1. Integration.

Definition 1.1. We say $f : \mathbb{R}^2 \to \mathbb{R}$ is **admissible** if $|f|$ is bounded and $\{(x, y) \in$ \mathbb{R}^2 : $f(x, y) \neq 0$ is bounded.

Definition 1.2. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is admissible and $0 < \delta < \infty$. We let

$$
\mathcal{R}_\delta(f)
$$

be the set of sums

$$
S = \sum_{i=1}^{M} \sum_{j=1}^{N} f(\xi_i, \eta_j)(x_i - x_{i-1})(y_j - y_{j-1})
$$

where

(i)
$$
M
$$
 and N are positive integers;

(ii) $x_0 \le x_1 \le \cdots \le x_M$ and $y_0 \le y_1 \le \cdots \le y_N$;

(iii) $x_i - x_{i-1} \leq \delta$ for $i = 1, ..., M$ and $y_j - y_{j-1} \leq \delta$ for $j = 1, ..., N$;

- (iv) $x_{i-1} \le \xi_i \le x_i$ for $i = 1, ..., M$ and $y_{j-1} \le \eta_j \le y_j$ for $j = 1, ..., N$;
- (v) $\{(x, y) \in \mathbb{R}^2 : f(x, y) \neq 0\} \subset [x_0, x_M] \times [y_0, y_N].$

We say f is Riemann integrable if there is $I \in \mathbb{R}$ such that for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$
S \in \mathcal{R}_{\delta}(f) \Rightarrow |S - I| < \epsilon.
$$

It is evident that such an I is unique; we denote it by

$$
\int f
$$

and call it the Riemann integral of f .

Theorem 1.1. Suppose $a, b \in \mathbb{R}$ and f, g are Riemann integrable. Then $af + bg$ is Riemann integrable and

$$
\int af + bg = a \int f + b \int g.
$$

Theorem 1.2. Suppose f, g are Riemann integrable and $f \leq g$. Then

$$
\int f \le \int g.
$$

Theorem 1.3. Suppose $f_1, f_2, \ldots, f_n, \ldots$ is a sequence of Riemann integrable functions and $F: \mathbb{R}^2 \to \mathbb{R}$ is such that

$$
\lim_{n \to \infty} \sup |F - f_n| = 0.
$$

Then F is Riemann integrable and

$$
\lim_{n \to \infty} \int f_n = \int F.
$$

1.1. Indicator functions.

Definition 1.3. Suppose $A \subset \mathbb{R}^2$ we let

$$
1_A:\mathbb{R}^2\to\{0,1\}
$$

be such that

$$
1_A(x,y) = \begin{cases} 1 & \text{if } (x,y) \in A, \\ 0 & \text{if } (x,y) \notin A. \end{cases}
$$

We call 1_A the **indicator function of** A. Note that 1_A is admissible if and only if A is bounded.

Definition 1.4. Suppose $A \subset \mathbb{R}^2$. We say A has Jordan content if A is bounded and 1_A is Riemann integrable in which case we let

$$
|A| = \int 1_A
$$

and we call this nonnegative real number the Jordan content of A. Note that the empty set has zero Jordan content.

Theorem 1.4. Suppose $-\infty < a \leq b < \infty$ and $-\infty < c \leq d < \infty$. Then $R = [a, b] \times [c, d]$ has Jordan content and

$$
|R| = (b - a)(d - c).
$$

Theorem 1.5. A bounded subset A of \mathbb{R}^2 has zero Jordan content if and only if for each $\epsilon > 0$ there is a finite sequence R_1, \ldots, R_N of bounded rectangles such that

$$
A \subset \bigcup_{i=1}^{N} R_i \quad \text{and} \quad \sum_{i=1}^{N} |R_i| < \epsilon.
$$

Theorem 1.6. A bounded subset A of \mathbb{R}^2 has Jordan content if and only if its boundary has zero Jordan content.

Theorem 1.7. Suppose A and B have Jordan content. Then $A \cap B$, $A \cup B$ and $A \sim B$ have Jordan content and

$$
|A \cup B| + |A \cap B| = |A| + |B|.
$$

1.2. A simple but useful generalization.

Definition 1.5. Suppose $A \subset \mathbb{R}^2$ and $f : A \to \mathbb{R}$. We say f is Riemann inte**grable (over** A) if f_A is Riemann integrable where $f_A : \mathbb{R}^2 \to \mathbb{R}$ is such that

$$
f_A(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in A, \\ 0 & \text{if } (x,y) \notin A, \end{cases}
$$

in which case we let

$$
\int_A f \quad \text{equal} \int f_A.
$$

1.3. A sufficient condition for Riemann integrability.

Theorem 1.8. Suppose A is a bounded subset of \mathbb{R}^2 with Jordan content and $f: A \to \mathbb{R}$. Then f is Riemann integrable over A if and only if f is bounded and the set of discontinuities of f is a set of zero Jordan content.

$$
2 \\
$$

1.4. Iterated integrals.

Theorem 1.9. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is Riemann integrable and **u** and **v** are mutually perpendicular unit vectors. Then

$$
\int f = \int \left(\int f(u\mathbf{u} + v\mathbf{v}) \, du \right) dv.
$$

Remark 1.1. In particular, if $\mathbf{u} = \mathbf{i} = (1,0)$ and $\mathbf{v} = \mathbf{j} = (0,1)$ we have

$$
\int f = \int \left(\int f(x, y) \, dx \right) dy
$$

and if $\mathbf{u} = \mathbf{j} = (0, 1)$ and $\mathbf{v} = \mathbf{i} = (1, 0)$ we have

$$
\int f = \int \left(\int f(x, y) \, dy \right) dx.
$$

Remark 1.2. This is not quite right but I don't want to go into it because (i) it's gets technical; (ii) it's really not an issue in nearly every application; and (iii) the trouble is caused by the Rieman integral and and may be avoided by using the Lebesgue integral.

Remark 1.3. In particular, if $\mathbf{u} = \mathbf{i} = (1,0)$ and $\mathbf{v} = \mathbf{j} = (0,1)$ we have

$$
\int f = \int \left(\int f(x, y) dx \right) dy
$$

and if $\mathbf{u} = \mathbf{j} = (0, 1)$ and $\mathbf{v} = \mathbf{i} = (1, 0)$ we have

$$
\int f = \int \left(\int f(x, y) \, dy \right) dx.
$$