1. MORE ON DIFFERENTIABILITY, DIFFERENTIALS AND LINEAR APPROXIMATION.

Let m and n be positive integers.

2. STANDARD BASIS VECTORS.
Definition 2.1. For each j € {1,...,n} let
€j
be the vector in R™ all of whose components are zero except the j-th which is one.

Thus if
x = (z1,...,2,) ER"

n
X = E :cjej.
j=1

3. LINEAR FUNCTIONS.

then

Definition 3.1. We say
L:R*" —-R™
is linear if whenever ¢ € R and x,y € R"™ we have
(i) L(ex) = cL(x);
(ii) L(x+y) = L(x) + L(y).

Suppose L : R" — R™ is linear and x = (z1,...,7,) € R". Then

Lx)=1L Zx]—e]—
j=1

n
(1) = Z L(z;e;)
j=1
n
= Z z;L(ej)
j=1
Thus L is determined by its values on the vectors e;, j € {1,...,n}. Conversely, if

w; e R™, je{l,...,n}, and we define

n

L(x) = ijwj for x € R®
j=1
one easily verifies that L is linear and L(e;) = w;.
4. THE DIFFERENTIAL; THE GENERAL CASE.
Suppose m and n are positive integers , A C R™,

f:A—>R™
and a € int A. (Previously m = 1.)
Definition 4.1. (Partial derivatives.) For each j € {1,...,n} we let

b, sta) = g /01100 =@

e R™.
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Remark 4.1. Note that if m =1, n =2 and a = (a,b) then

0uf(ad) = T ab), 0af(at) = I (wb)

Note that if m =1, n =3 and a = (a, b, ¢) then
_of _of _of
81f(a7b7 C) - 8.’1} (avba C)7 an(a’a b7 C) - ay (a7b7 0)7 83f(a7ba C) - 82 (a’vby C)'

Definition 4.2. We say f is differentiable at a if there exists a linear map
L :R"™ — R™ such that

_ ~ L(x —
o) 100~ f(a) ~ Lix -~ a)

=0.
x—a |x — a|

The linear map L is immediately seen to be unique; it is called the differential
of f at a and is written

af(a).
Suppose
v=(v1,...,0,) €ER"
and f is differentiable at a. Then

01(@)(v) = 3" 0,0,/ (a).

Incase m =1
0f(a)(v) = df(a)(v) = Vf(a) ev.
If we let
Ax) = f(a) +0f(a)(x—a) and e(x)=f(x)— A(x)
for x € A we find that (2) is equivalent to
o le(x)]
1 —_—
(3) e —al
One calls the function A the standard affine approximation to f at a. The
difference e = f — A is the error in using A to approximate f.

Theorem 4.1. Suppose for some 7 > 0 the function f has partial derivatives on
ANU(a,r) which are continuous at a. Then f is differentiable at a and

Vf(a) = (gai(a)""’aax{l(a)> .

Proof. Apply the corresponding result in the scalar case which we have already
obtained to each component of f. O
Theorem 4.2. (The Chain Rule.) Suppose

(i) f is differentiable at a;
(ii) [ is a positive integer, B is a subset of R™ and g : B — R/;
(iii) f(a) € int B and g is differentiable at f(a).
Then a is an interior point of the domain of g o f, g o f is differentiable at a and

(4) d(go f)(a) =dg(f(a))cdf(a).

Proof. Use the affine approximation approximations of f at a and g near f(a) to
obtain an affine approximation of g o f near f(a). O



Remark 4.2. (What to remember about (4). Suppose
f:(fl""7fm) and g:(gl7"'7gl)'

Then (4) is equivalent to

() dj(gio f)(a Zakgv a)d; fr(a) = Vgi(f(a)) ¢ 9;f(a)

fori=1,...;,land j=1,...n

Example 4.1. Here is an example of the Chain Rule when n = 1, m = 2 and
I =1. Suppose U C R2, U is open and u : U — R is continuously differentiable on
w; u will correspond to g above. Suppose P : R? — R? is defined by

P(r,0) = (rcosf,rsing), (r,0)c R

P will correspond to f above.
We have

(6)

Eu(r cosf,rsinf) = %(r cos H,TSiDH)%r cosf + a—z(r cos Q,TSine)gr sin 6
= %(rcosﬁ,rsinﬁ) cosf + %(rcos@,rsin@) sin ¢
as well as
(7)
0

—u(rcosf,rsinf) = %(r cos 0,rsin0)%r cos @ + g—Z(r cos @, rsin 9)%7" sin 0

= ——u(r cos @, rsinf)rsin 6 + %(r cos 0,7 sin)r cos 6.

Or y

If you thought that was tough wait till you see what comes next! We have

(8)
2 . 9 (ou . du . ,
ﬁu(r cosf,rsinf) = o (&c(r cos@,rsind) cosf + 8—y(r cos @, rsin §) sin 9)

0 (Ou 0 (0Ou . .
=5 (8 (rcosé, Tbln@)) cosf + o (ay(TCObﬁ,rblnﬁ)) sin 0

2 2
(g Z(rco&ﬁ rsin ) cos 6 + ;y;x(rcosﬁ,rsinﬁ) sin0> cos 6
2

2

+ (;ng (rcosd,rsin®) cosf + g—;;(rcosﬁ,rsine) sin9> sin 6
2

g Z(rcos@ rsin 6) cos 20
0%y

2

+ Oxdy

2,

(rcos@,rsinf)cosfsind

+— 52 (r cos @, sin @) sin? .



4

as well as

(9)

0? . 0 ou . ) ou .
@u(r cosf,rsinf) = 2 (—ax(r cos @, rsinf)rsin 6 + @(r cos 0,7 sin 0)r cos 9)
0 (Ou . ) ou . o .
=~% (az(rcos&rsuﬁ)) rsinf — £(r0059,rsm9)%rsm9
0 (Ou . ou 0
+ 20 <8y(r00597rsm9)> rcosf + a—y(rcos@ TSIHQ)%TCOSQ

2 2
=— ( g Z(rcos@ rsinf)rsind + %(rcosﬁ,rsin@)rcos@) rsinf
yOx

(7" cos @, rsin@)r cos

87
(rcos@,rsinf)rsinf + @(TCOSQ rsin@)rcos6 | rcosf
8x8y ’ dy? ’
a—(r cos B, rsin 6)r sin 6
ou ou
= (8m (rcos@,rsin@)rcosf + (‘Ty(r cos @, rsind)r sm9>
+ @(r cos @, 7sin@)r?sin® 6 — QL(T’ cos @, 7 sin @)r? sin f cos 0
Ox? ’ 0xdy ’
2
gg(rcosé) rsin @)r? cos® 6.

Putting it all together we get
02 0? 2 10 02
<8;2L + 8;;) (rcosf,rsinf) = (87"2 + o + 892> u(rcosd,rsinb).

So, for example, if

=logva?+y* for (z,y) # (0,0)
in which case
u(rcosf,rsinf) =logr forr#0
or if

u(z,y) = arcsin for (z,y) € R? such that z > 0 if y =0

¥y
Va? + y?
in which case

u(rcosf,rsinf) =0 ifr>0and -7 <0<

then
%u  Ou
— + 5 =0.
ox2  Oy?
The operator
0? 0?
2 " o2

is called the Laplacian; it is, by far, the most important partial differential operator
in mathematics and physics. (Typically, an operator is a function whose domain is
a set of functions and whose range is a set of functions.) To define it the way we



did above turns out to be not so good an idea; there are much better definitions
but they require a bit of machinery which we will develop later.



