The flow of a vector field.

Suppose $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ is a vector field in the plane¹ Associated to \mathbf{F} is its **flow** which, for each time t is a transformation

$$\mathbf{f}_t(x,y) = (u_t(x,y), v_t(x,y))$$

and which is characterized by the requirements that

$$\mathbf{f}_0(x,y) = (x,y)$$

and

(2)
$$\frac{d}{dt}\mathbf{f}_t(x,y) = \mathbf{F}(\mathbf{f}_t(x,y)).$$

That is, for each (x, y), $t \mapsto \mathbf{f}_t(x, y)$ is a path whose velocity at time t is the vector that \mathbf{F} assigns to $\mathbf{f}_t(x, y)$. **Example.** Let $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$. Draw a picture of \mathbf{F} . Note that

$$\mathbf{f}_t(x,y) = (x\cos t - y\sin t, x\sin t + y\cos t).$$

That is, \mathbf{f}_t is counterclockwise rotation of \mathbf{R}^2 through an angle of t radians.

Example. Let $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$. Draw a picture of \mathbf{F} . Note that

$$\mathbf{f}_t(x,y) = e^t(x,y).$$

That is, \mathbf{f}_t is scalar multiplication by e^t .

As a direct consequence of (1) and (2) above find that

$$u_t(x,y) = x + tP(x,y) + t^2r_t(x,y)$$
 and $v_t(x,y) = y + tQ(x,y) + t^2s_t(x,y)$.

It follows that

$$\begin{split} J\mathbf{f}_t(x,y) &= \det \begin{bmatrix} \frac{\partial u_t}{\partial x} & \frac{\partial u_t}{\partial y} \\ \frac{\partial v_t}{\partial x} & \frac{\partial v_t}{\partial y} \end{bmatrix} (x,y) \\ &= \det \begin{bmatrix} 1 + tP_x(x,y) + t^2 \frac{\partial r_t}{\partial x}(x,y) & tP_y(x,y) + t^2 \frac{\partial r_t}{\partial y}(x,y) \\ tQ_x(x,y) + t^2 \frac{\partial s_t}{\partial x}(x,y) & 1 + tQ_y(x,y) + t^2 \frac{\partial s_t}{\partial y}(x,y) \end{bmatrix} \\ &= 1 + t(P_x + Q_y)(x,y) + t^2 z_t(x,y). \end{split}$$

This implies that

$$\frac{d}{dt} J\mathbf{f}_t(x,y) \Big|_{t=0} = \mathbf{div} \, \mathbf{F}(x,y)$$

where we have set

$$\mathbf{div}\,\mathbf{F}\,=\,P_x+Q_y.$$

This yields the following basic formula:

Theorem. Suppose R is a bounded region in the domain of \mathbf{F} . Then

$$\frac{d}{dt}$$
area $\mathbf{f}_t[R]\Big|_{t=0} = \iint_R \mathbf{div} \, \mathbf{F} \, dA.$

¹ Everything we are about to do here directly generalizes to any number of dimensions.