
Curves in Rn

1. Limits, continuity and differentiation.

Throughout this section, I is an interval, a ∈ I and

r = (r1, . . . , rn) : I → Rn.

In 12.5 in the book n = 3. Often, for the sake of brevity, we will say r is a curve.
Notice the difference between the range of r (which the book calls the track) and r
itself.

Definition 1.1. Suppose l = (l1, . . . , ln) ∈ Rn. We say r(t) approaches l as t
approaches a and write

(1) lim
t→a

r(t) = l

if for each ε > 0 there is δ > 0 such that

t ∈ I and 0 < |t− a| < δ ⇒ |r(t)− l| < ε.

Theorem 1.1. Suppose l = (l1, . . . , ln) ∈ Rn. Then (1) holds if and only if

lim
t→a

ri(t) = li for i ∈ {1, . . . , n}.
Definition 1.2. We say r is differentiable at a if a is an interior point of I and
there is r′(a) ∈ Rn such that

(2) lim
h→0

r(a + h)− r(a)
h

= r′(a).

Theorem 1.2. r is differentiable at a if and only if ri is differentiable at a for each
i ∈ {1, . . . , n} in which case we have

r′(a) = (r′1(a), . . . , r′n(a)).

2. Limit and differentiation rules.

In 12.5 there ought to be limit rules following the pattern of Theorem 2. Let me
illustrate by example. Throughout this section I is an open interval, a ∈ I and

u,v : I → R3.

Theorem 2.1. Suppose limt→a u(t) = b and limt→a v(t) = c. Then

lim
t→a

(u× v)(t) = b× c.

Proof. Suppose t ∈ I. Then
|u× v)(t)− u× v)(a)|

= |(u(t)− u(a))× v(a) + u(t)× (v(t)− v(a))|
≤ |(u(t)− u(a))× v(a)|+ |u(t)× (v(t)− v(a))|
≤ |(u(t)− u(a)| |v(a)|+ |u(t)|, |v(t)− v(a))|;

this last quantity approaches 0 as t approaches a by limit rules from one variable
calculus; here we have used the triangle inequality and the fact that the length of
a cross product does not exceed the product of the length of the factors. ¤
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Theorem 2.2. Suppose u and v are differentiable at a. Then u×v is differentiable
at a and

(u× v)′(a) = u′(a)× v(a) + u(a)× v′(a).

Proof. Suppose h ∈ R and a + h ∈ I. Then
1
h

((u× v)(a + h)− (u× v)(a))

=
(

u(a + h)− u(a)
h

)
× v(a) + u(a + h)×

(
v(a + h)− v(a)

h

)
;

now apply limit rules to obtain the desired result. ¤

3. Velocity, acceleration and speed.

Definition 3.1. Suppose r is a curve. Then

r′ is its velocity,

r′′ is its acceleration
and

|r′| is its speed.
(So velocity and acceleration are vectors and speed is a scalar. Forgetting this leads
to all sorts of confusion.)

4. Integration.

Suppose r is a curve. Then its integral
∫ b

a

r(t) dt

can be defined using Riemann sums in the same was one defines the integral of a
scalar. Note the stuff on pages 809-811.

5. Projectile motion.

Suppose r is the path of a projectile with mass m which is subject to the force
−gk where g is the gravitational constant for the Earth’s surface in units consistent
with those of m. Then Newton’s Second Law of Motion says

(mr′)′ = −gk.

If the mass is constant this becomes

mr′′ = −gk.

Let t0 ∈ I, let
r0 = r(t0) and let v0 = r′(t0).

(That is, r0 and v0 are the initial position and velocity, respectively. Integrating
from t0 to t we obtain

m(r′(t)− v0) = −g(t− t0)k
so

r′(t) = v0 − g

m
(t− t0)k.

Integrating one more time from t0 to t we obtain

r(t)− r0 = (t− t0)v0 − g

2m
(t− t0)2k
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so
r(t) = r0 + (t− t0)v0 − g

2m
(t− t0)2k.

In particular, the range of r lies in any plane containing the initial position, the
initial velocity and k.

6. Problem 62 on page 815.

As written it makes no sense. What they probably mean is that if in Newton’s
Second Law

F = ma
(constant mass) where we are moving in R3 we have

F||r
then the range (or track in the book) of r lies in a plane. This is very interesting
and useful. It’s why, for example, the planetary motion, in the two body version,
lies in a plane containing the Sun.


