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Homander's condition

Theorem (Hormander, 1967)

Suppose that {X1,..., Xk} is a collection of vector fields
X; :R" — R" so that, for all x € R",

span{X;, [Xi, Xal. .- X [, X X THx) = R". (HO)
Then for &; the solution to the SDE
dey = Xo(&e) 0 dBy + - + Xi(&) 0 dBY, &0 = x,

Law(&y) is smooth for each t > 0, that is, Law(&f) is abs cts wrt
Lebesgue measure with strictly positive and smooth density:

Law(&5) = pe(x, ) dm, for some py € C°(R", (0, c0)).



Heisenberg group examples

The elliptic case

Now let

):GEX; B El’o’ I%))Q) NOTE: Vx € R3
X2 X) = O,l, §X]_ ~ . ’ - .
X Spa X 9 X N X =R
Xa(x) = (0,0,1) span{Xa(x), Xa(x), Xa(x)}
Consider the solution & = (6%,52,53) to SDE

d&e = X1(&) 0 dBE + Xa(&¢) 0 dB? + X3(&;) o dB?

1 0 0
= 0 JodBl+ | 1 |odB?+ |0 ] ocdB}
_1g2 l{l 1
25t 26t

with & = 0.



Heisenberg group examples

The elliptic case

Now let 5
Xi(x) = (1,0,—1x)
Xa(x) = (0,1, 3x1)
X3(x) = (0,0,1)

The solution to the SDE
d&e = X1(&) 0 dB} + Xa(&:) 0 dB? + X3(&:) o dB2,

with & = 0 may be written explicitly as

1 t
£ = (B},BE,B§+ 5 /O BldBZ — B_dei) :



Heisenberg group examples

Stochastic Lévy area
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(image from Manigo-Bornales)



Heisenberg group examples

Stochastic Lévy area

(Zibeso = { /0  By(s)dBa(s) — Bg(s)dBl(s)}

g {B (i Q/:(le)z +(B3)? ds) }m

This implies, for example, that for

t>0

1 t
p(BLBY) = g [ (BLF+ (B s

we may write

(Z: | pe(BY, B)) ~ N(0, pe(B1, B?)).



Heisenberg group examples
The hypoelliptic case

Again let
- 1 0 1 0
X]_(X) = <1,0, —2X2> = 87)(1 - §X287X3
- 1 o 1 0
X2(X) == <0, ].7 2X1> == 87)(2 -+ §X187X3
- 0
X3(x) = (0,0,1) = o

Note that [)~<1¢ )~<2] — X, X, — X5 X, = X5. Thus, we can write
span{Xi(x), Xa(x), [X1, X2](x)} = R3.

So {X1, X>} satisfies Hérmander’s Condition.



Heisenberg group examples
The hypoelliptic case

Again let
o 1 o 1 0
X)) = (1,0,—2x ) = -2 — 22
l(X) ( 707 2X2) axl 2X2 aX3
1 0 1 0
XQ(X) = <0, 1, 2X1> = 87)(2 + §X187X3

_ 9
N (9X3
Now consider the SDE
dg: = Xi(gr) o dB; + Xa(gr) o dBF,

which again we may solve explicitly, now as

1/t
gt = <B},B§,2 /0 BldBZ — deB_}).



Heisenberg group examples

1 [t
gt = (B},B§,2/ BldB? — B_SdBi) = (B:, Zy)
0

(image from Nate Eldredge)



Heisenberg group examples

An explicit heat kernel formula

(HC) = Law(¢;) and Law(g;) are smooth measures on R3.

In particular for v, := Law(g:) = Law (B¢, Z¢),

dvy 1 " inz/2 A —(x%+y?)A coth(At) /4
[ V. — Inzgje__ ~ x ’ ! d)\
am Y 2) = 15 / ¢ sinh(n) €

One may prove this by showing that
E |f(B)e™%| = E|f(Br)e (B¥

[y |Bs|? ds. (see Gaveau, Lévy, Yor,

)

where p:(B) =

1
4 .
Helmes-Schwane, .



Heisenberg group geometry
Let h = span{Xy, Xo, X3} = R with Lie bracket [X;, Xo] = X5,

and all other brackets are 0. In coordinates, this is

[(X17 X2, X3) ) (X{,Xﬁ, Xé)]
= [X1X1 + x X5 + x3X3, X{Xl + XéXz + X§X3]
= X1X{[X1, Xl] + X1X£[)<17 X2] + X1X§[X1, X3] -+ .-

= (0,0, x1x) — X1 X2).
Via the BCHD formula we may equip R? with the group operation
/ / 1 !/
x-x'=x+x +§[X,X]

1
= <x1 + X1, X0 + Xy, X3 + X5 + E(Xlxé — x2x{)> .

Then R3 with this group operation is the Heisenberg group H, with
Lie(H) = b; the X;'s are the unique left inv vfs so that X;(0) = X;.



Heisenberg group geometry

We can define a left invariant Riemannian metric on H by taking
{Xi(x)}?_; to be an onb at each x € I, and Riemannian distance

d(x,y) :=inf{l(v) : v path from x to y}

where

1
()= [ 10Ol d.
Jo
Alternatively, we can define the horizontal distance
d(x,y) = inf{{(v) : ~ a horizontal path from x to y},

where v is horizontal if

7 (t) € span{ Xy (7(t)), Xo(7(t))}-



Heisenberg group geometry
We can write

h:=span{Xi, Xo} x span{Xz}=: H x C
and define w = [-, ||y H x H — C so that
[(h7 C)v (h/7 CI)] - (va(hv h/)) - (07 hlh/2 - h/1h2)'
and )
(h,c)-(H,c) = <h+h’,c+c’+ Ew(h, h’)) :

Then
(HC) < w(H,H) =C,

and we may write

1 t
gi = (B, Zt) == (Bt,z/o BldB? — B? stl)

~ (Bt.;/:w(Bs,st)> .



Heisenberg group geometry
For the horizontal distance on the Heisenberg group,

Ka (11All + VIel ) < de. (h.€)) < Ka ([1Allw + V/Ie)

In particular, d(0, (h,c)) < oo for all (h,c) € H. Many explicit
expressions are known, for example,

d(0,(0,¢)) = /= |c|

and geodesics (length minimizers) are well understood.



Hormander’s condition and horizontal distance

In the same way, given a collection of vfs {Xi,..., Xx} satisfying
(HC) on R", can define the horizontal distance analogously.

Chow-Rashevskii: (HC) = d(x,y) < oo for all x,y € R".
Moreover, the horizontal topology will be equivalent to the
Euclidean one.



Smooth measures in co dim

A measure p on R” is said to be smooth if

Definition! 1 is abs cts wrt Lebesgue measure and the RN

derivative is strictly positive and smooth — that is,
= pdm, for some p € C*(R", (0, 0)).

Definition? for any multi-index «, there exists a function
8o € C°(R™) N L~ (p) such that

/ (=D)*fdu = / fgo dp.  forall f € C°(R").
JRn

R"

» Definition! <= Definition?



A first step to smoothness: Quasi-invariance

So as a first step, we'd need to know how a measure behaves
under (infinitesimal) translations.

Definition A measure p on Q is quasi-invariant under a
transformation T : Q — Q if y and o T~ are mutually
absolutely continuous.

In particular, we're generally interested in quasi-invariance under
transformations of the type

T = T, = translation by an element h € Qy C €,

where Qg is some distinguished subset of 2.



A typical co-dim setting

Take H a Hilbert space with Gaussian meas y with covariance Q:
(k) ::/ iR () = e (@K kIn/2,
H

Q is necessarily a non-neg, sym, trace class operator.

Theorem (Cameron-Martin-Maruyama)
{ is quasi-invariant under translation by elements of H, — Q'/?H.

That is, for k € H, and dpk = du(- — k),
K K
pue<L o oand  pt > .

Moreover, if k ¢ H, then p* L p.

H,, is called the Cameron-Martin space for (H, ).



A typical co-dim setting
Facts about the CM space H,

» H,, is a Hilbert space equipped with inner product
(h, k), = (Q7Y2h Q@ 2k)y,

densely embedded in H, and, when dim(H) = oo, u(H,) = 0.
» The inclusion map ¢ : H, < H is Hilbert-Schmidt

lellfss == D il < oo

i

» In fact, given a Hilbert space H with a Hilbert subspace K
such that the inclusion K — H is HS, immediately implies the
existence of a Gaussian measure on H with covariance
determined by K.



oo-dim Heisenberg gps with dim(C) < oo

(Driver-Gordina, '08) Take
» H a Hilbert space with Gaussian measure p
» C a fin-dim inner product space
» w: Hx H — Cis a continuous anti-symmetric bilinear form

Then we can make g := H x C into a Lie algebra with bracket
[(h C)v (h/ C/)] = (0 W(h h/))

and Lie group G := H x C with group operation

(hyc)- (H,c) = <h +H e+ + %w (h, h’)).



oo-dim Heisenberg gps with dim(C) < oo

Let H,, denote the Cameron-Martin space for (H, ).

» Gep = H, < Cinherits a group structure from W|HuXH;u and
is a dense subgp of G = H x C

» w:HxH—= Ccts = w:H,x H, = C Hilbert-Schmidt

H”H%S(HNXHWC) = Z@(er &), ﬁ>% < 0.
il
o w HS on H, is in some sense the necessary assumption, rather
than w cts on H

» For example, w HS == stochastic Lévy area for {B;}¢>0

BM on H .

ot
Zt = 5 / (A}(BS.dBS)
JO

is well-defined in C.



oo-dim Heisenberg gps with dim(C) < oo

(B:, BE + Z;) and (B, Z:) are still solutions to the “elliptic’ and
“hypoelliptic” SDEs, respectively.

Driver-Gordina proved regularity properties (e.g., gi and 1st order
ibp) for Law((B:, B- + Z;)) on G. Dobbs-M proved smoothness

via arbitrary ibp formulae.

What about v; := Law ((B;, Z;))?



oo-dim Heisenberg gps with dim(C) < oo

Theorem (Baudoin-Gordina-M, '13)

Assume w(H,,. H, ) = C. Then v; is qi under left and right
translations by elts of Gy — H,, »x C. Moreover,

112
< exp (C (q, t, WHS) d*(0, (h, C)))
Lq(G7Vt) [)2

where d is the horizontal distance on G¢py and

00 N
po = inf Z <Z<w(e;,ej fy Cx;) sz =1

ij=1 \¢=1

d(ve © Ripe)
th

and similarly for the RN derivative under left translation.



oo-dim Heisenberg gps with dim(C) < oo

The proof relied on several elts, including
1. fxnal inequalities (particularly generalized CD inequalities a la
Baudoin, Bonnefont, Garofalo) involving coefficients with

25ty .y = Z Z

ij=1/¢=1

where continuity of w: H x H - C = ||w]||3;s < 00, and

[e's) N
po = inf Z( (w(ei, ) fchg) ng—l
ij=1 \r=1
— inf S (wene). o).
i, Yo twteng) o

Note that (HC) = pp > 0.



oo-dim Heisenberg gps with dim(C) < oo

The proof relied on several elts, including

2. convergence of the horizontal distance by fin-dim approx gps
dn(e; g) = d(e, g)

as n — oo. We made critical use of the estimate for g = (h, ¢)

1A, + K@)V lellc < d(e, (h,€)) < [[Allm, + Ka(w, N)V/llc]lc

where N := dim(C).



oo-dim Heisenberg gps with dim(C) < oo

Theorem (Driver-Eldredge-M, '16)
For c € C, define the HS operator 2 : H,, — H,, by

<Qch7 k>Hu = <W(h, k)7 C>C7
and let p¢(B) be the random linear transformation on C defined by
1 t
<pt(B)C, C/>C = 4/ <QCBt7 QC/BI'>HH dt.
0

Then v(dh, dc) = ~:(h, c) pi:(dh) m(dc) where m is Lebesgue
measure on C and
Bt — h]

Ai’t(hv C) =E

exp (—3{pr '(B)c, c)c)
V(2r) ’Vdetpt (B)

is @ smooth density.



Other oo-dim hypoelliptic results

» Hormander generators on co-dim configuration space:
Lugiewicz-Zegarlinski ('07), Inglis-Papageorgiou ('09),
Kontis-Ottobre-Zegarlinski ('16)

> evolution equations: Baudoin-Teichmann ('05),
Forster-Liitkebohmert-Teichmann ('08)

» SPDEs: Hairer-Mattingly ('04), Mattingly-Pardoux ('04),
Bakhtin-Mattingly ('07), Agrachev-Kuksin-Sarychev-Shirikyan
('07), Glatt-Holtz-Herzog-Mattingly ('18), ...



oo-dim Heisenberg gps with dim(C) < oo

pros and cons: The explicit heat kernel for v; found in
Driver-Eldredge-M was of course a stronger result, but the
techniques were fairly specific to the step 2 structure. The fxnal
inequality approach a la Baudoin-Gordina-M is perhaps more
robust.

Unresolved questions from (Baudoin-Gordina-M):
» If we remove dim(C) < oo, can we still prove d, — d?
» What does p» mean?

Unresolved question from (Driver-Eldredge-M):

» If we remove dim(C) < oo, does anything still make sense?
wrt what reference measure?



Moving to dim(C) = oo
Suppose w : H, x H, — Cis HS

lwlifs = > (w(ei ), fi)z < o
gl

For each ¢, define x, == >~ (w(ei e). 1) .
w HS — xy is summable, and so x; — 0. This implies that

P2 = inf <L<,'(€,'.€'J') > § inf /:O.
lellc=14= /

Similarly, po» > 0 prohibits ||w||xs < co. So when dim(C) =
you can't have po > 0 and |Jw||ys < oo.

(*Notice that this is only an issue when dim(C) = o0.)



Moving to dim(C) = oo

So, needing (something like) p» > 0 and ||w|/ys < o0 necessitates
the existence of another Hilbert space Z densely embedded in C,
so that w: H, x H, — Z with

inf (w(ei, €),2)% >0
lzllz=1 <=

(and so w is not HS into Z) with a HS inclusion map ¢ : Z — C so
that ||wl|ps(H, x H,,c) < o0-

Such a (C, Z) necessarily supports a Gaussian measure on C with
Cameron-Martin space Z.



oo-dim Heisenberg gps with dim(C) = oo

The main assumptions

Let (W, H,, ) and (C, G,,v) be (Hilbert) Gaussian measure
spaces. Let w: H, x H, — C, be a skew-symmetric bilinear map.

We assume that

HWHfI = fup Z (ei,e),z)c, < oo, (A1)
Z C,
HWH%-I,LX"CV ‘= sup <“‘(h e,-), ﬂ'>2C,, < 0, (A2)
HhHH:1 il
and
2 - 2
wl? = inf w(ej,e),z)e > 0. A3
w2 = it S eleng). 22, (A3)

IN]



oo-dim Heisenberg gps with dim(C) = oo
The main assumptions: weakly HS v. HS

(Al) <— w:H,x H,— G is "weakly Hilbert-Schmidt":
w extends to bdd linear operator w : H, 0 H,, — C, so that

5(h® k) = w(h, k)

and

~ ~%12 ~% 112
V00 = 18 Wiy sty = b Izl m,
Zllc, =

~x_\2
= sup Z(e;@q,w*z)HH@Hu

lzllc, =17 ;
. 2 1,2
= sup S wlen )22 — el

lzllc, =17 ;

Note this = @ : H, @ H, — G, — C is HS.
< w:H, xH, — G, — CisHS.



oo-dim Heisenberg gps with dim(C) = oo

The main assumptions: Lower bound
(A3) «— w*:C, — H,® H, is bounded below:

&% 2017, wm, = E (@*z, 6 ® &)}y, om,
iy
_ E eV = ]2
- <Zaw(elaej)>C,, - L“‘“J//HZ‘

ij

2
G-

Functional analysis lemma:
For H, K Hilbert spaces and A: H — K a bdd linear operator,

A* is bounded below iff A is surjective.

Thus, w: H, ® H,, — C, is surjective. In particular, this implies
that span(w(H,, x H,)) is dense in C,. That is, (A3)«(HC).



oo-dim Heisenberg gps with dim(C) = oo

We now define a Lie algebra structure on gy :— H, x C, and
group structure on Gy = H, x C, viaw: H, x H, = C, as
before.

Note that we don't require that w extend to a cts bilinear map
H x H — C. However, (A2) is sufficient to say that

(h2)- (x,c) = (h—i—x, ctz+ ;w(h,x)>

defines a measurable group action of G¢y on “G":= H x C, which
is sufficient to discuss, for example, quasi-invariance under this
measurable transformation.



oo-dim Heisenberg gps with dim(C) = oo

An example: Product group



oo-dim Heisenberg gps with dim(C) = oo

Horizontal distance again

Remember that arguments in the dim(C) < oo case relied
critically on the estimate

d(e; (h; c)) < |[hllH, + KV/lcllc-

It turns out these estimates won't necessarily hold in this
setting. ...



Horizontal distance

Product group example

Recall the “H*" example:

Let z= Y, zf; € C, for some {z} € (2. Then

d(e,(0,2)) = ¢Z dis(e, (0,20))2 =
J4

and so
{z:d(e,(0,2)) <o} =t C?=(,.



Horizontal distance

So the product group example suggests that we need to define

dom(d) := {(h,z) € Gep : d(e, (h,2)) < c0}.

We can't hope for d(e, (h, c)) < K([|hllH, +/l¢llc,). But:

>

the inclusion (dom(d), d) — (Gewm, || - HHH +Vlle,)is
continuous and

[AllH, + Vllellc, < K([lwllu)d(e, (h, ).

dom(d) is a topological group wrt the topology induced by d.
(direct proof since you can't use equivalence to the topology
coming from the Euclidean norms.)

for all g € dom(d), (relies on new soft
analysis arguments)

same proof also gives existence of length minimizers



The stochastic Lévy area

Note that (Al) = iw:H, x H, = CisHS =

1

t
Zs = / w(Bs, dBs)
2 Jo

exists in C as before. So we have

is the solution to our SDE as before.

Let v; := Law(Bs, Z¢), and note that v; liveson G = H x C.



Results for hkm

Ql

Proof of the same generalized CD inequalities with p» — |W\/2, and
HW.HHS — H‘V’UHH//“CV' "t

Theorem (M-Phillips, '24)
Assume (A1), (A2), and (A3). Then vy is quasi-invariant under left
and right “translations” by elts of dom(d) C Gcy. Moreover,

Wil &
S exp <C (q7 t7 % d2(e7g)
L9(G ) S

and similarly for the RN derivative under left translation.

d(l/t e] Rg_l)
th




The stochastic Lévy area

We can actually use the same arguments as in (Driver-Eldredge-M)
to say more about the distribution of Z; (and more generally g;).
For ¢ € C, define the HS operator €2 : H, — H,, by

(Qch, k)p, = (w(h, k), c)c,

(so ) and let p¢(B) be the random linear
transformation on C defined by

1 t
(pe(B)e,c)c = 4/ (QcBt, Qe Br)p, dt.
0

More explicitly, this is



The stochastic Lévy area

Theorem (M-Phillips, '24+)

The random linear operator on C

pt(B) = 2 .L w(Bs, )w(Bs,-)* ds

is a.s. trace-class, and

E [ei<c,zt>c] K [e—%<pt(s)c,c>c .

That is,
(Ze | pe(B)) ~ Nc(0, pe(B)).



Other work/questions

>
>

| 2

(M-Phillips, '24+) log Sobolev inequality for cylinder functions

(Phillips, '24) Taylor isomorphism theorems for these and
higher step inf-dim nilpotent Lie groups (also requires d, — d)

results hold more generally for (H, H,, ;1) replaced with a
general abstract Wiener space

Hilbert structure on C only really used here to discuss the
distribution of Z;, can be bypassed

Q: understanding non-degeneracy of p1(B), hopefully
quantitatively using |w],, to extend results of
Driver-Eldredge-M

Q: is dom(d) the real CM space? (e.g., converse of qi)

dom(d) g_ GCM g_ G



