
1. More on differentiability, differentials and linear approximation.

Let m and n be positive integers.

2. Standard basis vectors.

Definition 2.1. For each j ∈ {1, . . . , n} let

ej

be the vector in Rn all of whose components are zero except the j-th which is one.
Thus if

x = (x1, . . . , xn) ∈ Rn

then

x =
n∑

j=1

xjej .

3. Linear functions.

Definition 3.1. We say
L : Rn → Rm

is linear if whenever c ∈ R and x,y ∈ Rn we have
(i) L(cx) = cL(x);
(ii) L(x + y) = L(x) + L(y).

Suppose L : Rn → Rm is linear and x = (x1, . . . , xn) ∈ Rn. Then

L(x) = L




n∑

j=1

xjej




=
n∑

j=1

L(xjej)

=
n∑

j=1

xjL(ej).

(1)

Thus L is determined by its values on the vectors ej, j ∈ {1, . . . , n}. Conversely, if
wj ∈ Rm, j ∈ {1, . . . , n}, and we define

L(x) =
n∑

j=1

xjwj for x ∈ Rn

one easily verifies that L is linear and L(ej) = wj .

4. The differential; the general case.

Suppose m and n are positive integers , A ⊂ Rn,

f : A → Rm

and a ∈ intA. (Previously m = 1.)

Definition 4.1. (Partial derivatives.) For each j ∈ {1, . . . , n} we let

∂jf(a) = lim
t→0

f(a + tej)− f(a)
t

∈ Rm.
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Remark 4.1. Note that if m = 1, n = 2 and a = (a, b) then

∂1f(a, b) =
∂f

∂x
(a, b), ∂2f(a, b) =

∂f

∂y
(a, b).

Note that if m = 1, n = 3 and a = (a, b, c) then

∂1f(a, b, c) =
∂f

∂x
(a, b, c), ∂2f(a, b, c) =

∂f

∂y
(a, b, c), ∂3f(a, b, c) =

∂f

∂z
(a, b, c).

Definition 4.2. We say f is differentiable at a if there exists a linear map
L : Rn → Rm such that

(2) lim
x→a

|f(x)− f(a)− L(x− a)|
|x− a| = 0.

The linear map L is immediately seen to be unique; it is called the differential
of f at a and is written

∂f(a).

Suppose
v = (v1, . . . , vn) ∈ Rn

and f is differentiable at a. Then

∂f(a)(v) =
n∑

j=1

vj∂jf(a).

In case m = 1
∂f(a)(v) = df(a)(v) = ∇f(a) • v.

If we let

A(x) = f(a) + ∂f(a)(x− a) and e(x) = f(x)−A(x)

for x ∈ A we find that (2) is equivalent to

(3) lim
x→a

|e(x)|
|x− a| = 0.

One calls the function A the standard affine approximation to f at a. The
difference e = f −A is the error in using A to approximate f .

Theorem 4.1. Suppose for some r > 0 the function f has partial derivatives on
A ∩U(a, r) which are continuous at a. Then f is differentiable at a and

∇f(a) =
(

∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

Proof. Apply the corresponding result in the scalar case which we have already
obtained to each component of f . ¤
Theorem 4.2. (The Chain Rule.) Suppose

(i) f is differentiable at a;
(ii) l is a positive integer, B is a subset of Rm and g : B → Rl;
(iii) f(a) ∈ intB and g is differentiable at f(a).

Then a is an interior point of the domain of g ◦ f , g ◦ f is differentiable at a and

(4) ∂(g ◦ f)(a) = ∂g(f(a)) ◦ ∂f(a).

Proof. Use the affine approximation approximations of f at a and g near f(a) to
obtain an affine approximation of g ◦ f near f(a). ¤
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Remark 4.2. (What to remember about (4). Suppose

f = (f1, . . . , fm) and g = (g1, . . . , gl).

Then (4) is equivalent to

(5) ∂j(gi ◦ f)(a) =
m∑

k=1

∂kgi(f(a)∂jfk(a) = ∇gi(f(a)) • ∂jf(a)

for i = 1, . . . , l and j = 1, . . . n.

Example 4.1. Here is an example of the Chain Rule when n = 1, m = 2 and
l = 1. Suppose U ⊂ R2, U is open and u : U → R is continuously differentiable on
u; u will correspond to g above. Suppose P : R2 → R2 is defined by

P (r, θ) = (r cos θ, r sin θ), (r, θ) ∈ R2;

P will correspond to f above.
We have

∂

∂r
u(r cos θ, r sin θ) =

∂u

∂x
(r cos θ, r sin θ)

∂

∂r
r cos θ +

∂u

∂y
(r cos θ, r sin θ)

∂

∂r
r sin θ

=
∂u

∂x
(r cos θ, r sin θ) cos θ +

∂u

∂y
(r cos θ, r sin θ) sin θ

(6)

as well as

∂

∂θ
u(r cos θ, r sin θ) =

∂u

∂x
(r cos θ, r sin θ)

∂

∂θ
r cos θ +

∂u

∂y
(r cos θ, r sin θ)

∂

∂θ
r sin θ

= −∂u

∂x
(r cos θ, r sin θ)r sin θ +

∂u

∂y
(r cos θ, r sin θ)r cos θ.

(7)

If you thought that was tough wait till you see what comes next! We have

∂2

∂r2
u(r cos θ, r sin θ) =

∂

∂r

(
∂u

∂x
(r cos θ, r sin θ) cos θ +

∂u

∂y
(r cos θ, r sin θ) sin θ

)

=
∂

∂r

(
∂u

∂x
(r cos θ, r sin θ)

)
cos θ +

∂

∂r

(
∂u

∂y
(r cos θ, r sin θ)

)
sin θ

=
(

∂2u

∂x2
(r cos θ, r sin θ) cos θ +

∂2u

∂y∂x
(r cos θ, r sin θ) sin θ

)
cos θ

+
(

∂2u

∂x∂y
(r cos θ, r sin θ) cos θ +

∂2u

∂y2
(r cos θ, r sin θ) sin θ

)
sin θ

=
∂2u

∂x2
(r cos θ, r sin θ) cos2 θ

+ 2
∂2u

∂x∂y
(r cos θ, r sin θ) cos θ sin θ

+
∂2u

∂y2
(r cos θ, r sin θ) sin2 θ.

(8)
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as well as

∂2

∂θ2
u(r cos θ, r sin θ) =

∂

∂θ

(
−∂u

∂x
(r cos θ, r sin θ)r sin θ +

∂u

∂y
(r cos θ, r sin θ)r cos θ

)

= − ∂

∂θ

(
∂u

∂x
(r cos θ, r sin θ)

)
r sin θ − ∂u

∂x
(r cos θ, r sin θ)

∂

∂θ
r sin θ

+
∂

∂θ

(
∂u

∂y
(r cos θ, r sin θ)

)
r cos θ +

∂u

∂y
(r cos θ, r sin θ)

∂

∂θ
r cos θ

= −
(
−∂2u

∂x2
(r cos θ, r sin θ)r sin θ +

∂2u

∂y∂x
(r cos θ, r sin θ)r cos θ

)
r sin θ

− ∂u

∂x
(r cos θ, r sin θ)r cos θ

+
(
− ∂2u

∂x∂y
(r cos θ, r sin θ)r sin θ +

∂2u

∂y2
(r cos θ, r sin θ)r cos θ

)
r cos θ

− ∂u

∂y
(r cos θ, r sin θ)r sin θ

= −
(

∂u

∂x
(r cos θ, r sin θ)r cos θ +

∂u

∂y
(r cos θ, r sin θ)r sin θ

)

+
∂2u

∂x2
(r cos θ, r sin θ)r2 sin2 θ − 2

∂2u

∂x∂y
(r cos θ, r sin θ)r2 sin θ cos θ

+
∂2u

∂y2
(r cos θ, r sin θ)r2 cos2 θ.

(9)

Putting it all together we get(
∂2u

∂x2
+

∂2u

∂y2

)
(r cos θ, r sin θ) =

(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂θ2

)
u(r cos θ, r sin θ).

So, for example, if

u(x, y) = log
√

x2 + y2 for (x, y) 6= (0, 0)

in which case
u(r cos θ, r sin θ) = log r for r 6= 0

or if

u(x, y) = arcsin
y√

x2 + y2
for (x, y) ∈ R2 such that x > 0 if y = 0

in which case

u(r cos θ, r sin θ) = θ if r > 0 and −π < θ < π

then
∂2u

∂x2
+

∂2u

∂y2
= 0.

The operator
∂2

∂x2
+

∂2

∂y2

is called the Laplacian; it is, by far, the most important partial differential operator
in mathematics and physics. (Typically, an operator is a function whose domain is
a set of functions and whose range is a set of functions.) To define it the way we
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did above turns out to be not so good an idea; there are much better definitions
but they require a bit of machinery which we will develop later.


