Programmable Matter and
Emergent Phenomena

Dana Randall

Georgia Institute of Technology



Collectives at various scales

People

Questions:

| What can they do collectively?
Biology

What type of computation?

Communication? Memory?
Robots unicatio emory

Can we understand / program it?
Tiny
Robots

How predictable is the behavior?

Particles
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Swarm Robotics / Programmable Matter
(as Self-Organizing Particle Systems)

Active Matter: ensemble Programmable to change
of self-organizing . their collective physical
computational “particles” properties

Algorithms: Devise the local, distributed rules
that each particle runs in order to achieve
the desired emergent, collective behavior

No human intervention or central control
Scalable

Indistinguishable particles

Oblivious to global properties



E.g. Compression

Question: Using local, distributed rules, how can particles “compress”

(or "aggregate”)? *Assume particles are simply connected.

Triangular
lattice e e e e e @

Not compressed

Def: A configuration is if its perimeter is at most

times the (for this number of particles).



Compression Algorithm
[Cannon, Daymude, R., Richa '16]

A distributed, stochastic algorithm for compression:
— Ensures system connectivity on the triangular lattice.
— Poisson clocks to activate particles (i.e., no synchronization).

— Metropolis probabilities to converge to  71(0) o< /18(0), for A > 1.

Fix A > 1. Start in any connected configuration.
When a particle activates (according to its Poisson clock):
» Pick a random neighboring node.

 If the proposed node is unoccupied, and certain properties hold",

move with probability min{/lAe, 1}. \
. . *To maintain
 Otherwise, do nothing. connectivity.




Compression Simulations
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Compression: Theorems
[Cannon, Daymude, R., Richa '16]

Defn: A configuration is a.-compressed if its perimeter is at
most a times the minimum perimeter.

Thm: For all A > 2 ++/2, there exists o = o)) s.t. particles are
o-compressed at stationarity almost surely.
(E.g., when A =4, o =9.)

Thm: When A <2.17, for any a. > 1, the probability particles
are o.-compressed at stationarity is exponentially small.

2.17 2 ++2
C _
no compression ? compression

Note: Expansion works similarly for small A.
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Main proof technique: Peierls Argument

To show that some subset has exponentially small probability:

Define f: A — B so that, for ¢, > ¢, > 1 such that:
« Forallace A, 11(a)es" < 1(f(a))

« ForallbeB, [|{f'(b)} < e%"

Then:  Ti(A) < el 6N << 1.
Physics: Distinguish Gibbs states;
Comp Sci: Bound mixing times through identifying small cutsets;

Active Matter: Bound likelihood of (un)desirable ensemble behavior.




Proof Techniques

Thm: For all A > 2 ++/2, there exists o = ou()) s.t. particles are
oi-compressed at stationarity almost surely.

Pf: Note p(o) = 3n —e(o) — 3, so we can express the stat. dist'n as:

(o) o« 280 = }~p9) /7

Let S, = configurations with perimeter > a p,,;,
my,= number of configurations with perimeter k.

pmax

m(Sq) = Z Mg A_k/Z

k:apmin,
The (# configs with perim. k) < (# SAWs in the hexagonal lattice), i.e.,
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{SAWSs of length t}| ~ (tnex)t = (2 + V/2)¥2

[Duminil-Copin and Smirnov ‘“12]




Proof Techniques

Thm: For all A > 2 ++/2, there exists o = o)) s.t. particles are
o-compressed at stationarity almost surely.

Pf. Let S, = configurations with perimeter > a p,,;,
my = number of configurations with perimeter k.

Pmax Pmax '
-k + -k
oe 3 w2 3 @y
kzapm,-n’ ‘k:a’pmin

... which is exponentially small for 2 > 2 ++/2.

Thm: When A <2.17, for any a. > 1, the probability particles
are o.-compressed at stationarity is exponentially small.

Another Peierls argument to show non-compression whp using bijection
between configs and hydrocarbons (or “animals” on the hex lattice).



More Self-Organization in Nature
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Separation (or Speciation)
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Separation

Question: Using local, distributed rules, how can
particles “compress” overall while also “separating” into (mostly)

monochromatic groups?

Neither compressed nor separated compressed and separated
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Definition of Separated

Defn: A configuration is ([3,0)-separated if there is a subset of

particles R s.t..

1.

There are at most 3Vn particles with exactly one endpoint in R;

3. The density of particles with color ¢, outside R is at most 0.

2. The density of particles of color ¢; /nside R is at least 1

Compressed and separated



MC for Separation

Distributed algorithm for separation:

« Ensures global connectivity and is not synchronized.
« Uses Metropolis probabilities to converge to:
n(o) e,

for bias parameters ) (for ) and vy (for separation),

where m(o) is the # of monochromatic edges.

Fix A and y. Start in any connected configuration.
When a particle activates (according to its Poisson clock):

* Pick a random neighbor.

« Move with probability min {( LyAm), 1}.

« Otherwise, do nothing.




Separation for large y
Stationary distribution: 1(g) o 16(0) . ™M) = (}y)~P(0) . ) ~h(9)

Thm: When Ay > 6.83 and y > 5.66, there exists « s.t. the particle system
IS and at stationarity a.s.

Have to account for both monochromatic /| heterogenous edges!

Proof uses the cluster expansion + a Peierls arg.

Thm: When A(y + 1) > 6.83 and 0.98 <y < 1.02, there exists (4, y
s.t. the particle system will be and (.e., not
separated) at stationarity a.s.

Uses the high temperature expansion (to express Z as a weighted sum
even degree subgraphs):

Z y—h(o) — (___)Z (_y _ 1)
TEQA even ECE(A) \V T+ 1

+ a similar strategy with the cl/uster expansion + a Peijerls arg.

|E|




Strategies for Collective Behaviors
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Define a useful potential function

Infer global behavior from a meaningful stationary dist'n



Strategies for Collective Behaviors
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Carefully choreograph interactions
Define a useful potential function

Infer global behavior from a meaningful stationary dist'n



Driving Collective Behavior

[ Local rules } — [ Global properties }

Boltzmann Distribution
Il(c)= e PH()/7



Driving Collective Behavior

For a desirable set A < .2,

[ Local rules } — { Global properties }

II(A) = 1- €N
Boltzmann Distribution Peierls
Argument

Il(c)= e PH()/7



Driving Collective Behavior

For a desirable set A < .2,

[ Local rules } — { Global properties }
)

P(o,1) = min(1,[1(t)/I1(C; 1A) 2 1-e ¢
Metropolis-Hastings Boltzmann Distribution Peierls
Algorithm Argument

Il(c)= e PH()/7



Driving Collective Behavior

Local rules — Global properties
, (— For a desirable set A < ),
P(o,t) = min(1,11(t)/11(C)) [I(A) = 1- €7CN
Metropolis-Hastings Boltzmann Distribution Peierls
Algorlthm Argument

Il(c)= e PH()/7
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Stochastic Distributed Algorithms for Collectives

Dispersion

Alignment

Shortcut bridging

Phototactic locomotion [Savoie, Cannon, Daymude, Warkentin, Li, Richa, R., Goldman '18]

Self-induced phase changes. o © C><><> o Food appears somewhere

o
o o
o 0 o ~ 0000
o o © OOOO.OOO
© ©°% T— 0SS / coco
Search Phase — oo % Gather Phase

Food depletes oooooo

o)



ing

Forag

Self-induced phase changes?

e
e

A<217

= food
compression

Green
Red

et aease:

bessssest
bos

iniiiiiiny

neanay

ispersion

d
d

ispersion

Purple



ing

Forag

A>3.4

4

Self-induced phase changes
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The real world is not reversible!

Nonreversible — Global properties
Local rules

Boltzmann Dis
E(o)/7
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Real Systems of Collective Models
[Calvert, R. ‘24

~

Nonreversible — Global properties
Local rules

J

New “Boltzmann-like” Distributions
(for continuous time Markov Chains)

Local part: exit rates Nonlocal part: “jump chain”
f Q= 24 qy p. = i ; gl
’ q; Stationary dist




The real world is not reversible!
[Calvert, R. 24

~

[ Nonreversible } — [ Global properties

Local rules )

Rattling Distribution
I(o)=e " R(9)/7

2 _ Var(log ;)

and p = Corr(logy;, —loggqi).

~ Var(loggj)




The real world is not reversible!

[Calvert, R. 24
N

Nonreversible — Global properties
Local rules )
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(Adapted from Chvykov et al.)



Takeaways

Equilibrium systems are so nice, it's magic! §, o

...But many nonequilibrium systems also have rich structures

connecting local features to global behaviors.
Emergent properties of collectives can be useful design tools.

Collectives define a rich class of “stat. phys."-type problems

based on stochastic, distributed algorithms.



Thank you !

% Questions?



