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Interactions in continuous space

Interacting particles:

▶ Particles are of different types: τ ∈ T
▶ Interactions are from prescribed set of reactions: r ∈ R, e.g.:

A 7→ B, B 7→ ∅, A+B 7→ 2B, 2A+B 7→ 3A (Schloegl model)

S + I 7→ 2I , I 7→ R (SIR model)

A 7→ B, B 7→ A, A+B 7→ 2A, A+B 7→ 2B (Moran model)



▶ Rates of interactions depend on:
- # of particles of all input types that are close to each other
⋆ proximity is determined by a kernel Γ → non-local operators
- rate constants specific to the interaction that depend on the
location of input types and the mass of all types
⋆ allows interactions to happen only in certain locations
⋆ mass of other types creates feedback in interactions



Spatial movement:

▶ Space is continuous: bounded E ⊂ Rd

▶ Movement is Markovian and based on particle type
⋆ some particles diffuse, some stay localized
- in between interactions, independently of interactions

Spatial heterogeneity:

⋆ localization of certain reactions;

⋆ localization of certain particle types

∗ SIR model, Forgasz et al., Nat.Sci.Reports., 2022



Non-uniform aspects:

▶ some particle types are abundant, others only few counts

▶ some species diffuse fast, others stay almost localized

∗ Batada et al, Proc.Nat.Acad.Sci. 2004

New modelling framework:

→ allows for non-standard limits retaining relevant stochasticity



Model

Measure-valued Markov process (Mt)t≥0:

▶ takes values on space of finite point measures on P = T × E

M =
{∑

i∈I
δ(τ i ,x i ) : I ⊂ N, (τ i , x i ) ∈ P

}
T = set of particle types, E= spatial domain, I= indexing set,
δ(τ,x)= unit mass at location x ∈ E for particle type τ ∈ T

Flexibility of framework:

· can encode both discrete and continuous amounts in space
→ combines Individual Based Model with (S)PDE

· treating localized and non-localized particles differently
→ discrete types are localized, continuous types are either



Markov process:
∗(w/ A.Véber, An.Appl.Prob.’23)

▶ particles w/in kernel Γ-distance interact w/ spatially
dependent rates hr - heterogeneous “mass-action”

ϱr (dȳ) =

{
dȳ non-localized ,
δȳ localized reac .

M⊗↓kr= sampling w/o rep.

λr (ȳ ,M; p1, . . . , pkr ) := hr (ȳ ,M)
(∏kr

i=1 1Ar
i
(xi )Γϵ(yi − ȳ)

)
GrFf (M) =

∫
E×Pkr

ϱr (dȳ)M
⊗↓kr (dp1, . . . , dpkr )λr (ȳ ,M; p1, . . . , pkr )

[
F

(
⟨M, f ⟩ −

kr∑
i=1

f (xi , yi ) +

k′
r∑

i=1

f (B r
i , ȳ)

)
− Ff (M)

]
· presented pre-limit as an Individual Based Model



▶ particles move according to type specific motion

DFf (M) = F ′(⟨M, f ⟩)
∑
x∈T

⟨M, bx · ∇y f +Σ2
x ◦∆y f ⟩

+ F ′′(⟨M, f ⟩)
∑
x∈T

〈
M,Σ2

x ◦
(
(∇y f )(∇y f )

t
)〉
.

Martingale problem formulation:

▶ for all Ff = F (⟨·, f ⟩) : F ∈ C2
b(R), f (τ, ·) ∈ C0,2(M)}(

Ff (Mt)−
∫ t

0

LFf (Ms)ds
)
t≥0

is a martingale, where for M ∈ M

LFf (M) =
∑
r∈R

LrFf (M) +
∑
τ∈T

DτFf (M)

· can be constructed as a solution to jump-SDE



Piecewise Deterministic Markov Process (PDMP)
∗(dynamical systems w/ random switching)

· (finite dim) PDMP - process taking values in Nd × Rc

▶ deterministic dynamics of continuous coordinates prescribed
by a continuous flow

▶ stochastic Markov chain dynamics of discrete coordinates
prescribed by jump rates

→ the flow and jump rates are fully coupled

· finite-dimensional PDMPs well studied (since Davis ’84)

→ stability, inference (Costa-Dufour), ergodicity, invariant
measure (Benaim et al., Cloez-Hairer)

▶ infinite-dimensional PDMPs: new in the literature - process in
Hilbert space (Thieullen-Wainrib, neuro-science model)



Measure-Valued PDMP ∗(w/ A.Véber, An.Appl.Prob.’23)

· measure-valued PDMP - taking values in Md ×Mc

Md= point-measures on TL,s × E , Mc= measures on T c
L,s × E

▶ deterministic dynamics of continuous coordinates prescribed
by a measure-valued flow Φ

▶ stochastic dynamics of discrete coordinates prescribed by
point-measure jump rates

· can be constructed as a solution to jump-PDE

(τ i , i = 0, 1, . . . ) = jump times of Md

▶ for t ∈ [τ i , τ i+1) have the deterministic flow

Mt :=
(
ΦMd

τ i
(t − τ i ,Mc

τ i ),Md
τ i

)
▶ at τ i+1 have the stochastic jump due to some reaction r

Mτ i+1 :=
(
ΦMd

τ i
(τ i+1−τ i ,Mc

τ i ), Md
τ i +

k′
r j∑

i=k′
r j ,b

+1

δ
(B r j

i ,ȳr j )
−

kr j∑
i=kr j ,b+1

δ
(Ar j

i ,ȳ
Ar

j
i

)

)



Limit Results

Functional LLN
▶ Assume subset of particles scale ∼ O(N) and diffuse, other

particles scale ∼ O(1) and are localized
▶ Start from particles for all types, rescale mass non-uniformly:

MN
t :=

1

N

∑
xi∈T c

L,s

δ(xi ,yi ) +
∑

xi∈TL,s

δ(xi ,yi ),

▶ Assume appropriate conditions on rates, and assume control
on moments of mass

sup
N

E

[
sup

t∈[0,T ]

⟨MN
t , 1⟩(1+maxr∈R kr )∨2

]
< ∞ ;

▶ If MN
0 ⇒ M∞

0 , and the mgale problem for M∞ is well-posed,
then:( 1

N

∑
i∈It :
xi∈TNL

δ(xi ,yi ),
∑
i∈It :
xi∈TL

δ(xi ,yi )

)
t≥0

=⇒
N→∞

(
M∞,c

t ,M∞,d
t

)
t≥0



→ M∞,c= continuous mass coordinate is deterministic on
random intervals when M∞,d is constant, characterized by
integro-differential equation dependent on M∞,d as well

→ M∞,d= discrete mass coordinate is jump Markov process,
jump rates are dependent on both coordinates (M∞,c ,M∞,d)

Assuming similar mass conditions:

sup
N

E

[
sup

t∈[0,T ]

⟨M∞,c
t ⊗M∞,d

t , 1⟩(1+maxr∈R kr )∨2

]
< ∞ ;

→ M∞ = M∞,c ⊗M∞,d is a measure-valued PDMP

· useful properties of the process can be derived from the
particle pre-limit



Regime Switching Markov Processes
∗(stochastic systems w/ random switching)

· (finite dim) SDE w/ regime switching - process taking
values in Nd × Rc

▶ dynamics of continuous coordinates prescribed by SDE

▶ dynamics of discrete coordinates prescribed by Markov chain

→ the parameters of SDE depend on the Markov chain,
the jump rates of the Markov chain are autonomous

· (infinite-dim) SPDE w/ regime switching: recent in the
literature

→ stability, regularity, ergodicity, invariant measure - of interest



Distribution-Valued RSMP ∗(w/ A.Véber, in prep.)

· distribution-valued RSMP - taking values in S ′

S ′= dual of the Schwartz space of C∞ functions on T × E

· paired w/ measure-valued PDMP - Markov chain = Md

▶ dynamics of continuous coordinates prescribed by a
distribution-valued process U

▶ dynamics of discrete coordinates prescribed by Md jump rates

· can be constructed as a solution to jump-SPDE

(τ i , i = 0, 1, . . . ) = jump times of Md

▶ for t ∈ [τ i , τ i+1) have the SPDE flow Ψ

Ut := ΨMd
τ i
(t − τ i , (Us)s∈[τ i ,t))

▶ at τ i+1 have the jump of Md to Md
τ i+1 determined by PDMP



Functional CLT

- Recall

MN :=
( 1

N

∑
i∈It :
xi∈TNL

δ(xi ,yi ),
∑
i∈It :
xi∈TL

δ(xi ,yi )

)
t≥0

=⇒
N→∞

M∞:=
(
M∞,c

t ,M∞,d
t

)
t≥0

- Define normalized deviation from functional LLN limit

MN,∞:= has jumps of MN,d and continuous flow of M∞,c

UN :=
√
N(MN −MN,∞)

▶ Assume appropriate extra conditions. If UN
0 ⇒ 0, then:

UN =⇒
N→∞

U∞

where U∞ is a semi-martingale taking values in S ′(T × E ),
satisfying Ornstein-Uhlenbeck type SPDE: ∀ϕ ∈ S(T × E )

⟨U∞
t , ϕ⟩ =

∫ t

0

ds ⟨U∞
s ,∇

M
F (M∞

t (ϕ)⟩+
∫ t

0

dW∞
s

√
[V∞(ϕ)]s .

F (M∞
t , ϕ) is the drift in the deterministic flow of ⟨M∞, ϕ⟩.



Questions

Properties of Piecewise deterministic processes:

→ long-term behaviour of Measure-valued PDMP:
- regime-switching PDE driven by autonomous Markov Chain

Properties of Regime switching processes:

→ statistical features of the Distribution-valued RSMP:
- evaluation on φ ∈ S(T × E ) for useful correlations

∗ Tupper-Swain, PNAS 2012



Example

Intra-cellular transcription-translation mechanism:
∗Nucleus =blue; cytoplasm = white

∗

Sturrock et al, J.Theor.Biol 2017



∅ h̄1(B)7→
1ȳ1=0

A, A
h̄27→A+ B, B

h̄37→ ∅, A
h̄47→ ∅

▶ A is the mRNA, B is the protein, transcription of mRNA
occurs only in the nucleus at ȳ1 = 0 w/ rate h1(ȳ1, ⟨M,ΨB,ϵ⟩)

• Unregulated case: function h̄1 is constant;
Self-regulated case: h̄1(0, ⟨M,ΨB,ϵ⟩) with ΨB,ϵ ≈ 1{B}×B(0,ϵ);

e.g. h1(ȳ1, a) = c1/(1 + (c2a)
k) for repression by B,

or h1(ȳ1, a) = (1 + c1a
k)/(ck2 + ak) for activation by B



Measure-valued PDMP limit:

- A = O(1), B = O(N);

- A are localized at ȳ = 0, B diffuse freely:

▶ discrete coordinate M∞,c
t = Mt(A, 0) (A molecules at ȳ = 0)

is a jump Markov process w/ birth rate =h1, and death rate
=h4Mt(A, 0);

▶ continuous coordinate M∞,d
t = Mt1{B}×E (conts mass of B)

is deterministic between random jump times {τ j , j ≥ 1} of

Mt(A, 0) and its density µt(B, y) =
dMt(B,y)

dy satisfies:

∀y ,∀t ∈ [τ j , τ j+1)

∂tµt(B, y) = σ2
B∆yµt(B, y) + h2Mt(A, 0)Γϵ(y)− h3µt(B, y)

with initial values given by µτ j (B, y) = limt↑τ j µt(B, y).


