

Double trouble: Predicting new variant counts across two heterogeneous

populations

Yunyi Shen MIT

Lorenzo Masoero Amazon Research

Joshua Schraiber USC

Tamara Broderick MIT

Planning a new genetics study

- Often want to collect genomics sequencing data across different populations
 - E.g. cases & controls to understand a disease
 - E.g. different cancer types
- Despite sequencing advances, scientists still often constrained by resources
- Would like to know how much we'll learn from a follow-up study given data from a (typically small) pilot study
 - Predict number of new genetic variants (points of difference relative to a reference genome)
- Lots of methods to predict in one population. But can't just group or separate two heterogeneous populations.

 [Camerlenghi+ 2024, Masoero+ 2022, Chakraborty+ 2019, Zou+ 2016, Gravel+ 2014, Ionita-Laza+ 2009]
- We provide: the first method to predict the number of new variants across and between two populations

Roadmap

- Setup: predicting the number of new variants
- A Bayesian framework for one population
- Natural extensions to two populations fail
- Our new model for two populations
 - Desirable theoretical properties
 - Good performance on real genetics data

Predicting the number of new variants

A Bayesian framework

 Masoero et al 2022: state-of-the-art prediction for the number of new variants in one population. Model:

- How to choose the rate measure $\mu(d\theta)$? Desiderata:
 - A finite number of variants per sample: $\int_0^1 \theta \mu(d\theta) < \infty$
 - There are always more variants to discover: $\int_0^1 \mu(d\theta) = \infty$
 - Power law growth (#variants/#samples^{power} → 1 a.s.)
 - Conjugate rate measure for practical computation [Broderick et al 2018]
- Bonus benefits: can vary sequencing depth, tradeoff
 quality (depth) vs. quantity (samples) under a fixed budget

What about two+ populations?

- Idea: treat the two populations as disjoint, with no shared variants. Apply one-population methods separately.
 - Problem: In real-life, there are shared variants. In fact, we'd like to predict how many in future samples.
- Idea: group everything into a single population.
 - Problem: Populations exhibit different growth rates.
- Idea: take an approach analogous to previous slide
 - A variant's frequency in two populations: $\theta_i = (\theta_{i,1}, \theta_{i,2})$
 - Draw the tuples of variant frequencies from a Poisson point process with rate measure $\nu(d\theta)$
 - A sample in population p exhibits variant i with probability equal to $\theta_{i,p}$
- But how to choose $\nu(d\theta)$?
 - A natural idea: $\nu(d\boldsymbol{\theta}) = \mu_1(d\theta_1)\mu_2(d\theta_2)$

The factorized extension fails

- Desiderata:
 - A. Finite number of variants per sample.
 - B. Always more variants to discover in either population.
- **Theorem**: Assume we use the two-population framework on the previous slide. We can't satisfy Desiderata A and B and factorize $\nu(d\theta) = \mu_1(d\theta_1)\mu_2(d\theta_2)$

Rough proof intuition:

 By the factorization & Desideratum B, at least one direction (let's say population 1) has infinite mass.

$$\infty = \int \nu(d\boldsymbol{\theta}) = \int \mu_1(d\theta_1) \int \mu_2(d\theta_2)$$

- To find the expected number of variants in population 2:
 - Given the factorization, we directly take the integral of population 1, which has infinite mass.

$$\int \theta_2 \nu(d\boldsymbol{\theta}) = \int \mu_1(d\theta_1) \int \theta_2 \mu_2(d\theta_2)$$

• So the expectation is infinite, a contradiction with A.

Benefits of our new model

- We propose a new rate measure that doesn't factorize (exact rate measure form on next slide)
- We show that our new proposed rate measure:
 - (Proposition) Satisfies Desiderata A & B
 - A: Finite number of variants per sample
 - B: Always more variants to discover
 - (Theorem) Exhibits desirable power-law behavior
 - Consider projection to one population or proportional sampling of populations.
 - Our theory on arXiv is rough; better results on the way!
 - (Proposition) Is conjugate.
 - Not as nice computationally as the one-population beta process though.
 - Admits a feasible hyperparameter-selection algorithm.

Our new rate measure

• Review: One version of a 3-parameter beta process:

$$\mu(d\theta) \propto \alpha \theta^{-1-\sigma} (1-\theta)^{c-1} d\theta$$

- Improper beta distribution (Desiderata A,B & conjugacy)
- Rate parameter $\sigma \in (0,1)$ controls power-law rate
- Mass parameter α scales expected total # variants
- Concentration c controls common-variant frequencies
- Our rate measure for two populations (better options?)

$$\nu(d\boldsymbol{\theta}) \propto \alpha \frac{(\theta_1 + \theta_2^{\sigma_2/\sigma_1})^{-\sigma_1}}{(\theta_1 + \theta_2)^{\gamma_1 + \gamma_2}} \cdot \theta_1^{\gamma_1 - 1} (1 - \theta_1)^{c_1 - 1} \cdot \theta_2^{\gamma_2 - 1} (1 - \theta_2)^{c_2 - 1} d\boldsymbol{\theta}$$

- Two proper beta distributions times a non-factorizable term that makes the density improper (A,B,conjugacy)
- Unique parameter in each population: rate σ_p , concentration c_p , (new) correlation γ_p
- Single mass parameter α
- If $\sigma_1 = \sigma_2, \theta_1 = \rho \theta_2 \Rightarrow \nu(d\theta) \propto \alpha \theta_1^{-1-\sigma_1} (1-\theta_1)^{c_1+c_2-1} d\theta$

Predicting number of new variants

 Our method improves on (1) treating the two populations as disjoint, with no shared variants, or (2) grouping everything into a single population

Conclusions

- We predict the number of new genetic variants for a follow-up study given a pilot study (both the total number and the shared number). We provide the first predictor that can handle heterogeneity in multiple populations.
 - Y Shen, L Masoero, J Schraiber, T Broderick. Double trouble: Predicting new variant counts across two heterogeneous populations. ArXiv.

See also:

- Masoero, Camerlenghi, Favaro, Broderick. More for less: predicting & maximizing genomic variant discovery via Bayesian nonparametrics. *Biometrika*, 2022.
- Broderick, Wilson, Jordan. Posteriors, conjugacy, and exponential families for completely random measures. *Bernoulli*, 2018.
- Broderick, Jordan, Pitman. Beta processes, stick-breaking, and power laws.
 Bayesian Analysis, 2012.
- Campbell, Cai, Broderick. Exchangeable trait allocations. Electronic Journal of Statistics, 2018.
- Broderick, Pitman, and Jordan. Feature allocations, probability functions, and paintboxes. Bayesian Analysis, 2013.