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Collectives at various scales

Biology

Robots

People

Tiny 
      Robots

Particles

Questions:     

• What can they do collectively?

• What type of computation? 

       Communication?  Memory?

• Can we understand / program it?

• How predictable is the behavior?



Active Matter: ensemble 
of self-organizing

computational “particles” 

Programmable to change 
their collective physical 

properties

Swarm Robotics / Programmable Matter
(as Self-Organizing Particle Systems)



Active Matter: ensemble 
of self-organizing

computational “particles” 

Programmable to change 
their collective physical 

properties

Algorithms: Devise the local, distributed rules 
that each particle runs in order to achieve 
the desired emergent, collective behavior

• No human intervention or central control
• Scalable
• Indistinguishable particles
• Oblivious to global properties

Swarm Robotics / Programmable Matter
(as Self-Organizing Particle Systems)



E.g. Compression

Question: Using local, distributed rules, how can particles “compress” 

           (or “aggregate”)?   *Assume particles are simply connected.

Def: A configuration is α-compressed if its perimeter is at most 

       α times the minimum perimeter (for this number of particles).

Not compressed Compressed

Triangular 
lattice



Compression Algorithm

A distributed, stochastic algorithm for compression:
– Ensures system connectivity on the triangular lattice.
– Poisson clocks to activate particles (i.e., no synchronization).

– Metropolis probabilities to converge to 𝜋 𝜎 ∝ 𝜆!(#), for 𝜆 > 1.

Fix 𝜆 > 1. Start in any connected configuration.

When a particle activates (according to its Poisson clock):

• Pick a random neighboring node.

• If the proposed node is unoccupied, and certain properties hold*,   

          move with probability min 𝜆%!, 1 .

• Otherwise, do nothing.

[Cannon, Daymude, R., Richa ’16]

*To maintain 
 connectivity.



Compression Simulations

l = 4
100 particles after:
a) 1 million
b) 2 million
c) 3 million
d) 4 million
e) 5 million
iterations.

(a)                                                               (b)

(c)                              (d)                         (e)

l = 2
100 particles after:
a) 10 million
b) 20 million
iterations.

No compression. (a)                                                            (b)

Compression.



Compression: Theorems

Thm:  For all l > 𝟐 + 𝟐, there exists a = a(l) s.t. particles are 
 a-compressed at stationarity almost surely.
                (E.g., when  l = 4,   a = 9.)

Defn:   A configuration is a-compressed if its perimeter is at
                most a times the minimum perimeter.

Thm:  When l < 2.17, for any a > 1, the probability particles
            are a-compressed at stationarity is exponentially small.

Note:  Expansion works similarly for small l. 

[Cannon, Daymude, R., Richa ‘16]  

?no compression compression

𝟐 + 𝟐𝟐. 𝟏𝟕



Compression: Theorems

Thm:  For all l > 𝟐 + 𝟐, there exists a = a(l) s.t. particles are 
 a-compressed at stationarity almost surely.
                (E.g., when  l = 4,   a = 9.)

Defn:   A configuration is a-compressed if its perimeter is at
                most a times the minimum perimeter.

Thm:  When l < 2.17, for any a > 1, the probability particles
            are a-compressed at stationarity is exponentially small.

Note:  Expansion works similarly for small l. 

[Cannon, Daymude, R., Richa ‘16]  

?no compression compression

𝟐 + 𝟐𝟐. 𝟏𝟕



Main proof technique: Peierls Argument

Define f : A ® B so that, for c1 > c2 > 1  such that:
 

•  For all a Î A,     π(a) e 
c1n <  π(f(a))

•  For all b Î B,      |{f -1 (b)}|  <  ec2n 

Then:      π(A) <  e(c2 
- c1) n << 1.

To show that some subset has exponentially small probability:

Physics:    Distinguish Gibbs states;

Comp Sci:    Bound mixing times through identifying small cutsets;

Active Matter:   Bound likelihood of (un)desirable ensemble behavior.

A

Bf
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Thm: For all l > 𝟐 + 𝟐, there exists a = a(l) s.t. particles are 
 a-compressed at stationarity almost surely.

Pf:   Note 𝑝 𝜎 = 3𝑛	 − 𝑒 𝜎 − 3, so we can express the stat. dist'n as:

𝜋 𝜎 ∝ 𝜆! # 	=	𝜆+, # /𝑍

Let	 𝑆! = configurations with perimeter >	 𝛼	𝑝𝑚𝑖𝑛 
	 𝑚"=	number of configurations with perimeter k. 

The (# configs with perim. k) <  (# SAWs in the hexagonal lattice), i.e., 

Proof Techniques

.

|{SAWs of length t }| ~ (𝜇hex) 
𝑡	=	(2 + 2) 

t
 
/

 
2

[Duminil-Copin and Smirnov ‘12]
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…. which is exponentially small for 𝝀 > 𝟐 + 𝟐. 

Thm:  When l < 2.17, for any a > 1, the probability particles
            are a-compressed at stationarity is exponentially small.

Another Peierls argument to show non-compression whp using bijection 
between configs and hydrocarbons (or “animals” on the hex lattice).



More Self-Organization in Nature

Compression Bridging

Flocking

LocomotionSeparation

Alignment



Separation (or Speciation)

“Integrated” “Separated”



Separation

Question: Using local, distributed rules, how can heterogeneous 

      particles “compress” overall while also “separating” into (mostly)

      monochromatic groups?

Neither compressed nor separated                  compressed and separated



Definition of Separated

Defn:  A configuration is (b,d)-separated if there is a subset of 
particles R s.t.:

1. There are at most b√n particles with exactly one endpoint in R;

2. The density of particles of color c1 inside R is at least 1-d;
3. The density of particles with color c1 outside R is at most d.

__

Compressed and separated

R



MC for Separation
Distributed algorithm for separation: 

• Ensures global connectivity and is not synchronized.

• Uses Metropolis probabilities to converge to: 

                               π σ ∝ λ-(.) ⋅ γ/ . , 

    for bias parameters λ	 (for compression) and γ (for separation),

    where 𝑚 𝜎 	is the # of monochromatic edges.

   
Fix λ and γ. Start in any connected configuration.

When a particle activates (according to its Poisson clock):

• Pick a random neighbor.

• Move with probability min (λ%-⋅ γ%/), 1 .

• Otherwise, do nothing.



Separation for large 𝛾
Stationary distribution:   𝜋 𝜎 ∝ 𝜆! # ⋅ 𝛾0 # = 𝜆𝛾 +,(#) ⋅ 𝛾+1(#).

Thm: When 𝜆𝛾 > 6.83 and 𝛾 > 5.66, there exists 𝛼 s.t. the particle system 
is α-compressed and separated at stationarity a.s.                

     Have to account for both monochromatic / heterogenous edges!               

.  Proof uses the cluster expansion + a Peierls arg.

Thm: When 𝜆(𝛾 + 1) > 6.83 and 0.98 ≤ 𝛾 ≤ 1.02, there exists 𝛼(𝜆, 𝛾) 
s.t. the particle system will be α-compressed and integrated  (i.e., not 
separated) at stationarity a.s.

Uses the high temperature expansion (to express Z as a weighted sum 
even degree subgraphs): 

,
*∈,!

𝛾(- * = (… ),
./.0	1⊆1(4)

𝛾 − 1
𝛾 + 1

|1|

 + a similar strategy with the cluster expansion + a Peierls arg.



Strategies for Collective Behaviors

Local rules Global properties

• Carefully choreograph interactions

• Define a useful potential function

• Infer global behavior from a meaningful stationary dist'n

?
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Boltzmann Distribution
P(s) = e-b H(s)/ Z
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Particle/spin systems

Simulations on a wrapped-around box in Z2

Some simulations (by Justin Hilyard)

aaaaaaaaaaaaa 80⇥ 80, � = 2 aaaaaaaaaaaaaaaaa 80⇥ 80, � = 5

Conjecture: Model on boxes in Z2 flips from disorder to order around some �crit

David Galvin (Notre Dame) Hard-core model on Z2
September 25, 2012 4 / 24
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Colloids Schelling Segregation

Local rules à Emergent behavior

Collective Behavior

Emergent behavior 
 à Local rules



Stochastic Distributed Algorithms for Collectives

• Alignment                          [Kedia, Oh, R. ’22] 

• Shortcut bridging              [Arroyo, Cannon, Daymude, R., Richa, ’17]

• Separation / Integration     [Cannon, Daymude, Gokmen, R., Richa, ‘18]

• Phototactic locomotion   [Savoie, Cannon, Daymude, Warkentin, Li, Richa, R., Goldman ’18]

Search Phase Gather Phase

Food appears somewhere

Food depletes

Dispersion Aggregation

• Aggregation / Dispersion   [Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, R. ’21] 

• Self-induced phase changes.                                                 
 [Oh, R. Richa ‘23]



Foraging

l < 2.17 l > 3.4

Self-induced phase changes?

Green = food
Red = compression
Yellow = dispersion
Purple = dispersion

l > 3.4



Foraging

l < 2.17 l > 3.4

Self-induced phase changes
[Oh, R., Richa, 23]

Use careful message 
     passing.

l > 3.4



Nonreversible     
  Local rules

Global properties

Boltzmann Distribution
P(s) = e-b E(s)/ Z

The real world is not reversible!



Real Systems of Collective Models

New “Boltzmann-like” Distributions

[Calvert, R. ‘24]

qi = Sj qij

Local part:  exit rates
i

Nonlocal part:  “jump chain”

qij

qi

i j Yi;
Stationary dist

Nonreversible     
  Local rules

Global properties

pij =

Note:        pi  =          / Z.q i

Yi

(for continuous time Markov Chains)
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Global properties

Rattling Distribution
P(s) = e-g R(s)/ Z

The real world is not reversible!
[Calvert, R. ‘24]
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Takeaways

• Equilibrium systems are so nice, it’s magic!

• …But many nonequilibrium systems also have rich structures

        connecting local features to global behaviors.

• Emergent properties of collectives can be useful design tools.

• Collectives define a rich class of “stat. phys.”-type problems

         based on stochastic, distributed algorithms.



Thank you !

Questions?


