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Double trouble:
Predicting new variant counts
aCross two heterogeneous
populations
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Planning a new genetics study

e Often want to collect genomics seguencing data across

different populatio
* E.g. cases & coO
e E.g. different ca

NS
ntrols to understand a disease

ncer types

* Despite sequencing advances, scientists still often
constrained by resources

 Would like to know how much we’ll learn from a follow-up
study given data from a (typically small) pilot study

e Predict number

of new genetic variants (points of

difference relative to a reference genome)
e | ots of methods to predict in one population. But can't just

group or separate

two heterogeneous populations.

[Camerlenghi+ 2024, Masoero+ 2022, Chakraborty+ 2019, Zou+ 2016, Gravel+ 2014, lonita-Laza+ 2009]
 We provide: the first method to predict the number of

new variants across and between two populations



Roadmap

e Setup: predicting the number of new variants
* A Bayesian framework for one population
* Natural extensions to two populations fall
* Our new model for two populations
* Desirable theoretical properties

* (Good performance on real genetics data



Predicting the number of new variants
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/2+ populations:

| / same problem buf
1 | we know population
L of each sample
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A Bayesian framework

 Masoero et al 2022: state-of-the-art prediction for the
number of new variants in one population. Model:

P0ISSON pomt u(df) is a

orocess with ra 3-parameter

measure ji 9) beta process
[Teh anf@orur 20009,

Broderick et al 2012]

* How to choose the rate measure p(df)? DeS|derata
¢ A finite number of variants per sample: fO 01 d@) < 00
* [There are always more variants to discover: fO df) = oo
 Power law growth (#variants/#samplesrower = 1 a.s.)
 Conjugate rate measure for practical computation 5%
 Bonus benefits: can vary sequencing depth, tradeoff

4 quality (depth) vs. quantity (samples) under a fixed budget



What about two+ populations”

* |dea: treat the two populations as disjoint, with no shared
variants. Apply one-population methods separately.
e Problem: In real-life, there are shared variants. |In fact,
we'd like to predict how many in future samples.

e |dea: group everything into a single population.
* Problem: Populations exhibit different growth rates.

* |dea: take an approach analogous to previous slide
A variant’s frequency in two populations: 8; = (6;1,0; 2)
* Draw the tuples of variant frequencies from a Poisson
point process with rate measure v(d0)
A sample Iin population p exhibits variant / with
probability equal to 6; ,

e But how to choose v(d@)?

o A natural idea: v(d@) = uq(db1)u2(do2)
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The tactorized extension tails

Desiderata:
A. Finite number of variants per sample.
B. Always more variants to discover in either population.

Theorem: Assume we use the two-population framework
on the previous slide. We can't satisty Desiderata A and B
and factorize V(d@) = U1 (d@l),ug(deg)

Rough proof intuition:
* By the factorization & Desideratum B, at least one
direction (let’s say population 1) has infinite mass.
00 = [(d) = [ p(dbh) [ pa(dbs)
* Jo find the expected number of variants in population 2:
* (Given the tactorization, we directly take the integral of
population 1, which has infinite mass.

J 02v(d0) = [ p1(d6y) | O2p12(db-)
* SO the expectation is infinite, a contradiction with A.




Benefits of our new model

 We propose a new rate measure that doesn’t tactorize

(exact rate measure form on next slide)

 We show that our new proposed rate measure:
* (Proposition) Satisfies Desiderata A & B
* A: Finite number of variants per sample
 B: Always more variants to discover

 (Theorem) Exhi

* Consider proj

bits desirable power-
ection to one populat

sampling of populations.

e Our theory on arXiv is rough; better results on the way!

e (Proposition) s conjugate.
* Not as nice computationally as the one-population

beta process

though.

aw behavior

lon or proportional

 Admits a feasible hyperparameter-selection algorithm.



Our new rate measure

* Review: One version of a 3-parameter beta process:

w(dl) oc a1 (1 — 0)t db
mproper beta distribution (Desiderata A,B & conjugacy)
Rate parameter o € (0,1) controls power-law rate

Mass parameter o scales expected total # variants
Concentration ¢ controls common-variant frequencies

* Our rate measure for two populations (better options?)

v(dO) x «

(6, + 032171~
(91 + 92)71 +72

. (9’1)’1—1(1 o 91)01—1 . 9’272—1(1 o 02)62—1 40

* Two proper beta distributions times a non-factorizable

term that makes the density improper (A,B,conjugacy)

* Unique parameter in each population: rate oyp,

concentration ¢,, (new) correlation v,

e Single mass parameter «
o ¢ If o1 =02,00 = phy = 1(dB) oc a7 (1 — 0;)* 271 4o



Predicting number

 Our method improves on (1)
as disjoint, with no shared va
everything into a single popu

of new variants

reating the two populations
rlants, or (2) grouping

ation

gnomAD: Southern European & Bulgarian MSK-IMPACT: breast & lung cancer

1.5M ! |

o | '

- |

@ !

S |

> |

IS |

D |

Q |

E 1 —— our methoo

= /o grouped
f separate
[ pilot
r T 1 T T 1
0 2000 4000 6000

9 number of samples

NN

{0

|- — truth

—— our method
""""" grouped
separate

pilot

| | |
0 500 1000 1500



Conclusions

* We predict the number of new genetic variants for a follow-up

study given a pilot study (both the total number and the shared
number). We provide the first predictor that can handle
heterogeneity in multiple populations.

* Y Shen, L Masoero, J Schraiber, T Broderick. Double trouble:
Predicting new variant counts across two heterogeneous
populations. ArXiv.
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