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Outline

I Biased voter model of premalignant mutation spread in epithelial
tissue

I Application to field cancerization

I Alternative models of tissue maintenance (death-birth process)



Cancer as an evolutionary process
I Variation: genetic alterations, epigenetic changes – stochastic or

environmentally induced

I Fitness: avoidance of apoptosis signals, increases in
proliferation signaling

I Heredity: permanent or transiently heritable (epi)genetic
alterations



Spatial models of cancer initiation in epithelial tissues

Curtius et. al. Nature Rev. Cancer 2017



Example: colorectal cancer initiation

Vogelstein et al. 1988



Field Cancerization
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I Figure - example with two mutational hits to tumor initiation.
I ‘Cancerized’ fields (local and distant) likely to give rise to additional

‘recurrent’ tumors
I Fields often appear histologically normal (e.g TP53 mutation)



Basal layer width (w)

esophageal lining (w>1)
uterine cervix (w=1)



Model: carcinogenesis in epithelial basal layer

I Z2 ⇥ Zw

I Cells reproduce at rate depending on fitness, daughter cell replaces
neighboring cell at random.

I Initially all cells healthy (type-0)



Mutational pathway

I Type-i mutates to type-i + 1 at rate µi .
I Mutations confer fitness increases �i > 0
I Stop model when first successful type-k cell arises (time �k )
I Periodic boundary conditions



Biased voter model

⇠A
t : set of sites in Z2 ⇥ Zw occupied by type-1 cells at time t , with initially

type-1 occupied set A.

Set A = {0} and µi = 0.

⇠t is a biased voter model with selection strength �

Survival probability (Maruyama ’70, 74) via analysis of embedded random
walk within |⇠A

t |:
�

1 + �

Asymptotic shape (w = 1): (Bramson and Griffeath 1981)

Conditioned on nonextinction, there is a set D such that for any ✏ > 0 such
that

P(9t⇤ : D(1 � ✏)t \ Zd ✓ ⇠A
t ✓ D(1 + ✏)t 8t > t⇤) = 1



Biased voter model

⇠t : set of sites in Z2 ⇥ Zw occupied by type-1 cells at time t , if ⇠0(0) = {0}.

⇠t is a biased voter model with selection strength �

Survival probability (Maruyama ’70, 74) via analysis of embedded random
walk within |⇠A

t |:
�

1 + �

Asymptotic shape (w = 1): (Bramson and Griffeath 1981)

Conditioned on nonextinction, there is a set D such that for any ✏ > 0 such
that

P(9t⇤ : D(1 � ✏)t \ Zd ✓ ⇠A
t ✓ D(1 + ✏)t 8t > t⇤) = 1

Extension to Z2 ⇥ Zw

P
�
9t⇤ : (1 � ")tD \ (Z2 ⇥ Zw ) ✓ ⇠A

t ✓ (1 + ")tD, 8t � t⇤
�
= 1.



How fast do mutants spread?

Theorem Let e1 be the first unit vector and define the growth rate cw (�) such
that the intersection of D with the x axis is [�cw (�)e1, cw (�)e1]. Then, as
� ! 0 we have

cw (�) ⇠ pw
p
⇡w/

p
h(�)

where h(�) = (1/�) log(1/�) and

pw =

8
><

>:

1 w = 1
4/5 w = 2
2/3 w � 3

(F., Gunnarsson, Leder, Storey. Ann App Prob, 2022)
(Durrett, F., Leder. J. Math Bio, 2016)



Proof sketch
I Dual process is a coalescing branching random walk ⇣t with jump rate 1

and branching rate �:

P(⇠A
t \ B 6= ;) = P(⇣B

t \ A 6= ;), A,B ⇢ Z2 ⇥ Zw

I Let T0 be coalescence time between a parent and daughter particle in
the dual process.

P(T0 > ⌧(�)) ⇠ µw/ log (1/�),

where ⌧(�) ⌘ 1/(�
p

log 1/�).



Proof sketch

I Ignore newborn particles that collide with parent before age ⌧(�).
I Assuming no other coalescences, resembles BRW with branching rate

�µw

log (1/�)
= µw/h(�)

I Effective time between branchings ⇠ h(�), fluctuations of order
⇠

p
h(�):

⇣̃�t = ⇣h(�)t/
p

h(�)

I Show ⇣̃�t approximates BRW with branching rate µw to obtain speed
bounds:

I Upper bound: couple ⇣̃�t with approximating BRWs
I Lower bound: compare ⇣̃�t with oriented percolation process

I Expansion rate of BRW projection onto Z gives result.



Understanding cancer fields

Goal: characterize the properties of the premalignant fields at the time of
cancer initiation / diagnosis

Motivate a macroscopic model using properties of the microscopic model:
I Survival probability, shape of mutant clones conditioned on survival
I Expansion speed of mutant clones



Macroscopic model

k-step initiation process (type-k cells are malignant) in torus [0, L]d (d = 2 in
epithelial tissue)

At time zero, all cells type-0.

Dynamics (k=2).
I Successful mutations to type-1: homogeneous Poisson process with

rate µ1
�1

�1+1 per unit area

I Type-1 mutations initiate ball with expanding radius, rate cw (�1).
I Type-1 individuals acquire second successful mutation at rate µ2

�2
1+�2

per unit area



Macroscopic model
k-step initiation process (type-k cells are malignant) in torus [0, L]d (d = 2 in
epithelial tissue)

At time zero, all cells type-0.

Dynamics (k=2).
I Successful mutations to type-1: homogeneous Poisson process with

rate µ1 per unit area
I Type-1 mutations initiate ball with expanding radius, rate ↵.
I Type-1 individuals acquire second successful mutation at rate µ2 per

unit area
I Process is stopped at time �2, time of arrival of the first successful

type-2 mutant.

Characterized waiting time to type-k mutation, �k (F., Leder, Schweinsberg. SPA 2020)



Determining local and distant field size distributions

What is the size of the local field at the time �2 when the first successful
type-2 arises (cancer initiation)?

Conditioned on observing {�2 2 dt}, the size of the local field follows the
distribution

P̂
�
X[1] 2 dx

�
=

u2�̄2x1/d

d�1/d
d cw (�1)(1 � e�✓td+1)

exp

"
�u2�̄2x

d+1
d

(d + 1)�1/d
d cw (�1)

#
,

for x 2 [0, �d cd
w (�1)td ], �̄i =

�i
1+�i

, ✓ = u2�̄2�d cd
w (�1)

d+1 .

Analogous results can be obtained for the distant field (number and size of
field patches).

Field size distributions can be used to predict recurrence risk.



Application to HPV- Head and Neck Squamous Cell
Carcinoma (HNSCC)

HNSCC arises in the epithelial lining of the oral cavity, pharynx, and larynx,
associated with high recurrence rates due to field cancerization.

Ryser et al 2016, Cancer Research



Field extent is dependent on age-at-diagnosis

Ryser et al 2016, Cancer Research



Alternative models of tissue maintenance

Birth-death (biased voter) model: Cell division triggers death of a neighbor,
thus maintaining homeostasis.

Death-birth model: Cell death triggers division of a neighbor.

(Brock et. al., Nature Comm 2019) Damaged epithelial cells release apoptotic
bodies, which are engulfed by neighboring cells and signal proliferation.



Death-birth model

I Each cell dies at rate 1.
I Upon death, a neighboring cell selected with probability proportional to

fitness to divide and place offspring at dead cell position.
I We again assume that type-0 cells have fitness 1 and type-1 cells have

fitness 1 + �. Let � = 1 + �.
I Denote the set of sites occupied by type-1 cells by ⇠A

t , where
⇠A

0 = A ⇢ Zd .
I Define ⌧A

; = inf{t � 0 : ⇠A
t = ;} time of extinction of type-1.

Note that fitness can be incorporated in the first or second stage (e.g.
Bf D,BDf ,Df B,DBf ). Here we consider BD ⌘ Bf D and DB ⌘ DBf .



Bias of 0-1 edges (d > 1)

I Birth-death: at 0-1 edges the rate of 0 ! 1 is (1 + �)/(2d) independent
of neighbors.

I Death-birth: at 0-1 edges flipping rates are configuration-dependent, i.e.

1
k + (2d � k)�

(1 ! 0) and �
(2d � m) + m�

(0 ! 1)

where k = number of type-0 neighbors of the 1, and m = number of
type-1 neighbors of the 0.

I DB 0-1 edges have non-negative bias towards type-1, but can be zero
(checkerboard).

minimal bias (k = m = 2d) maximal bias (k = m = 1)



Survival Probability

In d = 1, P(⌧ 0
; = 1) = 2�/(2 + 3�) (! � in weak selection limit).

For d > 1:
I Define Sn the jump process embedded in (|⇠{0}

t |)t�0

I Sn acquires a non-negative drift from every 0-1 edge,
configuration-dependent for Sn � 2.

Proposition

C1(d)� � P(⇠0
t 6= ; for all t � 0) � C2(d)�d/(d�1)

where C1,C2 are positive constants.

I Consider boundary of ⇠0
t with unbounded component of complement,

lower bound.
I Drift on boundary edges strictly nonzero.

F., Gunnarsson, Leder, Sivakoff (2023)



Graphical representation of DB process

I Let N (x) ✓ 2Zd
be the set of neighbors of x 2 Zd .

I For each subset S ✓ N (x) of neighbors with |S| = j , draw �-arrows
from all sites in S to x at rate dj(�).

I � kills the particle at x , and that x assumes state 1 if and only if at least
one of the arrows connects x to a site in state 1.



Graphical representation of BD process



Dual process ⇠̂t

I Consider particle x 2 ⇠̂t . For each subset S ✓ N (x) of neighbors with
|S| = j , replace the particle at x with j offspring placed at the elements
of S at rate dj . Particles coalesce if they meet.

I Satisfies P(⇠̂A
t \ B 6= ;) = P(⇠B

t \ A 6= ;).



Shape theorem for DB

Theorem
Conditioned on nonextinction, there is a convex subset D of Rd such that for
every " > 0

P
�
9t⇤ < 1 : (1 � ")tD \ Zd ✓ ⇠0

t ✓ (1 + ")tD, t � t⇤
�� ⌧ 0

? = 1
�
= 1.

Durrett, Griffeath (82) provide conditions for existence of shape theorems for
growth models on Zd .

I Conditioned on extinction, process eventually contains a linearly
expanding ball (modify techniques from Bramson Griffeath (81) BV
analysis)

F., Gunnarsson, Leder, Sivakoff (2023)



Shape theorem

I Extinction probability decays approximately exponentially in initial size.

Lemma
There are constants C, � > 0 so that

supA2S,|A|=k P(⌧A
? < 1)  C exp

�
��k (d�1)/d�, k � 1.

I Probability that the death-birth process remains alive at a small size to
time t decreases exponentially fast.

Lemma
For sufficiently small " > 0, there are constants C, � > 0 so that

P
⇣
|⇠0

s | 2
�
0, "td/(d+1)�, s  t

⌘
 C exp

�
��t (d�1)/(d+1)�, t � 0.



Note on other models of maintenance

I Df B model: type-0 particles die at rate 1, type-1 particles die at rate
1/�. (� = 1 + �). When a particle dies at x , a neighboring particle is
chosen uniformly at random to divide and place its offspring at x .
I Run at speed �, we obtain the Bf D model.

I BDf model: all particles divide at rate 1, a neighbor is selected to die
with probability inversely proportional to its fitness. If there are i type-0
neighbors and j type-1 neighbors, a type-0 neighbor is selected to die
with probability i/(i + j(1/�)) = i�/(i�+ j), and a type-1 neighbor is
selected to die with probability j(1/�)/(i + j(1/�)) = j/(i�+ j).
I Switching rate depends on neighbors of neighbors
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