I have neither given nor received aid in the completion of this test. Signature:

To get full credit you must show enough work to convince me that you know what you are doing!

The average on this test was 128.08. The standard deviation was 25.16.

A student pointed out the the material in Problem 9 was not in Chapters 13 or 14. I therefore decided not to count it.

1. 10 pts. Use the method of Lagrange multipliers to determine the point(s) at which $f(x, y) = x + y^2$ attains its minimum and maximum values on the circle $x^2 + y^2 = 1$.

Solution. Set $g(x, y) = x^2 + y^2$. Then

$$
\nabla f(x,y) \bullet \nabla g(x,y)^{\perp} = (1,2y) \bullet (2x,2y)^{\perp} = (1,2y) \bullet (-2y,2x) = -2y + (2y)(2x) = 2y(2x-1)
$$

which is zero when $y = 0$ or $x = 1/2$. If $y = 0$ and $g(x, y) = 1$ then $x = \pm 1$ and $f(x, y) = \pm 1$. If $x = 1/2$ and $g(x,y) = 1$ then $y = \pm \sqrt{3}/2$ and $f(x,y) = 1/2 + 3/4 = 5/4$. Thus when $g(x, y) = 1$ the function f attains its minimum value of -1 at $(-1,0)$ and its maximum value of $5/4$ at $(1/2, \pm \sqrt{3}/2)$.

2. 10 pts. Let

$$
f(x, y) = -3xy + 2x + xy^{2} + 3y - y^{2} \text{ for } (x, y) \in \mathbb{R}^{2}.
$$

I tell you that $(1, 2)$ is a critical point of f. Apply the second derivative test to determine whether $(1, 2)$ is a relative minimum, a relative maximum, a saddle point or none of these.

Solution. We have

$$
\begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 0 & -3 + 2y \\ -3 + 2y & 2x - 2 \end{bmatrix}
$$

so $A = f_{xx}(1, 2) = 0$, $B = f_{xy}(1, 2) = 1$ and $C = 0$. Since $AC - B^2 = -1$ we find that $(1, 2)$ is a saddle point.

3. (a) (10 pts.) Evaluate:

$$
\int_0^1 \left(\int_{x^2}^x x^2 y \, dy \right) dx
$$

Solution.

$$
\frac{1}{2} \int_0^1 x^2 y^2 \vert_{y=x^2}^{y=x} dx = \frac{1}{2} \int_0^1 x^4 - x^6 dx = \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) = -\frac{1}{35}.
$$

(b) (15 pts.)

$$
\int_0^1 \left(\int_x^{2x} \left(\int_{xy}^{2xy} xyz \, dz \right) dy \right) dx.
$$

Solution.

$$
\int_0^1 \left(\int_x^{2x} \frac{xyz^2}{2} \Big|_{z=xy}^{z=2xy} dy \right) dx
$$

= $\frac{3}{2} \int_0^1 \left(\int_x^{2x} x^3 y^3 dy \right) dx$
= $\frac{3}{2} \int_0^1 \frac{x^3 y^4}{4} \Big|_{y=x}^{y=2x} dx$
= $\frac{3}{2} \frac{15}{4} \int_0^1 x^7 dx$
= $\frac{3}{2} \frac{15}{4} \frac{1}{8}$
= $\frac{45}{64}$.

4. Represent as an iterated integral:

(a) (10 pts.)

$$
\int \int_T xy \, dA
$$

where T is the triangle with vertices at $(0, 0), (1, 0), (1, 1)$.

(b) (15 pts).

$$
\int \int_R xy \, dA
$$

where R is the bounded region between the parabolas $y = 3 - x^2$ and $y = x^2$. Solution to (a).

$$
\int_0^1 \left(\int_0^x xy \, dy \right) dx = \frac{1}{8}.
$$

Solution to (b). The projection of R on the x-axis is the interval with endpoints at the solutions of $3 - x^2 = x^2$ or $x = \pm \sqrt{\frac{3}{2}}$. Thus the integral equals

$$
\int_{-\sqrt{\frac{3}{2}}}^{\sqrt{\frac{3}{2}}} \left(\int_{x^2}^{3-x^2} xy \, dy \right) dx = 0.
$$

(Of course it's obvious it's zero because of the symmetry of R about the y-axis.)

5. 20 pts. Let R be the set of those $(x, y) \in \mathbb{R}^2$ such that $x > 0, y > 0$,

$$
1 < (xy)^2 < 3
$$
 and $2 < y/x < 4$.

Use the Change of Variables Formula for Multiple Integrals to compute the area of R. **Solution.** Let $u = (xy)^2$ and let $v = y/x$ for $x > 0$ and $y > 0$ and note that $(x, y) \rightarrow (u, v)$ is one-to-one. We have

$$
\frac{\partial(x,y)}{\partial(u,v)} = \left(\frac{\partial(u,v)}{\partial(x,y)}\right)^{-1} = (u_xv_y - u_yv_x)^{-1} = \left((2xy^2)(1/x) - (2x^2y)(-y/x^2)\right)^{-1} = (4y^2)^{-1} = \frac{1}{4\sqrt{uv}}
$$

so the area of R equals

$$
\int \int_{1
$$

6. 20 pts. Use polar coordinates to represent the volume of the solid bounded by the paraboloids $z = 12 - 2x^2 - y^2$ and $z = x^2 + 2y^2$.

Solution. The projection R of the solid on the xy-plane is bounded by the solution set of $12 - 2x^2 - y^2 =$ $x^2 + 2y^2$ or $x^2 + y^2 = 2$. Thus the volume of the solid equals

$$
\int \int_R (12 - 2x^2 - y^2) - (x^2 + 2y^2) \, dx \, dy = \int \int_R 12 - 3(x^2 + y^2) \, dx \, dy = \int_0^2 \left(\int_0^{2\pi} 12 - 3r^2 \, r \, dr \right) d\theta = 32\pi.
$$

7. 20 pts. Let S be the solid consisting of those points in \mathbb{R}^3 such that $x^2 + y^2 + z^2 < 3^2$ and $|z| \le \sqrt{x^2 + y^2}$. Use spherical coordinates to represent the volume of S as an iterated integral.

Solution. The key point is that ϕ varies from $\pi/4$ to $3\pi/4$. The desired volume equals

$$
\int \int \int_{0 < \rho < 3, \ \pi/4 < \phi < 3\pi/4, \ 0 < \theta < 2\pi \end{pmatrix} \rho^2 \sin \phi \, d\rho d\phi d\theta = \int_0^{2\pi} \left(\int_{\pi/4}^{3\pi/4} \left(\int_0^3 \rho^2 \sin \phi \, d\rho \right) d\phi \right) d\theta = 18\sqrt{2}\pi.
$$

- 8. Let T be the tetrahedron with vertices $(0, 0, 0), (1, 0, 0), (0, 2, 0), (0, 0, 3)$.
	- (a) (15 pts.) Compute the volume of T.
	- (b) (20 pts.) Compute the area of the boundary of T.
	- (Hint: Determine a, b, c such that the vertices $(1,0,0), (0,2,0), (0,0,3)$ satisfy $ax + by + cz = 1$.)

Solution. The vertices $(1, 0, 0), (0, 2, 0), (0, 0, 3)$ satisfy

$$
x + \frac{y}{2} + \frac{z}{3} = 1
$$

and so the face U of the tetrahedron containing these three points is in the graph of $z = 3(1 - x - \frac{y}{2})$. Let R be the triangle containing the points $(0, 0), (1, 0), (0, 2)$. The volume of T is

$$
\int \int_R 3\left(1 - x - \frac{y}{2}\right) dx dy = \int_0^1 \left(\int_0^{2x-2} 3\left(1 - x - \frac{y}{2}\right) dy\right) dx = 1.
$$

The area of R is 1. The area of the triangle Q containing the vertices $(0,0,0), (1,0,0), (0,0,3)$ is $\frac{3}{2}$. The area of the triangle P containing the vertices $(0, 0, 0), (0, 2, 0), (0, 0, 3)$ is 3. Since

$$
\sqrt{1 + z_x^2 + z_y^2} = \sqrt{1 + (-3)^2 + (-3/2)^2} = \frac{7}{2}
$$

the area of U is

$$
\int \int_R \frac{7}{2} dx dy = \frac{7}{2}.
$$

Hence the area of the boundary of T is

$$
1 + \frac{3}{2} + 3 + \frac{7}{2} = 9.
$$

9. 15 pts. Express as a definite integral:

$$
\int_C (x+y+z) \, ds
$$

where C is the curve $\{(\cos \theta, \sin \theta, \theta) : 0 \le \theta \le 4\pi\}$. (Note that C is a segment of a helix.)

Solution. Let $x = \cos \theta, y \sin \theta, z = \theta, 0 \le \theta \le 4\pi$. Then

$$
ds = \sqrt{\frac{dx^2}{d\theta} + \frac{dy^2}{d\theta} + \frac{dz^2}{\theta}} = \sqrt{2}
$$

so

$$
\int_C (x + y + z) ds = \int_0^4 \pi (\cos \theta + \sin \theta + \theta) \sqrt{2} d\theta = \sqrt{2}\pi (9 + \sin 4 + \cos 4).
$$

10. Let

$$
\mathbf{r}(u,v) = (uv, u^2, v^2), \quad \text{for } (u,v) \in \mathbf{R}^2,
$$

and let

$$
T = \{(u, v) \in \mathbf{R}^2 : 0 < u < v < 1\}
$$

and let S be the surface

$$
\{\mathbf r(u,v) : (u,v) \in T\}.
$$

(a) (15 pts.) Express the area of S as an iterated integral.

Solution. We have

$$
\mathbf{r}_u = (v, 2u, 0), \quad \mathbf{r}_v = (u, 0, 2v)
$$

so

$$
\mathbf{r}_u \times \mathbf{r}_v = (v\mathbf{i} + 2u\mathbf{j}) \times (u\mathbf{i} + 2v\mathbf{k}) = (4uv, -2v^2, -2u^2)
$$

the length of which is

p $16u^2v^2 + 4v^4 + 4u^4$. Thus the desired area is

$$
\int \int_{0 < u < 1, u < v < 1} \sqrt{16u^2v^2 + 4v^4 + 4u^2} \, du dv = \int_0^1 \left(\int_u^1 \sqrt{16u^2v^2 + 4v^4 + 4u^2} \, dv \right) du.
$$

Maple couldn't do it and I didn't try.

(b) (20 pts.) Show that $\mathbf r$ is one-to-one on T .

Solution. Suppose $(u_i, v_i) \in T$ and $\mathbf{r}(u_1, v_1) = \mathbf{r}(u_2, v_2)$. Then

$$
u_1v_1 = u_2v_2
$$
, $u_1^2 = u_2^2$, $v_1^2 = v_2^2$.

Because $u_1 > 0$ and $u_2 > 0$ we infer that $u_1 = u_2$ and because $v_1 > 0$ and $v_2 > 0$ we infer that $v_1 = v_2$.

That's all folks!