
result is true for j + 1. By conditioning on the first event in the branching
process, it follows that

pj,m =
1

2 + uj+1
(2pj,m − p2

j,m) +
uj+1

2 + uj+1
pj+1,m.

Multiplying by 2+uj+1 and rearranging, we get p2
j,m+bpj,m−uj+1pj+1,m = 0,

where b = uj+1. The only positive solution is

(4.1) pj,m =
−b +

√

b2 + 4uj+1pj+1,m

2
.

Calculus tells that for h > 0

√
x + h −

√
x =

∫ x+h

x

1

2
√

y
dy ≤ h

2
√

x
,

so we have
(4.2)

2
√

uj+1pj+1,m ≤
√

4uj+1pj+1,m + b2 ≤ 2
√

uj+1pj+1,m +
b2

4
√

uj+1pj+1,m
.

Conditions (ii) and (iii) imply that uj+1 ≪ rj+1,m and therefore that√
uj+1rj+1,m >> b = uj+1. Since pj+1,m ∼ rj+1,m by the induction hypoth-

esis, it follows from (4.1) and (4.2) that pj,m ∼ √
uj+1rj+1,m. The lemma

follows by induction.

Remark. One gets the same result for a number of other variants of the
model. We leave it to the reader to check that lemma 4.1 holds when mu-
tation only occurs at birth. To prepare for the proof of Lemma 4.7, we will
now show that it holds when type j’s give birth to type j’s at rate one and
to type j + 1’s at rate uj+1. In this case the first equation is

pj,m =
1

2 + uj+1
(2pj,m − p2

j,m) +
uj+1

2 + uj+1
(pj,m + pj+1,m − pj,mpj+1,m)

and rearranges to become p2
j,m + uj+1pj+1,mpj,m − uj+1pj+1,m = 0. Taking

b = uj+1pj+1,m, the proof goes as before.

We will now prove Proposition 4.1 by induction. We begin with the case
m = 2, in which the comparison with the branching process is straightfor-
ward.
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16 R. DURRETT ET AL.

Lemma 4.2. Under the assumptions of Proposition 4.1 with m = 2, we

have q2 ∼ r1,2 = u
1/2
2 .

Proof. If we track the number of type 1 individuals in model M1 before
the first type 2 mutation occurs, upward and downward jumps occur at the
same rate, which if there are k type 1 individuals is k(N − k)/N . For the
branching process, when there are k type 1 individuals, upward and down-
ward jumps occur at rate k. Therefore, the embedded jump chain (which
gives the sequence of states visited by the continuous time chain) is a simple
random walk Sn with S0 = 1 both for model M1 and for the branching
process. Therefore, writing p2 as a function of the underlying mutation rate,
we claim that for any L,

(4.3) p2(u2) ≤ q2 ≤ p2(u2N/(N − L)) + 1/L.

The first inequality follows from the fact that Moran model has the same
embedded jump chain as the branching process and jumps more slowly. For
the second inequality we note that the probability the Moran model reaches
height L is 1/L. When this does not occur, the Moran model always jumps
at rate at least (N − L)/N times the branching process rate. Lemma 4.1

gives p2(u2) ∼ u
1/2
2 . Condition (iv) gives Nu

1/2
2 → ∞, so we can choose L

such that L/N → 0 and Lu
1/2
2 → ∞. Under these conditions, (4.3) implies

q2 ∼ u
1/2
2 .

For the rest of this section we will assume Proposition 4.1 has been es-
tablished for m− 1, so we have q2,m ∼ r2,m. We will reduce the general case
to the m = 2 case in which type 2 mutations occur at rate u2r2,m. The next
two lemmas will allow us to ignore certain type 2 mutations.

Lemma 4.3. Let Am be the event that in model M1 some type 2 mutation
that occurs while there is another individual in the population of type 2 or
higher has a type m descendant. Then P (Am) ≪ r1,m.

Proof. Let ǫ > 0. The probability that there are ever more than ǫ−1r−1
1,m

individuals in the population of type 1 or higher is at most ǫr1,m. For k ≤
ǫ−1r−1

1,m, it follows from (3.6) that the expected amount of time for which
there are k individuals of type 1 or higher is 1/k, and so the expected number
of type 2 mutations during this time is at most (1/k)(ku2) = u2. Therefore,
the expected number of type 2 mutations while there are at most ǫ−1r−1

1,m

individuals of type 1 or higher is at most ǫ−1r−1
1,mu2. By (3.8), the expected

amount of time for which these mutations or their offspring are alive in
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the population is at most (C log N)ǫ−1r−1
1,mu2. During this time, while the

number of individuals of type one or higher stays below ǫ−1r−1
1,m, additional

type 2 mutations are occurring at rate at most ǫ−1r−1
1,mu2, and have a type

m descendant with probability q2,m. Since q2,m ∼ r2,m by the induction
hypothesis and u2r2,m = r2

1,m, it follows that there exists a constant C such
that

P (Am) ≤ ǫr1,m + C(log N)ǫ−2r−2
1,mu2

2r2,m = ǫr1,m + C(log N)ǫ−2u2.

Conditions (ii) and (iii) imply that there exist constants C1 and C2 such
that

(log N)u2

r1,m
≤ C1u

1/2m−1

2 log N ≤ C2u
1/2m−1

m log N → 0.

It follows that
lim sup
N→∞

r−1
1,mP (Am) ≤ ǫ,

which implies the lemma.

Lemma 4.4. Let ǫ > 0. Let Bm be the event that in model M1 some
type 2 mutation that occurs while there are fewer than ǫr−1

1,m individuals in
the population of type 1 or higher has a type m descendant. Then there is a
constant C, not depending on ǫ, such that P (Bm) ≤ Cǫr1,m.

Proof. As noted in the proof of Lemma 4.3, the expected number of
type 2 mutations while there are k individuals of type 1 or higher is u2.
Therefore, the expected number of type 2 mutations while there are fewer
than ǫr−1

1,m individuals of type 1 or higher is at most ǫr−1
1,mu2. By the in-

duction hypothesis, each such mutation produces a type m descendant with
probability qm ∼ r2,m, so the probability that one of these mutations pro-
duces a type 2 descendant is at most Cǫr−1

1,mr2,mu2. The desired result now

follows from the fact that u2r2,m = r2
1,m.

Our strategy is to show that we can reduce the problem to the m = 2 case
by assuming that each type 2 mutation independently generates a type m
descendant with probability q2,m. Complicating this picture is the fact that
the evolution of the number of type 1 individuals (which produce the type 2
mutations) is not independent of the success of the type 2 mutations because
a new individual of type j ≥ 2 may replace an existing type 1 individual and
vice versa. To show that this is not a significant problem, we will construct
a coupling of model M1 with another process in which this dependence has
been eliminated. We first define model M2 to evolve like model M1 except
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18 R. DURRETT ET AL.

that initially there are k individuals of type 1 and N −k of type 0, and type
2 mutations are only permitted when there are no individuals of type j ≥ 2.
We then compare model M2 to model N2, in which the type 1 individuals
are decoupled from type 2 individuals and their offspring by declaring that
(provided a type 0 individual exists)

• if a proposed move exchanges a type 1 and a type j ≥ 2, we instead
exchange a type 0 and a type j;

• a mutation that occurs to a type 1 produces a new type 2 individual
but replaces a type 0 individual instead of the type 1 that mutated.

To define the coupling precisely, introduce a Poisson process with rate N
at which the successive exchanges will occur and let in and jn be independent
i.i.d. uniform on {1, 2, . . . N}. In model M2 we replace individual in with
a copy of individual jn. In model N2 we do this replacement unless one
individual has type 1 and the other has type 2 or higher. If instead in has
type 1 and jn has type 2 or higher, then instead of replacing in with jn, we
choose i′n at random from the labels of individuals with type 0 and replace
i′n with jn. If in has type 2 or higher and jn has type 1, then we choose j′n
at random from the labels of individuals with type 0 and replace in with j′n.
This recipe breaks down when there are no individuals of type 0. However,
Lemma 4.5 shows that with high probability the number of individuals of
nonzero type is o(N) up to time τm. For the mutations, we have for each
1 ≤ i ≤ N a Poisson process with rate u2, which in model M2 causes a
mutation from type 1 to type 2 if the individual is of type 1 and if there are
no individuals of type j ≥ 2. In model N2, if the individual has type 1, a
randomly chosen type 0 individual becomes type 2.

Let X1(t) and Y1(t) be the number of type 1 individuals at time t in
models M2 and N2 respectively. Let Z(t) = X1(t) − Y1(t). Let X̂2(t) and
Ŷ2(t) be the number of individuals in models M2 and N2 respectively of
type greater than or equal to 2. Note that by renumbering the individuals
as the process evolves if necessary, we can ensure that for all t ≥ 0, at time
t there are min{X1(t), Y1(t)} integers j such that the jth individual has
type 1 in both model M2 and model N2. Likewise, as long as the number of
individuals of nonzero type stays below N/2, we can also ensure that there
is no j such that the jth individual has type 1 in one of the two models and
type 2 or higher in the other. The lemma below, combined with condition
(iv), ensures that in both models, the number of individuals of nonzero type
stays much smaller than N .

Lemma 4.5. Fix t > 0. Suppose X1(0) = Y1(0) = [ǫr−1
1,m] and X̂2(0) =

Ŷ2(0) = 0. Assume f is a function of N such that f(N)r1,m → ∞ as N →
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∞. Then, using →p to denote convergence in probability, we have

max
0≤s≤tr−1

1,m

X1(s) + X̂2(s)

f(N)
→p 0 and max

0≤s≤tr−1

1,m

Y1(s) + Ŷ2(s)

f(N)
→p 0.

Proof. In model M2, individuals of type 1 or higher give birth and die
at the same rate, so (X1(s) + X̂2(s), s ≥ 0) is a martingale and

E[X1(tr
−1
1,m) + X̂2(tr

−1
1,m)] = X1(0) + X̂2(0) = [ǫr−1

1,m].

By Doob’s Maximal Inequality, if δ > 0 then

P

(

max
0≤s≤tr−1

1,m

X1(s) + X̂2(s)

f(N)
> δ

)

≤
E[X1(tr

−1
1,m) + X̂2(tr

−1
1,m)]

δf(N)

≤
ǫr−1

1,m

δf(N)
→ 0

as N → ∞, which implies the first statement of the lemma.
In model N2, mutations of type 1 individuals cause new type 2 individuals

to replace type 0 individuals. Births and deaths occur at the same rate, so
the process (Y1(s), s ≥ 0) is a martingale, while (Y1(s) + Ŷ2(s), s ≥ 0) is a
submartingale. Now E[Y1(s)] = [ǫr−1

1,m] for all s, so the expected number of

type 2 individuals that appear before time tr−1
1,m because of mutation is at

most ǫr1,m · tr−1
1,m · u2 = ǫu2r

−2
1,m. It follows that

E[Y1(tr
−1
1,m) + Ŷ2(tr

−1
1,m)] ≤ ǫr−1

1,m + ǫu2r
−2
1,mt.

Now

(4.4) u2r
−1
1,m =

u2

u
1/2
2 u

1/4
2 . . . u

1/2m−1

m

=
u

1−1/2m−1

2

u
1/2
2 u

1/4
2 . . . u

1/2m−1

m

· u1/2m−1

2 → 0

because condition (ii) implies that the first factor is bounded by a constant,
so Doob’s Maximal Inequality this time gives

P

(

max
0≤s≤tr−1

1,m

Y1(s) + Ŷ2(s)

f(N)
> δ

)

≤
ǫr−1

1,m + ǫu2r
−2
1,mt

δf(N)
→ 0,

which implies the second half of the lemma.
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We now work on bounding the process (Z(t), t ≥ 0). There are three types
of events that cause this process to jump. First, whenever a type 1 individual
in model M2 mutates to type 2, there is no corresponding change in model
N2 because any new type 2 individual in model N2 resulting from mutation
replaces a type 0. These changes cause the Z process to decrease by one.
Letting µ(t) be the rate at which they are occurring at time t, we have

0 ≤ µ(t) ≤ u2X1(t),

where the second inequality could be strict because mutations are suppressed
if there is already a type 2 individual in the population. Second, one of
the “extra” |Z(t)| type 1 individuals in one process or the other could ex-
perience a birth or a death. This would cause the Z process to increase
or decrease by one, unless both individuals involved in the exchange were
among these |Z(t)| individuals. Therefore, both births and deaths occur at
the same rate |Z(t)|(N − |Z(t)|)/N . Finally, there are transitions in which
one of the min{X1(t), Y1(t)} individuals that are type 1 in both processes
experiences a birth or death, but the other individual involved in the ex-
change is one of the Ŷ2(t) individuals that has type 2 in model N2, so the
type 1 population does not change in model N2. Such changes occur at rate
Ŷ2(t)min{X1(t), Y1(t)}/N . Thus, if we let

λ(t) =
|Z(t)|(N − |Z(t)|)

N
+

Ŷ2(t)min{X1(t), Y1(t)}
N

,

then at time t the Z process is increasing by 1 at rate λ(t) and decreasing by
1 at rate λ(t)+µ(t). The next result uses these facts to control the difference
between X1(t) and Y1(t).

Lemma 4.6. Fix t > 0. Let ZN (s) = r1,mZ(sr−1
1,m) for all s ≥ 0. If

X1(0) = Y1(0) = ǫr−1
1,m and X̂2(0) = Ŷ2(0) = 0, then

max
0≤s≤t

ZN (t) →p 0.

Proof. We will use Theorem 4.1 from Chapter 7 in [10] to show that
ZN (t) converges to a diffusion with b(x) = 0, a(x) = 2|x|, and initial point 0,
so the limit is identically zero. The first step is to observe that the Yamada-
Watanabe theorem, see e.g., (3.3) on page 193 of [6], gives pathwise unique-
ness for the limiting SDE, which in turn implies that the martingale problem
is well-posed. To verify the other assumptions of the theorem, define

BN (t) = −
∫ t

0
µ(sr−1

1,m) ds
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and

AN (t) =

∫ t

0
r1,m

(

2λ(sr−1
1,m) + µ(sr−1

1,m)
)

ds.

In view of the transition rates for the process (Z(t), t ≥ 0), we see that at
time s the process ZN (s) experiences positive jumps by the amount r1,m at
rate λ(sr−1

1,m)r−1
1,m and negative jumps by the same amount at rate (λ(sr−1

1,m)+

µ(sr1,m))r−1
1,m. Therefore, letting MN (t) = ZN (t) − BN (t), the processes

(MN (t), t ≥ 0) and (M2
N (t) − AN (t), t ≥ 0) are martingales, so BN (t) and

AN (t) may be viewed as the infinitesimal mean and variance of the process
ZN at time t. We need to show that the infinitesimal mean and variance are
close to 0 and

∫ t
0 2|ZN (s)| ds respectively. More precisely, it remains to show

that for any fixed T > 0, we have

(4.5) sup
0≤t≤T

|BN (t)| →p 0

and

(4.6) sup
0≤t≤T

∣

∣

∣

∣

AN (t) −
∫ t

0
2|ZN (s)| ds

∣

∣

∣

∣

→p 0.

To prove (4.5), note that

sup
0≤t≤T

|BN (t)| ≤ T sup
0≤t≤T

µ(tr−1
1,m) ≤ Tu2 max

0≤t≤Tr−1

1,m

X1(t).

Since r1,m/(Tu2) → ∞ by (4.4), equation (4.5) now follows from Lemma
4.5. For (4.6), note that

AN (t) −
∫ t

0
2|ZN (s)| ds

= r1,m

∫ t

0

(

−
2|Z(sr−1

1,m)|2
N

+
2Ŷ2(sr

−1
1,m)min{X1(sr

−1
1,m), Y1(sr

−1
1,m)}

N
+ µ(sr−1

1,m)

)

ds.

It suffices to control the absolute values of each of the three terms over all
t ≤ T . Since Z(sr−1

1,m) ≤ max{X1(sr
−1
1,m), Y1(sr

−1
1,m)}, it follows from Lemma

4.5 that max0≤s≤Tr−1

1,m
r
1/2
1,mN−1/2|Z(s)|, max0≤s≤Tr−1

1,m
r
1/2
1,mN−1/2Ŷ2(s), and

max0≤s≤Tr−1

1,m
r
1/2
1,mN−1/2X1(s) all converge in probability to zero as N → ∞,

and this is enough to establish the convergence of the first two terms. The
result for the third term follows from (4.5) and the fact that r1,m → 0.
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In the model N2, types j ≥ 2 have the same relationship to type 1 in-
dividuals as in the branching process. That is, type 1’s give birth to type
2’s, but the fate of a type 2 family does not affect the number of type 1
individuals. Lemma 4.3 has shown that we can ignore type 2 births that
occur when another type 2 is present, so successive type 2 births give inde-
pendent chances of producing a type m individual. We are now close to our
goal announced in the introduction of reducing the m-type problem to the
2-type problem with ū2 = u2q2,m, i.e., to the simplified model in which at
each type 2 mutation, we flip a coin with probability q2,m of heads to see if
it will generate a type m individual.

Let N ′
2 be N2 modified so that type 2 mutant births that occur when

X̂2(t) > 0 are suppressed, but we flip a coin with probability q2,m of heads
to see if they would have generated a type m individual. Lemma 4.3 implies
that for our purposes there is no difference between the two models, but it
is easier to write the next proof for N ′

2.

Lemma 4.7. Let ǫ > 0. Consider model N ′
2 starting from [ǫr−1

1,m] type 1

individuals at time zero. Let h1
N,m,ǫ be the probability that a type m individual

is born at some time. Then

lim
N→∞

h1
N,m,ǫ = 1 − e−ǫ.

Proof. Consider a modified branching process in which type j individ-
uals give birth at rate one, die at rate one, and give birth to type j + 1
individuals at rate uj+1. Let h0

N,m,ǫ be the probability that if the branching
process starts with [ǫr1,m] individuals, a type m individual is born at some
time. Since different families are independent, Lemma 4.1 implies

h0
N,m,ǫ = 1 − (1 − pm)[ǫr

−1

1,m] → 1 − e−ǫ,

where pm is the probability that a type 1 individual has a type m descendant.
We now compare this process to model N ′

2. The number of type 1 individ-
uals in model N ′

2 jumps more slowly than the number of type 1 individuals
inn the branching process, but in both processes type 1 individuals give
birth to type 2 individuals at rate u2, and then type 2 individuals and their
descendants evolve independently of the type 1’s. Therefore, if the probabil-
ity p2,m that a type 2 individual in the branching process produces a type
m descendant were equal to q2,m, then it would follow that h1

N,m,ǫ ≥ h0
N,m,ǫ.

Instead, we only have p2,m ∼ q2,m because p2,m ∼ r2,m by the remark after
Lemma 4.1 and q2,m ∼ r2,m by the induction hypothesis. It follows that

h1
N,m,ǫ ≥ h0

N,m,ǫ(1 − o(1)) → 1 − e−ǫ.
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To get a bound in the opposite direction, observe that we can pick K → ∞
so that L = Kr−1

1,m = o(N), and with probability tending to one as N → ∞,

the number of type 1’s does not reach L. Therefore, writing h1
N,m,ǫ and

h0
N,m,ǫ as functions of the rate at which type 1 individuals give birth to type

2 individuals, we have

h1
N,m,ǫ(u2) ≤ h0

N,m,ǫ(u2N/(N − L))(1 + o(1)) + o(1) → 1 − e−ǫ,

which completes the proof.

Lemma 4.8. Let ǫ > 0. Consider model M2 starting from [ǫr−1
1,m] type 1

individuals at time zero. Let hN,m,ǫ be the probability that a type m individual
is born at some time. Then

lim
N→∞

|hN,m,ǫ − h1
N,m,ǫ| = 0.

Proof. If we define model M ′
2 from M2 in the same way as we have

defined model N ′
2 from N2, then Lemma 4.3 implies that it suffices to prove

the result for the model M ′
2. In the processes M ′

2 and N ′
2, each new type

2 mutation brings an independent probability ∼ r2,m of producing a type
m offspring, so it remains to compare the rates at which type 2 mutations
occur in the two processes.

Pick s large enough so that the probability N ′
2 or M ′

2 does not die out
by time sr−1

1,m is < δ. Pick η so that ηs < δ2. By Lemma 4.6, if N is large,
we have maxt≤s |ZN (t)| < η with probability > 1 − δ. Using the obvious
coupling between type 2 births in the two processes, the expected number
of births that occur in one process but not in the other before time sr−1

1,m

when maxt≤s |ZN (t)| < η is

≤ 2ηr−1
1,m · sr−1

1,mu2 ≤ 2δ2r−2
1,mu2

Using Chebyshev’s inequality, it follows that with probability > 1 − 4δ the
number of type 2 mutant births that occur in one process but not the other
≤ δr−2

1,mu2 = δr−1
2,m. When this occurs the success probabilities differ by at

most δ. Since δ > 0 is arbitrary the desired results follow.

Proof of Proposition 4.1. The probability that the number of indi-
viduals of type greater than zero reaches [ǫr−1

1,m] is 1/[ǫr−1
1,m]. If, at the time

T when the number of individuals of type greater than zero reaches [ǫr−1
1,m],

we change the type of all individuals whose type is nonzero to type 1, and if
we disregard type 2 mutations that occur when there is another individual
of type j ≥ 2, then the probability of getting a type m individual after this
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time becomes hN,m,ǫ. Since these changes of the types can only reduce the
probability of getting a type m individual, we have

(4.7) qm ≥ 1

[ǫr−1
1,m]

hN,m,ǫ.

Also, for a type m individual to appear, either the type m individual must
be descended from a type 1 individual that is alive at time T , or else the
type m individual must be descended from a type 2 individual that existed
before time T , so using Lemmas 4.3 and 4.4, it follows that

(4.8) qm ≤ 1

[ǫr−1
1,m]

hN,m,ǫ + Cǫr1,m.

The result follows by letting ǫ → 0.

5. Proof of Theorem 2. In this section, we complete the proof of
Theorem 2. The argument is based on the following result on Poisson ap-
proximation, which is part of Theorem 1 of [2].

Lemma 5.1. Suppose (Ai)i∈I is a collection of events, where I is any
index set. Let W =

∑

i∈I 1Ai
be the number of events that occur, and let

λ = E[W ] =
∑

i∈I P (Ai). Suppose for each i ∈ I, we have i ∈ βi ⊂ I. Let
Fi = σ((Aj)j∈I\βi

). Define

b1 =
∑

i∈I

∑

j∈βi

P (Ai)P (Aj),

b2 =
∑

i∈I

∑

i6=j∈βi

P (Ai ∩ Aj),

b3 =
∑

i∈I
E
[

|P (Ai|Fi) − P (Ai)|
]

.

Then |P (W = 0) − e−λ| ≤ b1 + b2 + b3.

We will use the following lemma to get the second moment estimate
needed to bound b2. When we apply this result the individuals born at
times t1 and t2 will both be type 1. We call the second one type 2 to be able
to easily distinguish the descendants of the two individuals.

Lemma 5.2. Fix times t1 < t2. Consider a population of size N which
evolves according to the Moran model in which all individuals initially have
type 0. There are no mutations, except that one individual becomes type 1 at
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time t1, and one type 0 individual (if there is one) becomes type 2 at time t2.
Fix a positive integer L ≤ N/2. For i = 1, 2, let Yi(t) be the number of type
i individuals at time t and let Bi be the event that L ≤ maxt≥0 Yi(t) ≤ N/2.
Then

P (B1 ∩ B2) ≤ 2/L2

Proof. Because (Y1(t), t ≥ t1) is a martingale, it is clear that P (B1) ≤
1/L. Let s1 < s2 < · · · < sJ be the ordered times, after time t2, at which
the Y1 process jumps. For t ≥ t2, let Z(t) = Y2(t)A(t), where

A(t) =
N − Y1(t2)

N − Y1(t)
=

∏

i:si≤t

N − Y1(si−)

N − Y1(si)
.

We claim that conditional on (Y1(t), t ≥ t1), the process (Z(t), t ≥ t2) is a
martingale.

To see this, note that between the times si, births and deaths of type 2
individuals occur at the same rate, even conditional on (Y1(t), t ≥ t1), so Z(t)
experiences both positive and negative jumps of size (N−Y1(t2))/(N−Y1(t))
at the same rate. At the time si, if Y1(si) = Y1(si−) + 1, then one of the
N − Y1(si−) individuals of type other than 1 dies at time si, so we have
Y2(si) = Y2(si−) − 1 with probability αi = Y2(si−)/(N − Y1(si−)) and
Y2(si) = Y2(si−) with probability 1 − αi. Note that

(1 − αi)Y2(si−) + αi(Y2(si−) − 1) = Y2(si−) − αi

= Y2(si−)

(

1 − 1

N − Y1(si−)

)

= Y2(si−)
N − Y1(si)

N − Y1(si−)
.

Likewise, if Y1(si) = Y1(si−)− 1, then one of the N −Y1(si−) individuals of
type other than 1 gives birth at time si, so Y2(si) = Y2(si−) + 1 with prob-
ability αi = Y2(si−)/(N − Y1(si−)) and Y2(si) = Y2(si−) with probability
1 − αi, and we have

(1 − αi)Y2(si−) + αi(Y2(si−) + 1) = Y2(si−) + αi

= Y2(si−)

(

1 +
1

N − Y1(si−)

)

= Y2(si−)
N − Y1(si)

N − Y1(si−)
.

The martingale property follows because A(si) = A(si−)(N−Y1(si−))/(N−
Y1(si)), compensating for the expected change in the Y2 process.
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Since (Z(t), t ≥ t2) is a martingale conditional on (Y1(t), t ≥ t1) and
Z(t2) = 1, we have P (Z(t2) ≥ L/2 for some t|B1) ≤ 2/L. On the event B1,
we have A(t) ≤ 2 for all t ≥ t2, so

P (B2|B1) ≤ P (Y2(t) ≥ L for some t|B1)

≤ P (Z(t2) ≥ L/2 for some t|B1) ≤ 2/L.

Since P (B1) ≤ 1/L, the result follows.

We now introduce a set-up that will allow us to apply Lemma 5.1. Let
ǫ > 0, and let K be a large positive number that will be chosen later. Let
q̄m be the probability that in model M1,

• there is eventually a type m individual in the population
• the maximum number of individuals of nonzero type at any time is

between ǫ/r1,m and N/2, and
• the family lives for time ≤ K/r1,m; that is, there are no individuals of

nonzero type remaining at time K/r1,m.

We will call the second and third points the side conditions. Divide the
interval [0, t/(Nr0,m)] into M subintervals of equal length, where M will be
chosen later and will → ∞ with N . Label the intervals I1, . . . , IM , and let
Di be the event that there is a type 1 mutation in the interval Ii.

For bookkeeping purposes, we will also introduce “extra type 1 muta-
tions”, which individuals of type greater than zero experience at rate u1 but
which do not affect the type of the individual. This will ensure that type 1
mutations are always occurring at rate exactly Nu1. To determine whether
or not the first extra type 1 mutation in interval i leads to a type m we let
ξ1, . . . , ξM be i.i.d. random variables, independent of our process, that equal
1 with probability q̄m.

Let Ai be the event that there is a type 1 mutation in the interval Ii and
one of the following occurs:

• The first type 1 mutation in Ii is not an extra type 1 mutation. The
individual that gets this mutation has a type m descendant and the
side conditions hold.

• The first type 1 mutation in Ii is an extra type 1 mutation, and ξi = 1.

As in Lemma 5.1, let W =
∑M

i=1 1Ai
be the number of events that occur,

and let λ = E[W ].

Lemma 5.3. lim supN→∞ |P (W = 0) − e−λ| = 0.

imsart-aap ver. 2007/04/13 file: wfk0705.tex date: July 5, 2007



WAITING TIMES FOR CANCER 27

Proof. Let Bi consist of all subintervals whose distance to Ii is at most
K/r1,m. Define b1, b2, and b3 as in Lemma 5.1. Because of the side condition
that the family lives for time ≤ K/r1,m, b3 = 0.

The length |Ii| of the interval Ii is t/(MNr0,m), so since type 1 mutations
occur at rate Nu1, we have P (Di) ≤ Nu1|Ii| = t/(Mr1,m). Since P (Ai|Di) =
q̄m, Proposition 4.1 gives

P (Ai) = q̄mP (Di) ≤ tqm/(Mr1,m) ∼ t/M.

There are at most 2(K/(r1,m|Ii|) + 1) intervals in βi, so for large M

b1 ≤ M · 2
(

K

r1,m|Ii|
+ 1

)

· 2
(

t

M

)2

= 4M · KMNr0,m

r1,mt

(

t

M

)2

+
4t2

M
= 4KNu1t +

4t2

M
.

Since Nu1 → 0 by (i) and M → ∞, b1 → 0.
To bound b2, note that P (Di ∩ Dj) ≤ [t/(Mr1,m)]2 because mutations

in disjoint intervals occur independently. For the event Ai to occur it is
necessary that the event Bi considered in Lemma 5.2 occur with L = ǫ/r1,m,
so we have

P (Ai ∩ Aj |Di ∩ Dj) ≤ 2r2
1,m/ǫ2

and thus P (Ai∩Aj) ≤ 2t2/(Mǫ)2. Since there are at most 2(K/(r1,m|Ii|)+1)
intervals in βi, we have

b2 ≤ M · 2
(

K

r1,m|Ii|
+ 1

)

2t2

(Mǫ)2

= 4M · KMNr0,m

r1,mt

(

t

Mǫ

)2

+
4t2

Mǫ2
= 4ǫ−2KNu1t +

4t2

Mǫ2
.

This shows b2 → 0, and completes the proof.

Lemma 5.4. Let σm be the first time at which there is a type 1 individual
in the population that will have a type m descendant. Then

(5.1) lim
N→∞

P (σm > t/(Nr0,m)) = exp(−t).

Proof. To obtain (5.1) from Lemma 5.3, it suffices to show that if the
number of intervals M tends to infinity sufficiently rapidly as N → ∞, then
there is a constant C such that for sufficiently large N , we have |t−λ| ≤ Cǫ
and |P (W = 0) − P (σm > t/(Nr0,m))| ≤ Cǫ. The result will then follow by
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letting ǫ → 0. Clearly q̄m ≤ qm, and qm − q̄m is at most the probability that
in model M1, (a) either a type m individual appears even though the total
number of individuals of nonzero type never exceeds ǫr1,m, (b) the total
number of individuals of nonzero type exceeds N/2, or (c) the family does
not die out before K/r1,m. The probability a given mutation survives for as
long as K/r1,m is at most Cr1,m/K by Lemma 3.1. Using Lemma 4.4, we
get

qm − q̄m ≤ Cǫr1,m + 2/N + Cr1,m/K.

Since Nr1,m → ∞ by (iv), we have 2/N ≪ r1,m, so if K is large, we get

(5.2) qm − Cǫr1,m ≤ q̄m ≤ qm.

Note that

λ =
∑

i∈I
P (Ai) =

∑

i∈I
P (Di)q̄m = MP (D1)q̄m

= Mq̄m(1 − e−Nu1|I1|) ∼ Mq̄mNu1|I1| = tq̄m/r1,m.

Because qm ∼ r1,m by Proposition 4.1, this result combined with (5.2) im-
plies |t − λ| ≤ Cǫ for sufficiently large N .

It remains to bound |P (W = 0) − P (σm > t/(Nr0,m))|. We can have
W > 0 with σm > t/(Nr0,m) only if for some i, there is an extra type 1
mutation in Ii and ξi = 1. Let X(t) be the number of individuals of nonzero
type. As long as X(t) stays below ǫN , extra type 1 mutations occur at rate
at most Nǫu1, so the probability that this occurs is at most

(ǫNu1)(t/Nr0,m)q̄m ≤ Cǫ,

using Proposition 4.1. Since individuals give birth and die at the same rate,
(X(t), t ≥ 0) is a submartingale. Also, E[X(t/(Nr0,m))] is the expected
number of type 1 mutations before time t/(Nr0,m), which is at most t/r1,m.
Therefore, by Doob’s Maximal Inequality,

P (X(s) ≥ ǫN for some s ≤ t/(Nr0,m)) ≤ t/(ǫNr1,m),

which goes to zero as N → ∞ by condition (iv).
We can have W = 0 with σm ≤ t/(Nr0,m) in one of two ways. One

possibility is that there could be a successful type 1 mutation in one of the
M subintervals that is not the first type 1 mutation in that interval. The
probability of this goes to zero if M → ∞ sufficiently rapidly. The other
possibility is that there could be a successful type 1 mutation that does not
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satisfy the extra conditions we imposed. The probability that this occurs is
at most

(Nu1)(t/Nr0,m)(qm − q̄m) ≤ Ctǫ

by (5.2). This observation completes the proof of the lemma.

The following result in combination with Lemma 5.4 implies Theorem 2.

Lemma 5.5. We have

(5.3) Nr0,m(τm − σm) → 0 in probability

Proof. Let ǫ > 0 and δ > 0. By Lemma 5.4, we can choose s large
enough that for sufficiently large N ,

P (σm > s/(Nr0,m)) < δ/3.

By Lemma 3.1, the probability that a type 1 mutation takes longer than
time ǫ/(Nr0,m) to die out or fixate is at most C max{1/N,Nr0,m/ǫ}. Be-
cause the expected number of type 1 mutations before time s/Nr0,m is
at most (Nu1)(s/Nr0,m) = u1s/r0,m, it follows from Markov’s Inequality
that the probability that some type 1 mutation that appears before time
s/(Nr0,m) takes longer than time ǫ/(Nr0,m) to die out or fixate is at most
Cs max{u1/(Nr0,m), Nu1/ǫ}. As N → ∞, the first of these terms goes to
zero by (iv) while the second goes to zero by (i), so this probability is less
than δ/3 for sufficiently large N . Finally, the probability that one of the
type 1 mutations before time s/(Nr0,m) fixates is at most

s

Nr0,m
· Nu1 ·

1

N
,

since mutations occur at rate Nu1 and fix with probability 1/N . This is
less than δ/3 for large N by (iv). Hence, P (Nr0,m(τm − σm) > ǫ) < δ for
sufficiently large N .

6. The key to the proof of Theorem 3. Throughout this section
and the next, we assume all of the hypotheses of Theorem 3 are satisfied.
The main difficulty in proving Theorem 3 is to prove the following result.

Proposition 6.1. Let ǫ > 0. Consider a process which evolves according
to the rules of model M1 but starting with [ǫN ] type 1 individuals and all
other individuals having type 0. Let gN,m(ǫ) be the probability that either a
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type m individual is born at some time or eventually all N individuals have
type greater than zero. Then

lim
ǫ→0

lim inf
N→∞

ǫ−1gN,m(ǫ) = lim
ǫ→0

lim sup
N→∞

ǫ−1gN,m(ǫ) = α,

where α is as defined in (1.4).

In view of Lemma 4.3, which holds under the assumptions of Theorem 3
by Corollary 4.1, we will work for the rest of this section with model M2,
in which no type 2 mutation can occur while there is another individual of
type 2 or higher in the population. As in the proof of Theorem 1 we need to
deal with the correlations between individuals of type 1 and of types j ≥ 2
caused by the fact that individuals of one positive type may replace another.
To do this, we cut out the time intervals in which an individual of type 2 or
higher is present in the population.

Let Xi(t) be the number of type i individuals at time t. Let

f(t) = sup

{

s :

∫ s

0
1{X0(t)+X1(t)=N} du = t

}

,

and let Y (t) = X1(f(t)), so the process (Y (t), t ≥ 0) tracks the evolution
of the number of type 1 individuals after one cuts out the times at which
individuals of type j ≥ 2 are present. Let β0 = 0. For i ≥ 1, let βi be the first
time t after βi−1 such that Y (t) 6= Y (t−) and there is no type two individual
alive at time f(t)−, assuming such a time exists which it will a.s. as long as
Y (βi−1) /∈ {0, N}. That is, the times βi are the times of Y process jumps
that happen because of a birth or death of a type one individual and do not
involve the birth of a type two individual. Let g(t) = max{i : βi ≤ t}, so
g(t) is the number of these jumps that have happened by time t.

We now define a discrete-time process (Zi)
∞
i=0, which omits the jumps in Y

due to time intervals being removed, but retains all of the other jumps of size
1. Let Z0 = [Nǫ]. If i ≥ 1, Y (βi−1) /∈ {0,N}, and ǫ3N < Zi−1 < (1 − ǫ2)N ,
then let Zi = Zi−1 + 1 if Y (βi) = Y (βi−) + 1, and let Zi = Zi−1 − 1 if
Y (βi) = Y (βi−)−1. Using this induction, we can define the process (Zi)

T
i=0,

where T = inf{i : Y (βi) ∈ {0,N}, Zi ≤ ǫ3N, or Zi ≥ (1 − ǫ2)N}. On
the event that ǫ3N < Zi−1 < (1 − ǫ2)N and 0 < Y (βi) < N , we have
P (Zi = Zi−1 + 1|Z0, . . . , Zi−1) = P (Zi = Zi−1 − 1|Z0, . . . , Zi−1) = 1/2.
We then continue the process for i > T by setting Zi to be Zi−1 + 1 or
Zi−1−1 with probability 1/2 each, independently of the population process.
The process (Zi)

∞
i=0 is therefore a simple random walk.
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It follows from (3.9) that E[βT ] ≤ N . Thus, if θ > 0, then by Markov’s
Inequality,

(6.1) P

(

βT >
N

θ

)

≤ θ.

Likewise, since T is at most the number of births and deaths of individuals of
nonzero type started from [Nǫ] such individuals, (3.5) gives E[T ] ≤ 2N2ǫ ≤
2N2. Therefore, for θ > 0,

(6.2) P

(

T >
2N2

θ

)

≤ θ.

A second useful consequence of (3.5) is that since individuals give birth and
die at rate 1 and mutate at rate u2, the expected number of type 2 mutations
when we start with [Nǫ] type 1 individuals is at most ǫN2u2. By (3.8), the
expected amount of time during which there is an individual of type 2 or
higher present in the population is at most Cǫ(N2 log N)u2.

Also, we are assuming Nr1,m → γ1/2, and (ii) gives r1,m ≥ Cu
1−1/2m−1

2

for some constant C. Therefore, lim supN→∞ Nu
1−1/2m−1

2 < ∞, which in
combination with (iii) implies that

(6.3) (N log N)u2 → 0.

Lemma 6.1. For all δ > 0, we have

lim
N→∞

P

(

max
0≤t≤βT

|Y (t) − Zg(t)| > δN

)

= 0.

Proof. Let ζ0 = 0 and for i ≥ 1, let ζi be the first time t after ζi−1

such that there is a type 2 individual alive at time f(t)−, provided such a
time exists. Thus, the times ζi for i ≥ 1 are the times at which the process
(Y (t), t ≥ 0) possibly jumps because we have cut out the lifetime of a type
2 family. Every jump time of (Y (t), t ≥ 0) is either βi or ζi for some i. Since
only the jumps at the times βi are incorporated into the process (Zi)

∞
i=1, we

have

(6.4) Y (t) − Zg(t) =
∑

i:ζi≤t

(Y (ζi) − Y (ζi−)).

We will show that the right-hand side is small because type 2 individuals
are not alive in the population for a long enough time for large changes in
the size of the type 1 population to happen during this time.
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A type 1 individual is lost whenever a type 2 individual is born. The other
changes in the number of type 1 individuals that contribute to the right-
hand side of (6.4) are births and deaths that occur while there are already
type 2 individuals in the population. Let ξi = 1 if the ith such event is a
birth, and let ξi = −1 if the ith such event is a death. Let J be the number
of such events before time f(βT ), so if Sj = ξ1 + · · · + ξJ , then

(6.5) |Y (t) − Zg(t)| ≤ |{i : ζi ≤ T}| + max
j≤J

|Sj|

for all t ≤ βT .
The first term on the right-hand side of (6.5) is the number of type 2

mutations by time βT , so as noted above its expected value is at most
ǫN2u2. It follows from Markov’s Inequality and (6.3) that P (|{i : ζi ≤ T}| >
δN/2) ≤ 4ǫN2u2/(δN) → 0 as N → ∞.

Since (Sj)
∞
j=1 is a simple random walk, by Wald’s Second Equation com-

bined with the L2-Maximal Inequality for martingales and the Monotone
Convergence Theorem, we have

E
[

max
j≤J

S2
j

]

= lim
n→∞E

[

max
j≤J∧n

S2
j ] ≤ 4 lim

n→∞E[S2
J∧n]

= 4 lim
n→∞

E[J ∧ n] = 4E[J ].

We have observed that the expected amount of time for which there is
an individual of type 2 or greater present in the population is at most
Cǫ(N2 log N)u2. The rate at which type one individuals are either being
born or dying is always at most 2N , so E[J ] ≤ 2Cǫ(N3 log N)u2. By Cheby-
shev’s Inequality and (6.3),

lim sup
N→∞

P

(

max
j≤J

|Sj | >
δN

2

)

≤ lim sup
N→∞

16E[J ]

δ2N2

≤ lim sup
N→∞

32Cǫ(N log N)u2

δ2
= 0

and the result follows.

Lemma 6.2. For all δ > 0, we have

lim
N→∞

P

(
∣

∣

∣

∣

∫ βT

0
u2(Y (t) − Zg(t)) dt

∣

∣

∣

∣

> δN2u2

)

= 0.
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Proof. Let θ > 0. By Lemma 6.1 and (6.1),

lim sup
N→∞

P

(∣

∣

∣

∣

∫ βT

0
u2(Y (t) − Zg(t)) dt

∣

∣

∣

∣

> δN2u2

)

≤ lim sup
N→∞

(

P

(

βT >
N

θ

)

+ P

(

max
0≤t≤βT

|Y (t) − Zg(t)| > δθN

))

≤ θ.

Letting θ → 0 gives the result.

Lemma 6.3. For all δ > 0, we have

lim
N→∞

P

(
∣

∣

∣

∣

∫ βT

0
Zg(t) dt −

T−1
∑

i=0

N

2(N − Zi)

∣

∣

∣

∣

> δN2
)

= 0.

Proof. For i ≤ T − 1, let

Di =
N

2(N − Zi)
− (βi+1 − βi)Zi.

We need to show that

(6.6) lim
N→∞

P

(∣

∣

∣

∣

T−1
∑

i=0

Di

∣

∣

∣

∣

> δN2
)

= 0.

At time t, events that cause the number of type 1 individuals to change but
do not involve the birth of a type 2 happen at rate 2Y (t)(N − Y (t))/N .
Therefore, if we define

ξi =

∫ βi+1

βi

2Y (t)(N − Y (t))

N
dt,

then the random variables ξi are independent and have the exponential
distribution with mean one. Note that the process Y is constant on the
intervals (βi, βi+1) except when type 2 mutations occur. For i ≤ T − 1, let

D̃i =
N

2(N − Zi)

(

1 − ξi
)

.

Let θ > 0, so P (T > 2N2/θ) ≤ θ by (6.2). For 0 ≤ j ≤ [2N2/θ], let

Mj =
∑(T−1)∧j

i=0 D̃i. Let Fj be the σ-field generated by (Y (t), 0 ≤ t ≤ βj).
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Note that E[D̃i|Fi] = 0, so the process (Mj)
[2N2/θ]
j=0 is a martingale. On the

event that i ≤ T − 1, we have Zi ≤ (1 − ǫ2)N and hence

Var(D̃i|Fi) =
N2

4(N − Zi)2
≤ 1

4ǫ4
.

It follows from the L2-Maximal Inequality for martingales, and orthogonality
of martingale increments that

E

(

max
0≤j≤[2N2/θ]

M2
j

)

≤ 4E
[

M2
[2N2/θ]

]

≤ 4 · 2N2

θ
· 1

4ǫ4
=

2N2

θǫ4
.

Using Chebyshev’s Inequality,

P

(∣

∣

∣

∣

T−1
∑

i=0

D̃i

∣

∣

∣

∣

>
δN2

2

)

≤ θ + P

(

max
0≤j≤[2N2/θ]

|Mj | >
δN2

2

)

≤ θ +
4

δ2N4

(

2N2

θǫ4

)

= θ +
8

θδ2ǫ4N2
.

Since θ > 0 was arbitrary, it follows that

(6.7) lim
N→∞

P

(∣

∣

∣

∣

T−1
∑

i=0

D̃i

∣

∣

∣

∣

>
δN2

2

)

= 0.

To convert this into a bound on the Di, we note that

|Di − D̃i| =

∣

∣

∣

∣

N

2(N − Zi)

∫ βi+1

βi

2Y (t)(N − Y (t))

N
dt − (βi+1 − βi)Zi

∣

∣

∣

∣

≤
∫ βi+1

βi

∣

∣

∣

∣

Y (t)(N − Y (t))

N − Zi
− Zi

∣

∣

∣

∣

dt.

On the event that |Y (t)−Zg(t)| ≤ γN for all 0 ≤ t ≤ βT , there is a constant
Cǫ depending on ǫ such that for all i ≤ T − 1 and t ∈ [βi, βi+1], we have

Y (t)(N − Y (t))

N − Zi
− Zi ≤ (Zi + γN)(N − Zi + γN)

N − Zi
− Zi

≤ (Zi + γN)

(

1 +
γ

ǫ2

)

− Zi ≤ CǫγN,

where in the second inequality we have used Zi ≤ (1 − ǫ2)N . For a bound
in the other direction, we note that

Y (t)(N − Y (t))

N − Zi
− Zi ≥

(Zi − γN)(N − Zi − γN)

N − Zi
− Zi

≥ (Zi − γN)

(

1 − γ

ǫ2

)

− Zi ≥ −CǫγN.
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Thus, if we let θ > 0 and γ = δθ/2Cǫ, then for sufficiently large N ,

P

(
∣

∣

∣

∣

T−1
∑

i=0

(Di − D̃i)

∣

∣

∣

∣

>
δN2

2

)

≤ P

(

βT >
N

θ

)

+ P

(

max
0≤t≤βT

|Y (t) − Zg(t)| > γN

)

.

Using (6.1), Lemma 6.1, and letting θ → 0, we get

(6.8) lim
N→∞

P

(∣

∣

∣

∣

T−1
∑

i=0

(Di − D̃i)

∣

∣

∣

∣

>
δN2

2

)

= 0.

Now (6.6) follows from (6.7) and (6.8).

Let D be the event that either ZT ≥ (1 − ǫ2)N or some type 2 mutation
that occurs before time f(βT ) has a type m descendant.

Lemma 6.4. We have

lim
N→∞

(

(1 − P (D)) − E

[

exp

(

− r2,m

T−1
∑

i=0

u2N

2(N − Zi)

)

1{ZT ≤ǫ3N}

])

= 0.

Proof. If there is no type 2 individual in the population at time t, then
the rate at which a type 2 individual is born is u2X1(t). Because no type 2
mutations occur while there is another type 2 individual in the population,
each mutant type 2 individual independently has a type m descendant with
probability q2,m. It follows that there is a mean one exponential random
variable ξ such that some original type two individual born before time
f(βT ) has a type m descendant if and only if

(6.9) ξ ≤
∫ βT

0
Y (t)u2q2,m dt.

Because changes in the population resulting from the birth of a type 2
individual are not recorded in the process (Zi)

T−1
i=0 , the random variable

ξ can be constructed to be independent of the process (Zi)
T−1
i=0 . Therefore,

by conditioning on (Zi)
T−1
i=0 , we get

P

(

{ZT ≤ ǫ3N} ∩
{

ξ > r2,m

T−1
∑

i=0

u2N

2(N − Zi)

})

= E

[

exp

(

− r2,m

T−1
∑

i=0

u2N

2(N − Zi)

)

1{ZT ≤ǫ3N}

]

.(6.10)
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The event that D fails to occur is the same as the event that ZT ≤ ǫ3N
and that (6.9) fails to occur. It follows that the difference between P (Dc) =
1 − P (D) and the probability in (6.10) is at most the probability that ξ is
between

∫ βT

0 Y (t)u2q2,m dt and r2,m
∑T−1

i=0 u2N/(2(N − Zi)). To bound the
difference between these quantities, note that Lemmas 6.2 and 6.3 give

lim
N→∞

P

(∣

∣

∣

∣

∫ βT

0
u2Y (t) dt −

T−1
∑

i=0

u2N

2(N − Zi)

∣

∣

∣

∣

> δN2u2

)

= 0

for all δ > 0. Since r2
1,m = u2r2,m and (Nr1,m)2 → γ, we see that N2u2r2,m

stays bounded as N → ∞ and it follows that

(6.11) lim
N→∞

P

(
∣

∣

∣

∣

∫ βT

0
u2r2,mY (t) dt − r2,m

T−1
∑

i=0

u2N

2(N − Zi)

∣

∣

∣

∣

>
δ

2

)

= 0

for all δ > 0. Also, q2,m ∼ r2,m by Corollary 4.1 and P (βT > N/θ) ≤ θ by
(6.1). Since N2u2r2,m stays bounded,

lim sup
N→∞

P

(
∣

∣

∣

∣

∫ βT

0
u2q2,mY (t) dt −

∫ βT

0
u2r2,mY (t) dt

∣

∣

∣

∣

>
δ

2

)

≤ lim sup
N→∞

P

(

Nu2βT |r2,m − q2,m| >
δ

2

)

= 0.(6.12)

Combining (6.11) and (6.12) gives

lim
N→∞

P

(
∣

∣

∣

∣

∫ βT

0
u2q2,mY (t) dt − r2,m

T−1
∑

i=0

u2N

2(N − Zi)

∣

∣

∣

∣

> δ

)

= 0.

Since

P

(

r2,m

T−1
∑

i=0

u2N

2(N − Zi)
− δ ≤ ξ ≤ r2,m

T−1
∑

i=0

u2N

2(N − Zi)
+ δ

)

≤ 2δ,

it follows that

lim sup
N→∞

∣

∣

∣

∣

(1 − P (D)) − E

[

exp

(

− r2,m

T−1
∑

i=0

u2N

2(N − Zi)

)

1{ZT ≤ǫ3N}

]∣

∣

∣

∣

≤ 2δ,

and the result follows by letting δ → 0.

Let A be the event that either Y (t) = N for some t, or a type m individual
is born at some time.
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Lemma 6.5. There exists a constant C, not depending on ǫ, such that

|P (A) − P (D)| ≤ Cǫ2.

Proof. Let δ > 0, and assume that |Y (t) − Zg(t)| ≤ δN for 0 ≤ t ≤ βT .
First, suppose D occurs. If a type 2 mutation that occurs before time f(βT )
has a type m descendant, then A must occur. If ZT ≥ (1 − ǫ2)N , then
Y (βT ) ≥ (1 − ǫ2 − δ)N , and conditional on this event the probability that
Y (t) = N for some t, in which case A occurs, is at least 1−ǫ2−δ. Therefore,
using Lemma 6.1,

lim sup
N→∞

P (D ∩ Ac) ≤ ǫ2 + δ.

Now, suppose Dc occurs. Note that if δ < ǫ3 and |Y (t) − Zg(t)| ≤ δN for
0 ≤ t ≤ βT , then we can not have Y (βT ) ∈ {0,N}, which means we must
have ZT ≤ ǫ3N and therefore Y (βT ) ≤ (ǫ3 +δ)N . Conditional on this event,
the probability that Y (t) = N for some t is at most ǫ3+δ, and the probability
that one of the type one individuals at time f(βT ) has a type m descendant
is at most (ǫ3 + δ)Nq1,m. From these bounds and Lemma 6.1, it follows that

lim sup
N→∞

P (Dc ∩ A) ≤ (1 + γ1/2)(ǫ3 + δ)

The lemma follows by letting δ → 0.

Now let (Bt)t≥0 be a Brownian motion with B0 = ǫ. Let U = inf{t : Bt =
ǫ3 or Bt = 1 − ǫ2}.

Lemma 6.6. We have

lim
N→∞

E

[

exp

(

− r2,m

T−1
∑

i=0

u2N

2(N − Zi)

)

1{ZT ≤ǫ3N}

]

= E

[

exp

(

− γ

2

∫ U

0

1

1 − Bt
dt

)

1{BU =ǫ3}

]

.

Proof. Define a process (Wt)t≥0 such that Wt = N−1Z[N2t]. Let R =
inf{t : Wt ≤ ǫ3 or Wt > 1 − ǫ2}. Note that R = T/N2 and 1{ZT ≤ǫ3N} =
1{WR≤ǫ3} on the event that for some δ < ǫ3, we have |Y (t)−Zg(t)| ≤ δN for
0 ≤ t ≤ βT , which by Lemma 6.1 happens with probability tending to one
as N → ∞.

Let δ < ǫ3. For random variables X
(1)
N and X

(2)
N , write X

(1)
N ≈ X

(2)
N if for all

η > 0, there is an N(η) such that if N ≥ N(η) then |X(1)
N /X

(2)
N −1| < η on the
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event that |Y (t)−Zg(t)| ≤ δN for 0 ≤ t ≤ βT . Since |Wt−N−1Z[N2t]| ≤ 1/N
for all t, we have

1

2

∫ R

0

1

1 − Wt
dt ≈ 1

2

∫ R

0

1

1 − N−1Z[N2t]
dt =

1

2

∫ N2R

0

1

1 − N−1Z[s]
N−2 ds

= N−2
∫ T

0

N

2(N − Z[s])
ds = N−2

T−1
∑

i=0

N

2(N − Zi)
.

Since u2r2,m = r2
1,m and (Nr1,m)2 → γ, we have

r2,m

T−1
∑

i=0

u2N

2(N − Zi)
≈ γN−2

T−1
∑

i=0

N

2(N − Zi)
≈ γ

2

∫ R

0

1

1 − Wt
dt.

In view of Lemma 6.1, it follows that

lim
N→∞

(

E

[

exp

(

− r2,m

T−1
∑

i=0

u2N

2(N − Zi)

)

1{ZT ≤ǫ3N}

]

− E

[

exp

(

− γ

2

∫ R

0

1

1 − Wt
dt

)

1{WR=ǫ3}

])

= 0.

Thus, it suffices to show that for all λ > 0, we have

lim
N→∞

E

[

exp

(

−λ

∫ R

0

1

1 − Wt
dt

)

1{WR=ǫ3}

]

= E

[

exp

(

− λ

∫ U

0

1

1 − Bt
dt

)

1{BU =ǫ3}

]

.(6.13)

Since (Zi)
∞
i=0 is a simple random walk, (Wt)0≤t≤s converges weakly as

N → ∞ to (Bt)0≤t≤s for all s > 0. Let D[0, s] be the set of real-valued
functions defined on [0, s] which are right continuous and have left limits. If
g : D[0, s] → R is bounded, and if the set of points at which it is not contin-
uous has Wiener measure zero, then the weak convergence of (Wt)0≤t≤s to
(Bt)0≤t≤s implies that limN→∞ E[g((Wt)0≤t≤s)] = E[g((Bt)0≤t≤s)]. There-
fore,

lim
N→∞

E

[

exp

(

− λ

∫ R∧s

0

1

1 − Wt
dt

)

1{WR∧s=ǫ3}

]

= E

[

exp

(

− λ

∫ U∧s

0

1

1 − Bt
dt

)

1{BU∧s=ǫ3}

]

.(6.14)

Note that if ω : [0, s] → R is continuous, then the function g used in (6.14)
is continuous at ω unless either inf{t : ω(t) = ǫ3} < inf{t : ω(t) < ǫ3} or
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inf{t : ω(t) = 1 − ǫ2} < inf{t : ω(t) > 1 − ǫ2}, which would happen if ω
reaches a local minimum when it first hits ǫ3 or a local maximum when it first
hits 1− ǫ2. Brownian motion paths almost surely do not have this property,
so (6.14) is valid. Finally, (6.13) follows from (6.14) by letting s → ∞.

Let V = inf{t : Bt = 0 or Bt = 1}.

Lemma 6.7. Let I(s) =
∫ s
0

1
1−Bt

dt. If λ > 0, there is a constant C such
that

(6.15)
∣

∣E
[

exp(−λI(U))1{BU =ǫ3}
]

− E
[

exp(−λI(V ))1{BV =0}
]
∣

∣ ≤ Cǫ2.

Proof. Define a process (B′
t)t≥0 by B′

t = BU+t. Let τ ′
a = inf{t : B′

t = a}.
Let D1 be the event that BU = 1 − ǫ2 and BV = 0. Let D2 be the event
that BU = ǫ3 and τ ′

1/2 < τ ′
0. Let D3 be the event that BU = ǫ3 and τ ′

0 > ǫ2.

Note that on the event (D1 ∪ D2 ∪ D3)
c, we have 1{BU =ǫ3} = 1{BV =0} and

on this event we have

0 ≤
∫ V

0

1

1 − Bt
dt −

∫ U

0

1

1 − Bt
dt ≤ 2(V − U) ≤ 2ǫ2.

It follows that the left-hand side of (6.15) is at most P (D1) + P (D2) +
P (D3) + 2λǫ2.

Because Brownian motion is a martingale, we have P (D1) ≤ P (BV =
0|BU = 1 − ǫ2) = ǫ2 and likewise P (D2) ≤ 2ǫ3. Therefore, it remains only
to show that P (D3) ≤ Cǫ2. By the Reflection Principle,

1

2
P (τ ′

0 ≤ ǫ2|BU = ǫ3) = P (B′
ǫ2 ≤ 0).

Also, P (B′
ǫ2 > ǫ3|BU = ǫ3) = 1/2. Therefore, P (0 < B′

ǫ2 < ǫ3|BU = ǫ3) =
[1 − P (τ ′

0 ≤ ǫ2|BU = ǫ3)]/2. It follows that

P (D3) ≤ P (τ ′
0 > ǫ2|BU = ǫ3)

= 2P (0 < B′
ǫ2 < ǫ3|BU = ǫ3)

≤ 2ǫ3

√
2πǫ2

= ǫ2

√

2

π

and the result follows.

Lemma 6.8. Let Ex denote expectation for the Brownian motion (Bt)t≥0

starting from B0 = x. Let

u(x) = Ex

[

exp

(

− γ

2

∫ V

0

1

1 − Bt
dt

)

1{BV =0}

]

.

Then limx→0 x−1(1 − u(x)) = α, where α is as defined in (1.4).
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Proof. Let f(0) = 1 and f(1) = 0. Let g(x) = γ/[2(1 − x)]. Then for
0 < x < 1, we have u(x) = Ex[f(BV ) exp(−

∫ t
0 g(Bs) ds)]. Clearly u(0) = 1

and u(1) = 0. By the Feynman-Kac formula (see (6.3) on p. 161 of [6]), if
v : [0, 1] → R is a bounded continuous function such that v(0) = 1, v(1) = 0,
and 1

2v′′(x)−g(x)v(x) = 0 for x ∈ (0, 1), then u(x) = v(x) for x ∈ [0, 1]. Note
that (6.3) on p. 161 of Durrett requires g to be bounded on (0, 1), which it
is not in this example. However, the result nevertheless holds because g is
nonnegative, and therefore exp(− ∫ t

0 g(Bs) ds) is always in [0, 1].
Multiplying by 2(1 − x), we can write the differential equation above as

(1 − x)v′′(x) − γv(x) = 0. Let

(6.16) v(x) = c
∞
∑

k=1

γk

k!(k − 1)!
(1 − x)k,

where c = 1/
∑∞

k=1 γk/k!(k − 1)!. Note that v(0) = 1 and v(1) = 0. The
series converges absolutely and uniformly on all compact subsets of R and
can be differentiated twice term by term, so

(1 − x)v′′(x) = c
∞
∑

k=2

γk

k!(k − 1)!
k(k − 1)(1 − x)k−1.

Therefore,

(1− x)v′′(x)− γv(x) = c
∞
∑

k=1

(

γk+1

k!(k − 1)!
(1− x)k − γk+1

k!(k − 1)!
(1− x)k

)

= 0.

Thus, v(x) = u(x) for x ∈ [0, 1]. From our formula it follows that

lim
x→0

1 − u(x)

x
= −u′(0) = c

∞
∑

k=1

γk

(k − 1)!(k − 1)!
= α,

as claimed.

Proof of Proposition 6.1. The only difference between gN,j(ǫ) and
P (A) is that the event A is defined using model M2, in which new type
two individuals can not be born while there is an existing individual of type
2 or higher in the population. Therefore, it follows from Lemma 4.3 that
|P (A) − gN,j(ǫ)| ≪ [Nǫ]r1,m, and therefore

lim
N→∞

|P (A) − gN,j(ǫ)| = 0

for all ǫ > 0. By Lemmas 6.4, 6.5, 6.6, and 6.7,

lim sup
N→∞

|P (A) − (1 − u(ǫ))| ≤ Cǫ2.

imsart-aap ver. 2007/04/13 file: wfk0705.tex date: July 5, 2007



WAITING TIMES FOR CANCER 41

Combining these results and multiplying both sides by ǫ−1 gives

lim sup
N→∞

|ǫ−1gN,m(ǫ) − ǫ−1(1 − u(ǫ))| ≤ Cǫ.

Therefore, by Lemma 6.8,

lim
ǫ→0

lim inf
N→∞

ǫ−1gN,m(ǫ) ≥ lim
ǫ→0

(ǫ−1(1 − u(ǫ)) − Cǫ) = α

lim
ǫ→0

lim sup
N→∞

ǫ−1gN,m(ǫ) ≤ lim
ǫ→0

(ǫ−1(1 − u(ǫ)) + Cǫ) = α

and the proposition follows.

7. Proof of Theorem 3. With Proposition 6.1 established, the rest of
the proof is routine.

Lemma 7.1. Consider model M1, and let q′m be the probability that either
a type m individual is born at some time, or at some time all individuals in
the population have type greater than zero. Then limN→∞ Nq′m = α.

Proof. The probability that the number of individuals of individuals of
type greater than zero reaches [ǫN ] is 1/[ǫN ]. If, at the time T when the
number of individuals of nonzero type reaches [ǫN ], we change the type of
all these individuals to type 1, then the probability of either getting a type
m individual or eventually having all N individuals of type greater than
zero is gN,j(ǫ). Since changing the types in this way can only reduce the
probability of interest, we have

q′m ≥ 1

[ǫN ]
gN,m(ǫ).

To get an upper bound, note that the probability of either having a type
m individual that is descended from a type 1 individual at time T or having
all N individuals of nonzero type is at most gN,m(ǫ)/[ǫN ]. The only possibil-
ity not accounted for is that the type m individual could be descended from
a type 2 individual that is born before time T . However, by Lemma 4.4, the
proof of which is valid under our hypotheses by Corollary 4.1, the proba-
bility that a type 2 mutation that occurs while there are fewer than ǫr−1

1,m

individuals in the population of type 1 or higher has a type m descendant
is at most Cǫ/N , where we are using that r1,m is O(N). It follows that

q′m ≤ 1

[ǫN ]
gN,m(ǫ) +

Cǫ

N
.

The result follows from Proposition 6.1 by first letting N → ∞ and then
letting ǫ → 0.
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Proof of Theorem 3. As in the proof of Theorem 2, give each indi-
vidual of type greater than zero an “extra type 1 mutation” at rate u1. Let
γi be the time of the ith type 1 mutation, so the points (γi)

∞
i=1 form a rate

Nu1 Poisson process on [0,∞). Define a sequence (ζi)
∞
i=1 such that ζi = 1

if the mutation at time γi has a type m descendant in the population at
some later time (which will always happen if the mutation fixates), except
set ζi = 0 if the mutation at time γi is an extra type 1 mutation. Let (ζ̃i)

∞
i=1

be a sequence of i.i.d. random variables, independent of the population pro-
cess, such that P (ζ̃i = 1) = q′m and P (ζ̃i = 0) = 1 − q′m for all i. Let ζ ′i = ζi

if all individuals at time γi− have type 0, and let ζ ′i = ζ̃i otherwise. Let
σ′

m = inf{γi : ζ ′i = 1}. It is clear from the construction that σ′
m has the

exponential distribution with rate Nu1q
′
m, so Lemma 7.1 gives

(7.1) lim
N→∞

P (u1σ
′
m > t) = exp(−αt).

Let σm be the first time at which a type 1 mutation occurs and the
individual that gets this mutation will eventually have a type m descendant.
We claim that P (σ′

m = σm) → 1 as N → ∞. We can only have σ′
m 6= σm

if there is a type 1 mutation at some time γi < σ′
m such that either ζi = 1

or ζ̃i = 1. Fix t > 0. The expected number of type 1 mutations before time
u−1

1 t is (Nu1)(u
−1
1 t) = Nt, so by (3.8), the expected amount of time before

σ′
m ∧ u−1

1 t that there is an individual of nonzero type in the population is
at most C(N log N)t. Therefore, the expected number of type 1 mutations
that occur during this time is at most C(N2 log N)u1t. If such a birth occurs
at time γi, the probability that either ζi or ζ̃i equals one is at most 2q′m, so

P (σm 6= σ′
m < u−1t) ≤ C(N2 log N)u1tq

′
m → 0,

where we are using that u1(N log N) → 0 by (ii) and (6.3) and that q′m is
O(1/N) by Lemma 7.1. The fact that P (σ′

m = σm) → 1 as N → ∞ follows
from this result and (7.1).

It remains only to show that u1(τm−σm) →p 0. When the type 1 mutation
at time σm does not fixate, τm − σm is at most the time that it takes before
all descendants of the mutation die out. When this mutation fixates, then
τm−σm includes both the time to fixation plus the time for one individual to
get m−1 additional mutations. The probability that a given type 1 mutation
takes time ǫu−1

1 to fixate or die out is at most Cu1ǫ
−1 log N , so the probabil-

ity that some mutation that occurs before time u−1
1 t takes this long to fixate

or die out is at most C(Nu1)(u
−1
1 t)(u1ǫ

−1 log N), which approaches zero as
N → ∞ because u1(N log N) → 0. Finally, if a type 1 mutation fixates, then
the time until a type m mutation appears can be calculated using the m−1
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case of Theorem 2 with u2, . . . , um in place of u1, . . . , um−1. The hypotheses
are satisfied by the arguments given in Corollary 4.1. Theorem 2 implies that
the waiting time is O(1/(Nu2r2,m)). However, 1/(Nu2r2,m) ≪ u−1

1 because
u1/u2 < b−1

1 by (ii) and Nr2,m → ∞ as shown in the proof of Corollary 4.1.
These observations imply u1(τm − σm) →p 0, as in the proof of Theorem
2.
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Fig 1. Distribution of τ2 · Nu1

√
u2 = 1000 in 10,000 simulations when N = 103 and

u1 = u2 = 10−4. Nu1 = 0.1 and N
√

u2 = 10, so as (1.1) predicts the scaled waiting time
is approximately exponential.
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Fig 2. Distribution of τ2 · Nu1

√
u2 = 1000 in 10,000 simulations when N = 103, u1 =

10−3, and u2 = 10−4. Nu1 = 1 and N
√

u2 = 0.1, so the limit is not exponential, but is fit
well by the result in Theorem 1.
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Fig 3. Distribution of u1τ2 when N = 103, u1 = 10−4, and u2 = 10−6. Nu1 = 0.1
and N

√
u2 = 1 so we are in the regime covered by Theorem 3. The constant γ = 1 so

α = 1.433. As the graph shows the exponential distribution with rate α gives a reasonbly
good fit to the simulated data.
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