1. More on differentiability, differentials and linear approximation.

Let m and n be positive integers.

2. Standard basis vectors.

Definition 2.1. For each $j \in \{1, \ldots, n\}$ let

 \mathbf{e}_i

be the vector in \mathbb{R}^n all of whose components are zero except the j-th which is one. Thus if

$$
\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n
$$

then

$$
\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{e}_j.
$$

3. Linear functions.

Definition 3.1. We say

$$
L:\mathbb{R}^n\to\mathbb{R}^m
$$

is linear if whenever $c \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

- (i) $\mathbf{L}(c\mathbf{x}) = c\mathbf{L}(\mathbf{x});$
- (ii) $\mathbf{L}(\mathbf{x} + \mathbf{y}) = \mathbf{L}(\mathbf{x}) + \mathbf{L}(\mathbf{y}).$

Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear and $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$. Then $\overline{}$ $\frac{1}{2}$

(1)

$$
L(\mathbf{x}) = L\left(\sum_{j=1}^{n} x_j \mathbf{e}_j\right)
$$

$$
= \sum_{j=1}^{n} L(x_j \mathbf{e}_j)
$$

$$
= \sum_{j=1}^{n} x_j L(\mathbf{e}_j).
$$

Thus L is determined by its values on the vectors \mathbf{e}_j , $j \in \{1, ..., n\}$. Conversely, if $\mathbf{w}_j \in \mathbb{R}^m$, $j \in \{1, \ldots, n\}$, and we *define*

$$
L(\mathbf{x}) = \sum_{j=1}^{n} x_j \mathbf{w}_j \quad \text{for } \mathbf{x} \in \mathbb{R}^n
$$

one easily verifies that L is linear and $L(\mathbf{e}_i) = \mathbf{w}_i$.

4. The differential; the general case.

Suppose m and n are positive integers, $A \subset \mathbb{R}^n$,

$$
f:A\to\mathbb{R}^m
$$

and $\mathbf{a} \in \text{int } A$. (Previously $m = 1$.)

Definition 4.1. (Partial derivatives.) For each $j \in \{1, ..., n\}$ we let

$$
\partial_j f(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{e}_j) - f(\mathbf{a})}{t} \in \mathbb{R}^m.
$$

Remark 4.1. Note that if $m = 1$, $n = 2$ and $\mathbf{a} = (a, b)$ then

$$
\partial_1 f(a, b) = \frac{\partial f}{\partial x}(a, b), \quad \partial_2 f(a, b) = \frac{\partial f}{\partial y}(a, b).
$$

Note that if $m = 1$, $n = 3$ and $\mathbf{a} = (a, b, c)$ then

$$
\partial_1 f(a,b,c) = \frac{\partial f}{\partial x}(a,b,c), \quad \partial_2 f(a,b,c) = \frac{\partial f}{\partial y}(a,b,c), \quad \partial_3 f(a,b,c) = \frac{\partial f}{\partial z}(a,b,c).
$$

Definition 4.2. We say f is differentiable at a if there exists a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ such that

(2)
$$
\lim_{\mathbf{x}\to\mathbf{a}}\frac{|f(\mathbf{x})-f(\mathbf{a})-L(\mathbf{x}-\mathbf{a})|}{|\mathbf{x}-\mathbf{a}|}=0.
$$

The linear map L is immediately seen to be unique; it is called the **differential** of f at a and is written

$$
\partial f(\mathbf{a}).
$$

Suppose

$$
\mathbf{v}=(v_1,\ldots,v_n)\in\mathbb{R}^n
$$

and f is differentiable at a . Then

$$
\partial f(\mathbf{a})(\mathbf{v}) = \sum_{j=1}^{n} v_j \partial_j f(\mathbf{a}).
$$

In case $m = 1$

$$
\partial f(\mathbf{a})(\mathbf{v}) = df(\mathbf{a})(\mathbf{v}) = \nabla f(\mathbf{a}) \bullet \mathbf{v}.
$$

If we let

$$
A(\mathbf{x}) = f(\mathbf{a}) + \partial f(\mathbf{a})(\mathbf{x} - \mathbf{a})
$$
 and $\mathbf{e}(\mathbf{x}) = f(\mathbf{x}) - A(\mathbf{x})$

for $\mathbf{x} \in A$ we find that (2) is equivalent to

(3)
$$
\lim_{\mathbf{x}\to\mathbf{a}}\frac{|e(\mathbf{x})|}{|\mathbf{x}-\mathbf{a}|}=0.
$$

One calls the function A the standard affine approximation to f at a. The difference $e = f - A$ is the error in using A to approximate f.

Theorem 4.1. Suppose for some $r > 0$ the function f has partial derivatives on $A \cap U(a, r)$ which are continuous at **a**. Then f is differentiable at **a** and $\frac{1}{\sqrt{2}}$

$$
\nabla f(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right).
$$

Proof. Apply the corresponding result in the scalar case which we have already obtained to each component of f .

Theorem 4.2. (The Chain Rule.) Suppose

- (i) f is differentiable at a ;
- (ii) l is a positive integer, B is a subset of \mathbb{R}^m and $g : B \to \mathbb{R}^l$;
- (iii) $f(\mathbf{a}) \in \text{int } B$ and g is differentiable at $f(\mathbf{a})$.

Then **a** is an interior point of the domain of $g \circ f$, $g \circ f$ is differentiable at **a** and

(4)
$$
\partial(g \circ f)(\mathbf{a}) = \partial g(f(\mathbf{a})) \circ \partial f(\mathbf{a}).
$$

Proof. Use the affine approximation approximations of f at a and g near $f(\mathbf{a})$ to obtain an affine approximation of $g \circ f$ near $f(\mathbf{a})$. \Box Remark 4.2. (What to remember about (4). Suppose

$$
f = (f_1, ..., f_m)
$$
 and $g = (g_1, ..., g_l)$.

Then (4) is equivalent to

(5)
$$
\partial_j(g_i \circ f)(\mathbf{a}) = \sum_{k=1}^m \partial_k g_i(f(\mathbf{a}) \partial_j f_k(\mathbf{a}) = \nabla g_i(f(\mathbf{a})) \bullet \partial_j f(\mathbf{a})
$$

for $i = 1, ..., l$ and $j = 1, ..., n$.

Example 4.1. Here is an example of the Chain Rule when $n = 1$, $m = 2$ and $l = 1$. Suppose $U \subset \mathbb{R}^2$, U is open and $u : U \to \mathbb{R}$ is continuously differentiable on u; u will correspond to g above. Suppose $P : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$
P(r, \theta) = (r \cos \theta, r \sin \theta), \quad (r, \theta) \in \mathbb{R}^2;
$$

 \boldsymbol{P} will correspond to \boldsymbol{f} above.

We have

(6)
\n
$$
\frac{\partial}{\partial r}u(r\cos\theta, r\sin\theta) = \frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)\frac{\partial}{\partial r}r\cos\theta + \frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)\frac{\partial}{\partial r}r\sin\theta
$$
\n
$$
= \frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)\cos\theta + \frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)\sin\theta
$$

as well as

(7)
\n
$$
\frac{\partial}{\partial \theta} u(r \cos \theta, r \sin \theta) = \frac{\partial u}{\partial x} (r \cos \theta, r \sin \theta) \frac{\partial}{\partial \theta} r \cos \theta + \frac{\partial u}{\partial y} (r \cos \theta, r \sin \theta) \frac{\partial}{\partial \theta} r \sin \theta
$$
\n
$$
= -\frac{\partial u}{\partial x} (r \cos \theta, r \sin \theta) r \sin \theta + \frac{\partial u}{\partial y} (r \cos \theta, r \sin \theta) r \cos \theta.
$$

If you thought that was tough wait till you see what comes next! We have

$$
\frac{\partial^2}{\partial r^2} u(r \cos \theta, r \sin \theta) = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} (r \cos \theta, r \sin \theta) \cos \theta + \frac{\partial u}{\partial y} (r \cos \theta, r \sin \theta) \sin \theta \right)
$$

\n
$$
= \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} (r \cos \theta, r \sin \theta) \right) \cos \theta + \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} (r \cos \theta, r \sin \theta) \right) \sin \theta
$$

\n
$$
= \left(\frac{\partial^2 u}{\partial x^2} (r \cos \theta, r \sin \theta) \cos \theta + \frac{\partial^2 u}{\partial y \partial x} (r \cos \theta, r \sin \theta) \sin \theta \right) \cos \theta
$$

\n
$$
+ \left(\frac{\partial^2 u}{\partial x \partial y} (r \cos \theta, r \sin \theta) \cos \theta + \frac{\partial^2 u}{\partial y^2} (r \cos \theta, r \sin \theta) \sin \theta \right) \sin \theta
$$

\n
$$
= \frac{\partial^2 u}{\partial x^2} (r \cos \theta, r \sin \theta) \cos^2 \theta
$$

\n
$$
+ 2 \frac{\partial^2 u}{\partial x \partial y} (r \cos \theta, r \sin \theta) \cos \theta \sin \theta
$$

\n
$$
+ \frac{\partial^2 u}{\partial y^2} (r \cos \theta, r \sin \theta) \sin^2 \theta.
$$

as well as
\n(9)
\n
$$
\frac{\partial^2}{\partial\theta^2}u(r\cos\theta, r\sin\theta) = \frac{\partial}{\partial\theta}\left(-\frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)r\sin\theta + \frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)r\cos\theta\right)
$$
\n
$$
= -\frac{\partial}{\partial\theta}\left(\frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)\right)r\sin\theta - \frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)\frac{\partial}{\partial\theta}r\sin\theta
$$
\n
$$
+ \frac{\partial}{\partial\theta}\left(\frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)\right)r\cos\theta + \frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)\frac{\partial}{\partial\theta}r\cos\theta
$$
\n
$$
= -\left(-\frac{\partial^2 u}{\partial x^2}(r\cos\theta, r\sin\theta)r\sin\theta + \frac{\partial^2 u}{\partial y\partial x}(r\cos\theta, r\sin\theta)r\cos\theta\right)r\sin\theta
$$
\n
$$
- \frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)r\cos\theta
$$
\n
$$
+ \left(-\frac{\partial^2 u}{\partial x\partial y}(r\cos\theta, r\sin\theta)r\sin\theta + \frac{\partial^2 u}{\partial y^2}(r\cos\theta, r\sin\theta)r\cos\theta\right)r\cos\theta
$$
\n
$$
- \frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)r\sin\theta
$$
\n
$$
= -\left(\frac{\partial u}{\partial x}(r\cos\theta, r\sin\theta)r\cos\theta + \frac{\partial u}{\partial y}(r\cos\theta, r\sin\theta)r\sin\theta\right)
$$
\n
$$
+ \frac{\partial^2 u}{\partial x^2}(r\cos\theta, r\sin\theta)r^2\sin^2\theta - 2\frac{\partial^2 u}{\partial x\partial y}(r\cos\theta, r\sin\theta)r^2\sin\theta\cos\theta
$$
\n
$$
+ \frac{\partial^2 u}{\partial y^2}(r\cos\theta, r\sin\theta)r^2\cos^2\theta.
$$

Putting it all together we get

$$
\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)(r\cos\theta, r\sin\theta) = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial\theta^2}\right)u(r\cos\theta, r\sin\theta).
$$

So, for example, if

$$
u(x, y) = \log \sqrt{x^2 + y^2} \quad \text{for } (x, y) \neq (0, 0)
$$

in which case

$$
u(r\cos\theta, r\sin\theta) = \log r \quad \text{for } r \neq 0
$$

or if

$$
u(x,y) = \arcsin\frac{y}{\sqrt{x^2 + y^2}} \quad \text{for } (x,y) \in \mathbb{R}^2 \text{ such that } x > 0 \text{ if } y = 0
$$

in which case

$$
u(r\cos\theta, r\sin\theta) = \theta
$$
 if $r > 0$ and $-\pi < \theta < \pi$

then

$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.
$$

The operator

$$
\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}
$$

is called the Laplacian; it is, by far, the most important partial differential operator in mathematics and physics. (Typically, an operator is a function whose domain is a set of functions and whose range is a set of functions.) To define it the way we

4

did above turns out to be not so good an idea; there are much better definitions but they require a bit of machinery which we will develop later.