

* Women in Probability Workshop, Cornell, Ithaca, 2008

Multi-scale Markov process for interacting particles diffusing in a spatially heterogeneous system

Lea Popovic Concordia University, Montréal Canada

long term project with Amandine Véber (CNRS, Paris V)

Women in Probability - UNC, Chapel Hill Aug 5, 2024

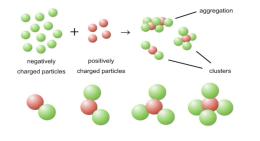
Interactions in continuous space

Interacting particles:

- Particles are of different types: $au \in \mathcal{T}$
- ▶ Interactions are from prescribed set of reactions: $r \in \mathcal{R}$, e.g.:

 $A \mapsto B, \ B \mapsto \emptyset, \ A+B \mapsto 2B, \ 2A+B \mapsto 3A$ (Schloegl model) $S + I \mapsto 2I, \ I \mapsto R$ (SIR model)

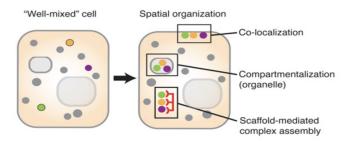
 $A \mapsto B, \ B \mapsto A, \ A + B \mapsto 2A, \ A + B \mapsto 2B$ (Moran model)



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Rates of interactions depend on:

- $\frac{\# \text{ of particles}}{\# \text{ of particles}}$ of all input types that are <u>close</u> to each other * proximity is determined by a kernel $\Gamma \rightarrow \text{non-local operators}$ - <u>rate constants</u> specific to the interaction that depend on the <u>location of input</u> types and the <u>mass of all</u> types * allows interactions to happen only in certain locations * mass of other types creates feedback in interactions

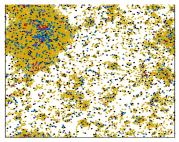


Spatial movement:

- Space is continuous: bounded $E \subset \mathbb{R}^d$
- Movement is Markovian and based on particle type
 * some particles diffuse, some stay localized
 - in between interactions, independently of interactions

Spatial heterogeneity:

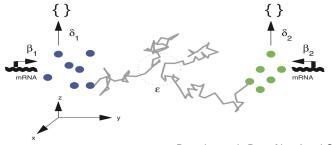
- * localization of certain reactions;
- \star localization of certain particle types



* SIR model, Forgasz et al., Nat.Sci.Reports., 2022

Non-uniform aspects:

some particle types are abundant, others only few counts
 some species diffuse fast, others stay almost localized



* Batada et al, Proc.Nat.Acad.Sci. 2004

New modelling framework:

 \rightarrow allows for non-standard limits retaining relevant stochasticity

Model

Measure-valued Markov process $(M_t)_{t\geq 0}$:

▶ takes values on space of finite point measures on $P = T \times E$

$$\mathcal{M} = \Big\{ \sum_{i \in \mathcal{I}} \delta_{(\tau^i, x^i)} : \mathcal{I} \subset \mathbf{N}, (\tau^i, x^i) \in \mathcal{P} \Big\}$$

 $\mathcal{T} = \text{set of particle types}, E = \text{spatial domain}, \mathcal{I} = \text{indexing set}, \\ \delta_{(\tau,x)} = \text{unit mass at location } x \in E \text{ for particle type } \tau \in \mathcal{T}$

Flexibility of framework:

- \cdot can encode both discrete and continuous amounts in space \rightarrow combines Individual Based Model with (S)PDE
- · treating localized and non-localized particles differently \rightarrow discrete types are localized, continuous types are either

Markov process:

*(w/ A.Véber, An.Appl.Prob.'23)

particles w/in kernel Γ-distance interact w/ spatially dependent rates h_r - heterogeneous "mass-action"

$$\begin{split} \varrho_r(d\bar{y}) &= \begin{cases} d\bar{y} & \text{non-localized} ,\\ \delta_{\bar{y}} & \text{localized reac.} \end{cases} M^{\otimes \downarrow k_r} = \text{sampling w/o rep.} \\ \lambda_r(\bar{y}, M; p_1, \dots, p_{k_r}) &:= h_r(\bar{y}, M) \left(\prod_{i=1}^{k_r} \mathbf{1}_{A_i^r}(x_i) \Gamma_\epsilon(y_i - \bar{y}) \right) \\ G_r F_f(M) &= \int_{E \times \mathcal{P}^{k_r}} \varrho_r(d\bar{y}) M^{\otimes \downarrow k_r}(dp_1, \dots, dp_{k_r}) \lambda_r(\bar{y}, M; p_1, \dots, p_{k_r}) \\ &\left[F\left(\langle M, f \rangle - \sum_{i=1}^{k_r} f(x_i, y_i) + \sum_{i=1}^{k_r'} f(B_i^r, \bar{y}) \right) - F_f(M) \right] \end{split}$$

· presented pre-limit as an Individual Based Model

particles move according to type specific motion

$$\mathcal{D}F_f(M) = F'(\langle M, f \rangle) \sum_{x \in \mathcal{T}} \langle M, b_x \cdot \nabla_y f + \Sigma_x^2 \circ \Delta_y f \rangle$$
$$+ F''(\langle M, f \rangle) \sum_{x \in \mathcal{T}} \langle M, \Sigma_x^2 \circ ((\nabla_y f)(\nabla_y f)^{\mathbf{t}}) \rangle.$$

Martingale problem formulation:

► for all
$$F_f = F(\langle \cdot, f \rangle) : F \in \mathcal{C}^2_b(\mathbf{R}), f(\tau, \cdot) \in \mathcal{C}^{0,2}(\mathcal{M})$$

 $\left(F_f(\mathcal{M}_t) - \int_0^t \mathcal{L}F_f(\mathcal{M}_s) ds\right)_{t \ge 0}$

is a martingale, where for $M \in \mathcal{M}$

$$\mathcal{L}F_f(M) = \sum_{r \in \mathcal{R}} \mathcal{L}_r F_f(M) + \sum_{\tau \in \mathcal{T}} \mathcal{D}_\tau F_f(M)$$

· can be constructed as a solution to jump-SDE

Piecewise Deterministic Markov Process (PDMP) *(dynamical systems w/ random switching)

- · (finite dim) **PDMP** process taking values in $\mathbb{N}^d \times \mathbb{R}^c$
- deterministic dynamics of <u>continuous coordinates</u> prescribed by a continuous flow
- stochastic Markov chain dynamics of <u>discrete coordinates</u> prescribed by jump rates
- $\rightarrow\,$ the flow and jump rates are fully coupled

- · finite-dimensional PDMPs well studied (since Davis '84)
- $\rightarrow\,$ stability, inference (Costa-Dufour), ergodicity, invariant measure (Benaim et al., Cloez-Hairer)
- infinite-dimensional PDMPs: new in the literature process in Hilbert space (Thieullen-Wainrib, neuro-science model)

Measure-Valued PDMP *(w/ A.Véber, An.Appl.Prob.'23)

- measure-valued PDMP taking values in $\underline{\mathcal{M}^d \times \mathcal{M}^c}_{\mathcal{M}^d}$ point-measures on $\mathcal{T}_{L,s} \times E$, \mathcal{M}^c measures on $\mathcal{T}_{L,s}^c \times E$
- deterministic dynamics of <u>continuous coordinates</u> prescribed by a measure-valued flow Φ
- stochastic dynamics of <u>discrete coordinates</u> prescribed by point-measure jump rates
 - $\cdot\,$ can be constructed as a solution to jump-PDE

$$(au^i, i=0,1,\dots)=$$
 jump times of \mathcal{M}^d

► for $t \in [\tau^i, \tau^{i+1})$ have the deterministic flow $\mathcal{M}_t := \left(\Phi_{\mathcal{M}^{d_i}}(t - \tau^i, \mathcal{M}^{c}_{\tau^i}), \mathcal{M}^{d}_{\tau^i}\right)$

• at τ^{i+1} have the stochastic jump due to some reaction r

$$\mathcal{M}_{\tau^{i+1}} := \left(\Phi_{\mathcal{M}_{\tau^{i}}^{d}}(\tau^{i+1} - \tau^{i}, \mathcal{M}_{\tau^{i}}^{c}), \ \mathcal{M}_{\tau^{i}}^{d} + \sum_{i=k_{r^{j},b}^{\prime}+1}^{k_{r^{j}}^{\prime}} \delta_{(B_{r^{j}}^{i^{j}}, \bar{y}_{r^{j}})} - \sum_{i=k_{r^{j},b}+1}^{k_{r^{j}}} \delta_{(A_{r^{j}}^{i^{j}}, \bar{y}_{A_{r^{j}}^{j}})} \right)$$

Limit Results

Functional LLN

- Assume subset of particles scale ~ O(N) and <u>diffuse</u>, other particles scale ~ O(1) and are <u>localized</u>
- Start from particles for all types, rescale mass non-uniformly:

$$M_t^N := \frac{1}{N} \sum_{x_i \in \mathcal{T}_{L,s}^c} \delta_{(x_i, y_i)} + \sum_{x_i \in \mathcal{T}_{L,s}} \delta_{(x_i, y_i)},$$

Assume appropriate <u>conditions on rates</u>, and assume control on <u>moments of mass</u>

$$\sup_{N} \mathbf{E} \left[\sup_{t \in [0,T]} \langle M_t^N, 1 \rangle^{(1+\max_{r \in R} k_r) \vee 2} \right] < \infty ;$$

▶ If $M_0^N \Rightarrow M_0^\infty$, and the mgale problem for M^∞ is well-posed, then:

$$\left(\frac{1}{N}\sum_{\substack{i\in\mathcal{I}_t:\\x_i\in\mathcal{T}_{NL}}}\delta_{(x_i,y_i)},\sum_{\substack{i\in\mathcal{I}_t:\\x_i\in\mathcal{T}_L}}\delta_{(x_i,y_i)}\right)_{t\geq 0} \quad \Longrightarrow \quad \left(M_t^{\infty,c},M_t^{\infty,d}\right)_{t\geq 0}$$

- $\rightarrow M^{\infty,c}$ = continuous mass coordinate is deterministic on random intervals when $M^{\infty,d}$ is constant, characterized by integro-differential equation dependent on $M^{\infty,d}$ as well
- $\rightarrow M^{\infty,d}$ = discrete mass coordinate is jump Markov process, jump <u>rates</u> are dependent on both coordinates $(M^{\infty,c}, M^{\infty,d})$

Assuming similar mass conditions:

$$\sup_{N} \mathbf{E} \bigg[\sup_{t \in [0,T]} \langle M_t^{\infty,c} \otimes M_t^{\infty,d}, 1 \rangle^{(1+\max_{r \in R} k_r) \vee 2} \bigg] < \infty ;$$

 $\rightarrow M^{\infty} = M^{\infty,c} \otimes M^{\infty,d}$ is a <u>measure-valued PDMP</u>

 useful properties of the process can be derived from the particle pre-limit

Regime Switching Markov Processes

*(stochastic systems w/ random switching)

- · (finite dim) SDE w/ regime switching process taking values in $\underline{\mathbb{N}^d} \times \mathbb{R}^c$
- dynamics of <u>continuous coordinates</u> prescribed by SDE
- dynamics of <u>discrete coordinates</u> prescribed by Markov chain
- $\rightarrow\,$ the parameters of SDE depend on the Markov chain, the jump rates of the Markov chain are autonomous
 - (infinite-dim) **SPDE w/ regime switching**: recent in the literature
- ightarrow stability, regularity, ergodicity, invariant measure of interest

Distribution-Valued RSMP *(w/ A.Véber, in prep.)

- distribution-valued RSMP taking values in $\underline{S'}$ S' = dual of the Schwartz space of C^{∞} functions on $\mathcal{T} \times E$
- \cdot paired w/ measure-valued PDMP Markov chain = \mathcal{M}^d
- dynamics of <u>continuous coordinates</u> prescribed by a distribution-valued process *U*

• dynamics of discrete coordinates prescribed by \mathcal{M}^d jump rates

 \cdot can be constructed as a solution to jump-SPDE

 $(au^i, i=0,1,\dots)=$ jump times of \mathcal{M}^d

• for $t \in [\tau^i, \tau^{i+1})$ have the SPDE flow Ψ

$$\mathcal{U}_t := \Psi_{\mathcal{M}^d_{\tau^i}}(t - \tau^i, \ (\mathcal{U}_s)_{s \in [\tau^i, t)})$$

► at τ^{i+1} have the jump of \mathcal{M}^d to $\mathcal{M}^d_{\tau^{i+1}}$ determined by PDMP

Functional CLT

- Recall

$$M^{N} := \left(\frac{1}{N} \sum_{\substack{i \in \mathcal{I}_{t}:\\ x_{i} \in \mathcal{T}_{NL}}} \delta_{(x_{i}, y_{i})}, \sum_{\substack{i \in \mathcal{I}_{t}:\\ x_{i} \in \mathcal{T}_{L}}} \delta_{(x_{i}, y_{i})}\right)_{t \geq 0} \implies M^{\infty} := \left(M_{t}^{\infty, c}, M_{t}^{\infty, d}\right)_{t \geq 0}$$

- Define normalized deviation from functional LLN limit

 $M^{N,\infty}$:= has jumps of $M^{N,d}$ and continuous flow of $M^{\infty,c}$

$$U^{N} := \sqrt{N}(M^{N} - M^{N,\infty})$$

► Assume appropriate extra <u>conditions</u>. If $U_0^N \Rightarrow 0$, then: $U^N \Longrightarrow_{N \to \infty} U^{\infty}$

where U^{∞} is a semi-martingale taking values in $S'(T \times E)$, satisfying Ornstein-Uhlenbeck type SPDE: $\forall \phi \in S(T \times E)$

$$\langle \boldsymbol{U}_t^{\infty}, \phi \rangle = \int_0^t ds \ \langle \boldsymbol{U}_s^{\infty}, \nabla_{\scriptscriptstyle M} \boldsymbol{F}(M_t^{\infty}(\phi)) \rangle + \int_0^t dW_s^{\infty} \sqrt{[V^{\infty}(\phi)]_s}.$$

 $F(M_t^{\infty}, \phi)$ is the drift in the deterministic flow of $\langle M^{\infty}, \phi \rangle$.

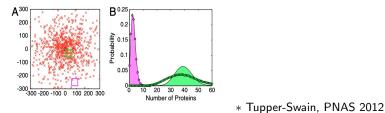
Questions

Properties of Piecewise deterministic processes:

- \rightarrow long-term behaviour of Measure-valued PDMP:
 - regime-switching PDE driven by autonomous Markov Chain

Properties of Regime switching processes:

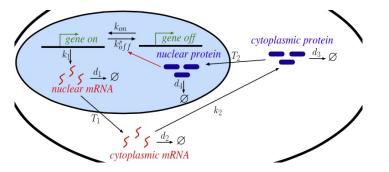
- \rightarrow statistical features of the Distribution-valued RSMP:
 - evaluation on $\varphi \in \mathcal{S}(\mathcal{T} \times E)$ for useful correlations



Example

Intra-cellular transcription-translation mechanism:

*Nucleus =blue; cytoplasm = white



Sturrock et al, J.Theor.Biol 2017

$$\emptyset \stackrel{\bar{h}_1(B)}{\underset{1_{\bar{y}_1}=0}{\mapsto}} A, \quad A \stackrel{\bar{h}_2}{\mapsto} A + B, \quad B \stackrel{\bar{h}_3}{\mapsto} \emptyset, \quad A \stackrel{\bar{h}_4}{\mapsto} \emptyset$$

- A is the mRNA, B is the protein, transcription of mRNA occurs only in the nucleus at y
 ₁ = 0 w/ rate h₁(y
 ₁, ⟨M, Ψ_{B,ε}⟩)
- Unregulated case: function \bar{h}_1 is constant; Self-regulated case: $\bar{h}_1(0, \langle M, \Psi_{B,\epsilon} \rangle)$ with $\Psi_{B,\epsilon} \approx \mathbf{1}_{\{B\} \times B(0,\epsilon)}$; e.g. $h_1(\bar{y}_1, a) = c_1/(1 + (c_2a)^k)$ for repression by B, or $h_1(\bar{y}_1, a) = (1 + c_1a^k)/(c_2^k + a^k)$ for activation by B

Measure-valued PDMP limit:

- A = O(1), B = O(N);
- A are localized at $\bar{y} = 0$, B diffuse freely:
- ► discrete coordinate M_t^{∞,c} = M_t(A, 0) (A molecules at ȳ = 0) is a jump Markov process w/ birth rate =h₁, and death rate =h₄M_t(A, 0);
- continuous coordinate M^{∞,d}_t = M_t 1_{{B}×E} (conts mass of B) is deterministic <u>between</u> random jump times {τ^j, j ≥ 1} of M_t(A,0) and its density μ_t(B,y) = dM_t(B,y)/dy satisfies: ∀y, ∀t ∈ [τ^j, τ^{j+1})

$$\partial_t \mu_t(B, y) = \sigma_B^2 \Delta_y \mu_t(B, y) + h_2 M_t(A, 0) \Gamma_\epsilon(y) - h_3 \mu_t(B, y)$$

with initial values given by $\mu_{\tau^j}(B, y) = \lim_{t\uparrow \tau^j} \mu_t(B, y)$.