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Hömander’s condition

Theorem (Hörmander, 1967)

Suppose that {X1, . . . ,Xk} is a collection of vector fields
Xi : Rn → Rn so that, for all x ∈ Rn,

span{Xi , [Xi1 ,Xi2 ], . . . , [Xi1 , [· · · , [Xir−1 ,Xir ]]]}(x) = Rn. (HC)

Then for ξt the solution to the SDE

dξxt = X1(ξt) ◦ dB1
t + · · ·+ Xk(ξt) ◦ dBk

t , ξ0 = x ,

Law(ξxt ) is smooth for each t > 0, that is, Law(ξxt ) is abs cts wrt
Lebesgue measure with strictly positive and smooth density:

Law(ξxt ) = pt(x , ·) dm, for some pt ∈ C∞(Rn, (0,∞)).



Heisenberg group examples
The elliptic case

Now let

X̃1(x) =
(
1, 0,−1

2x2
)

X̃2(x) =
(
0, 1, 12x1

)
X̃3(x) = (0, 0, 1)

 NOTE: ∀x ∈ R3,

span{X̃1(x), X̃2(x), X̃3(x)} = R3

Consider the solution ξt = (ξ1t , ξ
2
t , ξ

3
t ) to SDE

dξt = X̃1(ξt) ◦ dB1
t + X̃2(ξt) ◦ dB2

t + X̃3(ξt) ◦ dB3
t

=

 1
0
−1

2ξ
2
t

 ◦ dB1
t +

 0
1
1
2ξ

1
t

 ◦ dB2
t +

 0
0
1

 ◦ dB3
t

with ξ0 = 0.



Heisenberg group examples
The elliptic case

Now let
X̃1(x) =

(
1, 0,−1

2x2
)

X̃2(x) =
(
0, 1, 12x1

)
X̃3(x) = (0, 0, 1)

The solution to the SDE

dξt = X̃1(ξt) ◦ dB1
t + X̃2(ξt) ◦ dB2

t + X̃3(ξt) ◦ dB3
t ,

with ξ0 = 0 may be written explicitly as

ξt =

(
B1
t ,B

2
t ,B

3
t +

1

2

∫ t

0
B1
s dB

2
s − B2

s dB
1
s

)
.



Heisenberg group examples
Stochastic Lévy area

Zt =

∫ t

0
Bx(s)dBy (s)− By (s)dBx(s)

(image from Manigo-Bornales)



Heisenberg group examples
Stochastic Lévy area

{Zt}t≥0 =

{∫ t

0
B1(s)dB2(s)− B2(s)dB1(s)

}
t≥0

d
=

{
B

(
1

4

∫ t

0
(B1

s )2 + (B2
s )2 ds

)}
t≥0

This implies, for example, that for

ρt(B
1,B2) :=

1

4

∫ t

0
(B1

s )2 + (B2
s )2 ds,

we may write

(Zt | ρt(B1,B2)) ∼ N (0, ρt(B
1,B2)).



Heisenberg group examples
The hypoelliptic case

Again let

X̃1(x) =

(
1, 0,−1

2
x2

)
=

∂

∂x1
− 1

2
x2

∂

∂x3

X̃2(x) =

(
0, 1,

1

2
x1

)
=

∂

∂x2
+

1

2
x1

∂

∂x3

X̃3(x) = (0, 0, 1) =
∂

∂x3

Note that [X̃1, X̃2] := X̃1X̃2 − X̃2X̃1 = X̃3. Thus, we can write

span{X̃1(x), X̃2(x), [X̃1, X̃2](x)} = R3.

So {X̃1, X̃2} satisfies Hörmander’s Condition.



Heisenberg group examples
The hypoelliptic case

Again let

X̃1(x) =

(
1, 0,−1

2
x2

)
=

∂

∂x1
− 1

2
x2

∂

∂x3

X̃2(x) =

(
0, 1,

1

2
x1

)
=

∂

∂x2
+

1

2
x1

∂

∂x3

X̃3(x) = (0, 0, 1) =
∂

∂x3

Now consider the SDE

dgt = X̃1(gt) ◦ dB1
t + X̃2(gt) ◦ dB2

t ,

which again we may solve explicitly, now as

gt =

(
B1
t ,B

2
t ,

1

2

∫ t

0
B1
s dB

2
s − B2

s dB
1
s

)
.



Heisenberg group examples

gt =

(
B1
t ,B

2
t ,

1

2

∫ t

0
B1
s dB

2
s − B2

s dB
1
s

)
=: (Bt ,Zt)

(image from Nate Eldredge)



Heisenberg group examples
An explicit heat kernel formula

(HC) =⇒ Law(ξt) and Law(gt) are smooth measures on R3.

In particular for νt := Law(gt) = Law (Bt ,Zt),

dνt
dm

(x , y , z) =
1

16π2

∫
R
e iλz/2

λ

sinh(λt)
e−(x

2+y2)λ coth(λt)/4 dλ.

One may prove this by showing that

E
[
f (Bt)e

iλZt

]
= E

[
f (Bt)e

−ρt(B)λ2
]

where ρt(B) = 1
4

∫ t
0 |Bs |2 ds. (see Gaveau, Lévy, Yor,

Helmes-Schwane,. . . )



Heisenberg group geometry

Let h = span{X1,X2,X3} ∼= R3 with Lie bracket [X1,X2] = X3,
and all other brackets are 0. In coordinates, this is

[(x1, x2, x3) , (x ′1,x
′
2, x
′
3)]

= [x1X1 + x2X2 + x3X3 , x
′
1X1 + x ′2X2 + x ′3X3]

= x1x
′
1[X1,X1] + x1x

′
2[X1,X2] + x1x

′
3[X1,X3] + · · ·

= (0, 0, x1x
′
2 − x ′1x2).

Via the BCHD formula we may equip R3 with the group operation

x · x ′ = x + x ′ +
1

2
[x , x ′]

=

(
x1 + x ′1, x2 + x ′2, x3 + x ′3 +

1

2
(x1x

′
2 − x2x

′
1)

)
.

Then R3 with this group operation is the Heisenberg group H, with
Lie(H) = h; the X̃i ’s are the unique left inv vfs so that X̃i (0) = Xi .



Heisenberg group geometry

We can define a left invariant Riemannian metric on H by taking
{X̃i (x)}3i=1 to be an onb at each x ∈ H, and Riemannian distance

δ(x , y) := inf{`(γ) : γ path from x to y}

where

`(γ) :=

∫ 1

0
‖γ′(t)‖γ(t) dt.

Alternatively, we can define the horizontal distance

d(x , y) := inf{`(γ) : γ a horizontal path from x to y},

where γ is horizontal if

γ′(t) ∈ span{X̃1(γ(t)), X̃2(γ(t))}.



Heisenberg group geometry
We can write

h := span{X1,X2} × span{X3}=: H × C

and define ω := [·, ·]|H×H : H × H → C so that

[(h, c) , (h′, c ′)] = (0, ω(h, h′)) = (0, h1h
′
2 − h′1h2).

and

(h, c) · (h′, c ′) =

(
h + h′, c + c ′ +

1

2
ω(h, h′)

)
.

Then
(HC ) ⇐⇒ ω(H,H) = C ,

and we may write

gt := (Bt ,Zt) :=

(
Bt ,

1

2

∫ t

0
B1
s dB

2
s − B2

s dB
1
s

)
=

(
Bt ,

1

2

∫ t

0
ω (Bs , dBs)

)
.



Heisenberg group geometry
For the horizontal distance on the Heisenberg group,

K1

(
‖h‖H +

√
|c |
)
≤ d(e, (h, c)) ≤ K2

(
‖h‖H +

√
|c |
)
.

In particular, d(0, (h, c)) <∞ for all (h, c) ∈ H. Many explicit
expressions are known, for example,

d(0, (0, c)) =

√
π

2
|c |

and geodesics (length minimizers) are well understood.



Hörmander’s condition and horizontal distance

In the same way, given a collection of vfs {X1, . . . ,Xk} satisfying
(HC) on Rn, can define the horizontal distance analogously.

Chow-Rashevskii: (HC) =⇒ d(x , y) <∞ for all x , y ∈ Rn.
Moreover, the horizontal topology will be equivalent to the
Euclidean one.



Smooth measures in ∞ dim

A measure µ on Rn is said to be smooth if

Definition1 µ is abs cts wrt Lebesgue measure and the RN
derivative is strictly positive and smooth – that is,

µ = ρ dm, for some ρ ∈ C∞(Rn, (0,∞)).

Definition2 for any multi-index α, there exists a function
gα ∈ C∞(Rn) ∩ L∞−(µ) such that∫

Rn

(−D)αf dµ =

∫
Rn

fgα dµ, for all f ∈ C∞c (Rn).

I Definition1 ⇐⇒ Definition2



A first step to smoothness: Quasi-invariance

So as a first step, we’d need to know how a measure behaves
under (infinitesimal) translations.

Definition A measure µ on Ω is quasi-invariant under a
transformation T : Ω→ Ω if µ and µ ◦ T−1 are mutually
absolutely continuous.

In particular, we’re generally interested in quasi-invariance under
transformations of the type

T = Th = translation by an element h ∈ Ω0 ⊂ Ω,

where Ω0 is some distinguished subset of Ω.



A typical ∞-dim setting

Take H a Hilbert space with Gaussian meas µ with covariance Q:

µ̂(k) :=

∫
H
e i〈k,h〉H dµ(h) = e−〈Qk,k〉H/2.

Q is necessarily a non-neg, sym, trace class operator.

Theorem (Cameron-Martin-Maruyama)

µ is quasi-invariant under translation by elements of Hµ = Q1/2H.

That is, for k ∈ Hµ and dµk := dµ(· − k),

µk � µ and µk � µ.

Moreover, if k /∈ H, then µk ⊥ µ.

Hµ is called the Cameron-Martin space for (H, µ).



A typical ∞-dim setting
Facts about the CM space Hµ

I Hµ is a Hilbert space equipped with inner product

〈h, k〉µ := 〈Q−1/2h,Q−1/2k〉H ,

densely embedded in H, and, when dim(H) =∞, µ(Hµ) = 0.

I The inclusion map ι : Hµ ↪→ H is Hilbert-Schmidt

‖ι‖2HS :=
∑
i

‖hi‖2H <∞.

I In fact, given a Hilbert space H with a Hilbert subspace K
such that the inclusion K ↪→ H is HS, immediately implies the
existence of a Gaussian measure on H with covariance
determined by K .



∞-dim Heisenberg gps with dim(C ) <∞

(Driver-Gordina, ’08) Take

I H a Hilbert space with Gaussian measure µ

I C a fin-dim inner product space

I ω : H × H → C is a continuous anti-symmetric bilinear form

Then we can make g := H × C into a Lie algebra with bracket

[(h, c), (h′, c ′)] := (0, ω(h, h′))

and Lie group G := H × C with group operation

(h, c) ·
(
h′, c ′

)
=

(
h + h′, c + c ′ +

1

2
ω
(
h, h′

))
.



∞-dim Heisenberg gps with dim(C ) <∞

Let Hµ denote the Cameron-Martin space for (H, µ).

I GCM := Hµ × C inherits a group structure from ω|Hµ×Hµ , and
is a dense subgp of G = H × C

I ω : H × H → C cts =⇒ ω : Hµ × Hµ → C Hilbert-Schmidt

‖ω‖2HS(Hµ×Hµ,C) :=
∑
i ,j ,`

〈ω(ei , ej), f`〉2C <∞.

◦ ω HS on Hµ is in some sense the necessary assumption, rather
than ω cts on H

I For example, ω HS =⇒ stochastic Lévy area for {Bt}t≥0
BM on H

Zt :=
1

2

∫ t

0
ω(Bs , dBs)

is well-defined in C .



∞-dim Heisenberg gps with dim(C ) <∞

(Bt ,B
C
t + Zt) and (Bt ,Zt) are still solutions to the “elliptic” and

“hypoelliptic” SDEs, respectively.

Driver-Gordina proved regularity properties (e.g., qi and 1st order
ibp) for Law((Bt ,B

C
t + Zt)) on G . Dobbs-M proved smoothness

via arbitrary ibp formulae.

What about νt := Law ((Bt ,Zt))?



∞-dim Heisenberg gps with dim(C ) <∞

Theorem (Baudoin-Gordina-M, ’13)

Assume ω(Hµ,Hµ) = C . Then νt is qi under left and right
translations by elts of GCM = Hµ × C . Moreover,∥∥∥∥∥d(νt ◦ R−1(h,c))

dνt

∥∥∥∥∥
Lq(G ,νt)

≤ exp

(
C

(
q, t,
‖ω‖2HS
ρ2

)
d2(0, (h, c))

)

where d is the horizontal distance on GCM and

ρ2 := inf


∞∑

i ,j=1

(
N∑
`=1

〈ω (ei , ej) , f`〉Cx`

)2

:
N∑
`=1

x2` = 1

 ,

and similarly for the RN derivative under left translation.



∞-dim Heisenberg gps with dim(C ) <∞
The proof relied on several elts, including
1. fxnal inequalities (particularly generalized CD inequalities à la
Baudoin, Bonnefont, Garofalo) involving coefficients with

‖ω‖2HS(Hµ×Hµ,C) :=
∞∑

i ,j=1

N∑
`=1

〈ω (ei , ej) , f`〉2C,

where continuity of ω : H × H → C =⇒ ‖ω‖2HS <∞, and

ρ2 := inf


∞∑

i ,j=1

(
N∑
`=1

〈ω (ei , ej) , f`〉Cx`

)2

:
N∑
`=1

x2` = 1


= inf
‖c‖C=1

∞∑
i ,j=1

〈ω (ei , ej) , c〉2C.

Note that (HC) =⇒ ρ2 > 0.



∞-dim Heisenberg gps with dim(C ) <∞

The proof relied on several elts, including

2. convergence of the horizontal distance by fin-dim approx gps

dn(e, g)→ d(e, g)

as n→∞. We made critical use of the estimate for g = (h, c)

‖h‖Hµ + K1(ω)
√
‖c‖C ≤ d(e, (h, c)) ≤ ‖h‖Hµ + K2(ω,N)

√
‖c‖C

where N := dim(C ).



∞-dim Heisenberg gps with dim(C ) <∞

Theorem (Driver-Eldredge-M, ’16)

For c ∈ C , define the HS operator Ωc : Hµ → Hµ by

〈Ωch, k〉Hµ := 〈ω(h, k), c〉C ,

and let ρt(B) be the random linear transformation on C defined by

〈ρt(B)c , c ′〉C :=
1

4

∫ t

0
〈ΩcBt ,Ωc ′Bt〉Hµ dt.

Then νt(dh, dc) = γt(h, c)µt(dh)m(dc) where m is Lebesgue
measure on C and

γt(h, c) := E

[
exp

(
−1

2〈ρ
−1
t (B)c , c〉C

)√
(2π)N det ρt(B)

∣∣∣∣∣Bt = h

]

is a smooth density.



Other ∞-dim hypoelliptic results

I Hörmander generators on ∞-dim configuration space:
Lugiewicz-Zegarlinski (’07), Inglis-Papageorgiou (’09),
Kontis-Ottobre-Zegarlinski (’16)

I evolution equations: Baudoin-Teichmann (’05),
Forster-Lütkebohmert-Teichmann (’08)

I SPDEs: Hairer-Mattingly (’04), Mattingly-Pardoux (’04),
Bakhtin-Mattingly (’07), Agrachev-Kuksin-Sarychev-Shirikyan
(’07), Glatt-Holtz-Herzog-Mattingly (’18), . . .



∞-dim Heisenberg gps with dim(C ) <∞

pros and cons: The explicit heat kernel for νt found in
Driver-Eldredge-M was of course a stronger result, but the
techniques were fairly specific to the step 2 structure. The fxnal
inequality approach à la Baudoin-Gordina-M is perhaps more
robust.

Unresolved questions from (Baudoin-Gordina-M):

I If we remove dim(C ) <∞, can we still prove dn → d?

I What does ρ2 mean?

Unresolved question from (Driver-Eldredge-M):

I If we remove dim(C ) <∞, does anything still make sense?
wrt what reference measure?



Moving to dim(C ) =∞

Suppose ω : Hµ × Hµ → C is HS

‖ω‖2HS :=
∑
i ,j ,`

〈ω(ei , ej), f`〉2C <∞.

For each `, define x` :=
∑

i ,j〈ω(ei , ej), f`〉2C .

ω HS =⇒ x` is summable, and so x` → 0. This implies that

ρ2 = inf
‖c‖C=1

∑
i ,j

〈ω(ei , ej), c〉2C ≤ inf
`
x` = 0.

Similarly, ρ2 > 0 prohibits ‖ω‖HS <∞. So when dim(C ) =∞,
you can’t have ρ2 > 0 and ‖ω‖HS <∞.

(∗Notice that this is only an issue when dim(C ) =∞.)



Moving to dim(C ) =∞

So, needing (something like) ρ2 > 0 and ‖ω‖HS <∞ necessitates
the existence of another Hilbert space Z densely embedded in C ,
so that ω : Hµ × Hµ → Z with

inf
‖z‖Z=1

∑
i ,j

〈ω(ei , ej), z〉2Z > 0

(and so ω is not HS into Z ) with a HS inclusion map ι : Z → C so
that ‖ιω‖HS(Hµ×Hµ,C) <∞.

Such a (C ,Z ) necessarily supports a Gaussian measure on C with
Cameron-Martin space Z .



∞-dim Heisenberg gps with dim(C ) =∞
The main assumptions

Let (W ,Hµ, µ) and (C ,Cν , ν) be (Hilbert) Gaussian measure
spaces. Let ω : Hµ × Hµ → Cν be a skew-symmetric bilinear map.

We assume that

‖ω‖2µ := sup
‖z‖Cν=1

∑
i ,j

〈ω(ei , ej), z〉2Cν
<∞, (A1)

‖ω‖2Hµ⊗Cν
:= sup
‖h‖H=1

∑
i ,`

〈ω(h, ei ), f`〉2Cν
<∞, (A2)

and
bωc2µ := inf

‖z‖Cν=1

∑
i ,j

〈ω(ei , ej), z〉2Cν
> 0. (A3)



∞-dim Heisenberg gps with dim(C ) =∞
The main assumptions: weakly HS v. HS

(A1) ←→ ω : Hµ × Hµ → Cν is “weakly Hilbert-Schmidt”:
ω extends to bdd linear operator ω̃ : Hµ ⊗ Hµ → Cν so that

ω̃(h ⊗ k) = ω(h, k)

and

‖ω̃‖2L(Hµ⊗Hµ,Cν)
= ‖ω̃∗‖2L(Cν ,Hµ⊗Hµ)

= sup
‖z‖Cν=1

‖ω̃∗z‖2Hµ⊗Hµ

= sup
‖z‖Cν=1

∑
i ,j

〈ei ⊗ ej , ω̃
∗z〉2Hµ⊗Hµ

= sup
‖z‖Cν=1

∑
i ,j

〈ω(ei , ej), z〉2Cν
= ‖ω‖2µ.

Note this =⇒ ω̃ : Hµ ⊗ Hµ −→ Cν
i−→ C is HS.

⇐⇒ ω : Hµ × Hµ −→ Cν
i−→ C is HS.



∞-dim Heisenberg gps with dim(C ) =∞
The main assumptions: Lower bound

(A3) ←→ ω̃∗ : Cν → Hµ ⊗ Hµ is bounded below:

‖ω̃∗z‖2Hµ⊗Hµ
=
∑
i ,j

〈ω̃∗z , ei ⊗ ej〉2Hµ⊗Hµ

=
∑
i ,j

〈z , ω(ei , ej)〉2Cν
≥ bωc2µ‖z‖2Cν

.

Functional analysis lemma:
For H,K Hilbert spaces and A : H → K a bdd linear operator,

A∗ is bounded below iff A is surjective.

Thus, ω̃ : Hµ ⊗ Hµ → Cν is surjective. In particular, this implies
that span(ω(Hµ × Hµ)) is dense in Cν . That is, (A3)↔(HC).



∞-dim Heisenberg gps with dim(C ) =∞

We now define a Lie algebra structure on gCM := Hµ × Cν and
group structure on GCM := Hµ × Cν via ω : Hµ × Hµ → Cν as
before.

Note that we don’t require that ω extend to a cts bilinear map
H × H → C . However, (A2) is sufficient to say that

(h, z) · (x , c) =

(
h + x , c + z +

1

2
ω(h, x)

)
defines a measurable group action of GCM on “G”:= H × C , which
is sufficient to discuss, for example, quasi-invariance under this
measurable transformation.



∞-dim Heisenberg gps with dim(C ) =∞
An example: Product group

Fix onb {ei}∞i=1 and {f`}∞`=1 of Hµ and Cν , respectively, and define

ω(ei , ej) :=


f` if i = 2`− 1, j = 2`
−f` if i = 2`, j = 2`− 1
0 otherwise

Equivalently, for any {αi}, {βi} ∈ `2,

ω

∑
i

αiei ,
∑
j

βjej

 =
∑
`

(
α2`−1β2` − α2`β2`−1

)
f`.

For any ` ∈ N, span{e2`−1, e2`, f`)} is a subgroup of GCM which is
isomorphic to H, so essentially Hµ × Cν ∼= H∞.



∞-dim Heisenberg gps with dim(C ) =∞
Horizontal distance again

Remember that arguments in the dim(C ) <∞ case relied
critically on the estimate

d(e, (h, c)) ≤ ‖h‖Hµ + K
√
‖c‖C .

It turns out these estimates won’t necessarily hold in this
setting. . . .



Horizontal distance
Product group example

Recall the “H∞” example: given onb {ei} and {f`} for Hµ and Cν
respectively, define ω : Hµ × Hµ → Cν as

ω

∑
i

αiei ,
∑
j

βjej

 =
∞∑
`=1

(
α2`−1β2` − α2`β2`−1

)
f`.

Let z =
∑

` z`f` ∈ Cν for some {z`} ∈ `2. Then

d(e, (0, z)) =

√∑
`

dH(e, (0, z`))2 =

√√√√π

2

∞∑
`=1

|z`|,

and so
{z : d(e, (0, z)) <∞} ∼= `1 ( `2 ∼= Cν .



Horizontal distance

So the product group example suggests that we need to define

dom(d) := {(h, z) ∈ GCM : d(e, (h, z)) <∞}.

We can’t hope for d(e, (h, c)) ≤ K (‖h‖Hµ +
√
‖c‖Cν ). But:

I the inclusion (dom(d), d)→ (GCM , ‖ · ‖Hµ +
√
‖ · ‖Cν ) is

continuous and

‖h‖Hµ +
√
‖c‖Cν ≤ K (‖ω‖µ)d(e, (h, c)).

I dom(d) is a topological group wrt the topology induced by d .
(direct proof since you can’t use equivalence to the topology
coming from the Euclidean norms.)

I for all g ∈ dom(d), dn(e, g)→ d(e, g) (relies on new soft
analysis arguments)

I same proof also gives existence of length minimizers



The stochastic Lévy area

Note that (A1) =⇒ iω : Hµ × Hµ → C is HS =⇒

Zt :=
1

2

∫ t

0
ω(Bs , dBs)

exists in C as before. So we have

gt := (Bt ,Zt) =

(
Bt ,

1

2

∫ t

0
ω(Bs , dBs)

)
is the solution to our SDE as before.

Let νt := Law(Bt ,Zt), and note that νt lives on G = H × C .



Results for hkm
QI

Proof of the same generalized CD inequalities with ρ2 → bωc2µ and
‖ω‖HS → ‖ω‖Hµ⊗Cν . . .

Theorem (M-Phillips, ’24)

Assume (A1), (A2), and (A3). Then νt is quasi-invariant under left
and right “translations” by elts of dom(d) ( GCM . Moreover,∥∥∥∥∥d(νt ◦ R−1g )

dνt

∥∥∥∥∥
Lq(G ,νt)

≤ exp

(
C

(
q, t,
‖ω‖2Hµ⊗Cν

bωc2µ

)
d2(e, g)

)

and similarly for the RN derivative under left translation.



The stochastic Lévy area
We can actually use the same arguments as in (Driver-Eldredge-M)
to say more about the distribution of Zt (and more generally gt).
For c ∈ C , define the HS operator Ωc : Hµ → Hµ by

〈Ωch, k〉Hµ := 〈ω(h, k), c〉C ,

(so Ωch = ω(h, ·)∗c) and let ρt(B) be the random linear
transformation on C defined by

〈ρt(B)c , c ′〉C :=
1

4

∫ t

0
〈ΩcBt ,Ωc ′Bt〉Hµ dt.

More explicitly, this is

〈ρT (B)c , c ′〉C =
1

4

∫ T

0
〈ω(Bs , ·)∗c, ω(Bs , ·)∗c ′〉Hµ ds

=

〈(
1

4

∫ T

0
ω(Bs , ·)ω(Bs , ·)∗ ds

)
c , c ′

〉
C

.



The stochastic Lévy area

Theorem (M-Phillips, ’24+)

The random linear operator on C

ρt(B) =
1

4

∫ t

0
ω(Bs , ·)ω(Bs , ·)∗ ds

is a.s. trace-class, and

E
[
e i〈c,Zt〉C

]
= E

[
e−

1
2
〈ρt(B)c,c〉C

]
.

That is,
(Zt | ρt(B)) ∼ NC (0, ρt(B)).



Other work/questions

I (M-Phillips, ’24+) log Sobolev inequality for cylinder functions

I (Phillips, ’24) Taylor isomorphism theorems for these and
higher step inf-dim nilpotent Lie groups (also requires dn → d)

I results hold more generally for (H,Hµ, µ) replaced with a
general abstract Wiener space

I Hilbert structure on C only really used here to discuss the
distribution of Zt , can be bypassed

I Q: understanding non-degeneracy of ρT (B), hopefully
quantitatively using bωcµ, to extend results of
Driver-Eldredge-M

I Q: is dom(d) the real CM space? (e.g., converse of qi)

dom(d) ( GCM ( G


