Programmable Matter and Emergent Phenomena

Dana Randall

Georgia Institute of Technology

Collectives at various scales

People

Robots

Tiny Robots

Particles

Questions:

- What can they do **collectively**?
- What type of computation?
 Communication? Memory?
- Can we **understand / program** it?
- How **predictable** is the behavior?

Swarm Robotics / Programmable Matter (as Self-Organizing Particle Systems)

Active Matter: ensemble of self-organizing computational "particles"

Programmable to change their collective physical properties Swarm Robotics / Programmable Matter (as Self-Organizing Particle Systems)

Active Matter: ensemble of self-organizing computational "particles"

Programmable to change their collective physical properties

Algorithms: Devise the local, distributed rules that each particle runs in order to achieve the desired emergent, collective behavior

- No human intervention or central control
- Scalable
- Indistinguishable particles
- Oblivious to global properties

E.g. Compression

Question: Using local, distributed rules, how can particles "compress" (or "aggregate")? *Assume particles are simply connected.

<u>Def</u>: A configuration is α -compressed if its perimeter is at most α times the minimum perimeter (for this number of particles).

Compression Algorithm

[Cannon, Daymude, R., Richa '16]

- A distributed, stochastic algorithm for compression:
 - Ensures system connectivity on the triangular lattice.
 - Poisson clocks to activate particles (i.e., no synchronization).
 - Metropolis probabilities to converge to $\pi(\sigma) \propto \lambda^{e(\sigma)}$, for $\lambda > 1$.

Fix $\lambda > 1$. Start in any connected configuration.

When a particle activates (according to its Poisson clock):

- Pick a random neighboring node.
- If the proposed node is unoccupied, and certain properties hold^{*}, move with probability $\min\{\lambda^{\Delta e}, 1\}$.
- Otherwise, do nothing.

*To maintain connectivity.

Compression Simulations

λ = 2

100 particles after:a) 10 millionb) 20 millioniterations.

No compression.

Compression: Theorems

[Cannon, Daymude, R., Richa '16]

<u>Defn</u>: A configuration is α -compressed if its perimeter is at most α times the minimum perimeter.

<u>Thm</u>: For all $\lambda > 2 + \sqrt{2}$, there exists $\alpha = \alpha(\lambda)$ s.t. particles are α -compressed at stationarity almost surely. (E.g., when $\lambda = 4$, $\alpha = 9$.)

<u>Thm</u>: When $\lambda < 2.17$, for any $\alpha > 1$, the probability particles are α -compressed at stationarity is exponentially small.

<u>Note</u>: Expansion works similarly for small λ .

Compression: Theorems

[Cannon, Daymude, R., Richa '16]

<u>Defn</u>: A configuration is α -compressed if its perimeter is at most α times the minimum perimeter.

<u>Thm</u>: For all $\lambda > 2 + \sqrt{2}$, there exists $\alpha = \alpha(\lambda)$ s.t. particles are α -compressed at stationarity almost surely. (E.g., when $\lambda = 4$, $\alpha = 9$.)

<u>Thm</u>: When $\lambda < 2.17$, for any $\alpha > 1$, the probability particles are α -compressed at stationarity is exponentially small.

<u>Note</u>: Expansion works similarly for small λ .

Main proof technique: Peierls Argument

To show that some subset has exponentially small probability:

Define $f : A \rightarrow B$ so that, for $c_1 > c_2 > 1$ such that:

- For all $a \in A$, $\pi(a) e^{c_1 n} < \pi(f(a))$
- For all $b \in B$, $|\{f^{-1}(b)\}| < e^{C_2 n}$

Then: $\pi(A) < e^{(c_2 - c_1) n} << 1.$

<u>Physics</u> :	Distinguish	Gibbs	states;
------------------	-------------	-------	---------

<u>Comp Sci</u>: Bound mixing times through identifying small cutsets;

Active Matter: Bound likelihood of (un)desirable ensemble behavior.

Proof Techniques

<u>Thm</u>: For all $\lambda > 2 + \sqrt{2}$, there exists $\alpha = \alpha(\lambda)$ s.t. particles are α -compressed at stationarity almost surely.

<u>**Pf**</u>: Note $p(\sigma) = 3n - e(\sigma) - 3$, so we can express the stat. dist'n as: $\pi(\sigma) \propto \lambda^{e(\sigma)} = \lambda^{-p(\sigma)}/Z$

Let $S_{\alpha} = \text{configurations with perimeter} > \alpha p_{min}$ $m_k = \text{number of configurations with perimeter k.}$ $\pi(S_{\alpha}) = \sum_{k=\alpha}^{p_{max}} \frac{m_k \lambda^{-k}}{Z}$

The (# configs with perim. k) < (# SAWs in the hexagonal lattice), i.e.,

 $|\{\text{SAWs of length } t\}| \sim (\mu_{\text{hex}})^t = (2 + \sqrt{2})^{t/2}$

[Duminil-Copin and Smirnov '12]

Proof Techniques

<u>Thm</u>: For all $\lambda > 2 + \sqrt{2}$, there exists $\alpha = \alpha(\lambda)$ s.t. particles are α -compressed at stationarity almost surely.

<u>Pf</u>: Let S_{α} = configurations with perimeter > αp_{min} m_k = number of configurations with perimeter k.

$$\pi(S_{\alpha}) = \sum_{k=\alpha}^{p_{max}} \frac{m_k \lambda^{-k}}{Z} \lesssim \sum_{k=\alpha}^{p_{max}} \frac{(2+\sqrt{2})^{k+5/2} \lambda^{-k}}{Z}$$

.... which is exponentially small for $\lambda > 2 + \sqrt{2}$.

<u>Thm</u>: When $\lambda < 2.17$, for any $\alpha > 1$, the probability particles are α -compressed at stationarity is exponentially small.

Another Peierls argument to show non-compression whp using bijection between configs and hydrocarbons (or "animals" on the hex lattice).

More Self-Organization in Nature

Compression

Bridging

Separation

Locomotion

Alignment

Flocking

Separation (or Speciation)

Separation

Question: Using local, distributed rules, how can heterogeneous particles "compress" overall while also "separating" into (mostly) monochromatic groups?

compressed and separated

Neither compressed nor separated

Definition of Separated

<u>**Defn</u></u>: A configuration is (\beta, \delta)-separated if there is a subset of particles R s.t.:</u>**

- 1. There are at most $\beta \sqrt{n}$ particles with exactly one endpoint in R;
- 2. The density of particles of color c_1 *inside* R is at least $1-\delta$;
- 3. The density of particles with color c_1 *outside* R is at most δ .

Compressed and separated

MC for Separation

Distributed algorithm for separation:

- Ensures global connectivity and is not synchronized.
- Uses Metropolis probabilities to converge to:

 $\pi(\sigma) \propto \lambda^{e(\sigma)} \cdot \gamma^{m(\sigma)}$,

for bias parameters λ (for compression) and γ (for separation), where $m(\sigma)$ is the # of monochromatic edges.

Fix λ and γ . Start in any connected configuration.

When a particle activates (according to its Poisson clock):

- Pick a random neighbor.
- Move with probability $\min \{(\lambda^{\Delta e}, \gamma^{\Delta m}), 1\}$.
- Otherwise, do nothing.

Separation for large γ

Stationary distribution: $\pi(\sigma) \propto \lambda^{e(\sigma)} \cdot \gamma^{m(\sigma)} = (\lambda \gamma)^{-p(\sigma)} \cdot \gamma^{-h(\sigma)}$.

<u>Thm</u>: When $\lambda \gamma > 6.83$ and $\gamma > 5.66$, there exists α s.t. the particle system is α -compressed and <u>separated</u> at stationarity a.s.

Have to account for both *monochromatic / heterogenous* edges! Proof uses the *cluster expansion* + a *Peierls arg*.

<u>**Thm</u>**: When $\lambda(\gamma + 1) > 6.83$ and $0.98 \le \gamma \le 1.02$, there exists $\alpha(\lambda, \gamma)$ s.t. the particle system will be <u> α -compressed</u> and <u>integrated</u> (i.e., <u>not</u> separated) at stationarity a.s.</u>

Uses the *high temperature expansion* (to express Z as a weighted sum even degree subgraphs):

$$\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} = (\dots) \sum_{\text{even } E \subseteq E(\Lambda)} \left(\frac{\gamma - 1}{\gamma + 1}\right)^{|E|}$$

+ a similar strategy with the *cluster expansion* + a *Peierls arg*.

Strategies for Collective Behaviors

- Carefully choreograph interactions
- Define a useful potential function
- Infer global behavior from a meaningful stationary dist'n

Strategies for Collective Behaviors

- Carefully choreograph interactions
- Define a useful potential function
- Infer global behavior from a meaningful stationary dist'n

Foraging

00

 $\lambda > 3.4$

Self-induced phase changes?

Green = food Red = compression Yellow = dispersion Purple = dispersion

Foraging

Self-induced phase changes

[Oh, R., Richa, 23]

Use careful message passing.

The real world is not reversible!

Real Systems of Collective Models [Calvert, R. '24] Nonreversible Local rules

New "Boltzmann-like" Distributions

(for continuous time Markov Chains)

The real world is not reversible! [Calvert, R. '24] **Global properties** Nonreversible Local rules **Rattling Distribution** $\Pi(\sigma) = e^{-\gamma R(\sigma)}/Z$ $r^2 = \frac{\operatorname{Var}(\log \psi_I)}{\operatorname{Var}(\log q_I)}$ and $\widetilde{\rho} = \operatorname{Corr}(\log \psi_I, -\log q_I).$ The correlation ρ of $\log \pi_I$ and $-\log q_I$ satisfies $\rho = \frac{1 + \rho r}{\sqrt{1 + 2\widetilde{\rho}r + r^2}}.$

The best linear approximation of $\log \pi_I$ by $-\log q_I$ has an MSE of $(1 - \tilde{\rho}^2)$ Var $(\log \psi_I)$ and a slope of $\gamma = 1 + \tilde{\rho}r$.

The real world is not reversible! [Calvert, R. '24]

(Adapted from Chvykov et al.)

Takeaways

• Equilibrium systems are so nice, it's magic!

- ...But many nonequilibrium systems also have rich structures connecting local features to global behaviors.
- Emergent properties of collectives can be useful design tools.
- Collectives define a rich class of "stat. phys."-type problems based on stochastic, distributed algorithms.

Thank you !

