Minima and maxima.

We fix a positive integer n .

Whenever $\mathbf{a} \in \mathbb{R}^n$ and $0 < r < \infty$ we let

$$
\mathbf{U}(\mathbf{a},r) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| < r\} \quad \text{and} \quad \mathbf{B}(\mathbf{a},r) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| \leq r\};
$$

the first of these sets is called the **open ball with center a and radius** r and the second is called the closed ball with center a and radius r .

We now fix a subset A of \mathbb{R}^n .

We let

$$
\text{int } A = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{U}(\mathbf{a}, r) \subset A \text{ for some } r \text{ with } 0 < r < \infty \};
$$
\n
$$
\mathbf{c} \mathbf{l} \ A = \{ \mathbf{x} \in \mathbb{R}^n : A \cap \mathbf{U}(\mathbf{a}, r) \neq \emptyset \text{ whenever } 0 < r < \infty \};
$$
\n
$$
\text{bdry } A = \mathbf{c} \mathbf{l} \ A \cap \mathbf{c} \ (\mathbb{R}^n \sim A);
$$

these sets are called the interior, closure and boundary of A, respectively.

We now suppose that

$$
f: A \to \mathbb{R} \quad \text{and} \quad \mathbf{a} \in A.
$$

Definition 0.1. We say a is (global) minimum(maximum) for f (on A) if

 $f(\mathbf{a}) \leq (\geq) f(\mathbf{x})$ whenever $\mathbf{x} \in A$.

We say **a** is a local minimum(maximum) for f (on A) if there is $r > 0$ such that

$$
f(\mathbf{a}) \leq (\geq) f(\mathbf{x})
$$
 whenever $\mathbf{x} \in A \cap \mathbf{U}(\mathbf{a}, r)$.

The value $f(\mathbf{a})$ of f at a minimum(maximum) of f is called the minimum(maximum) value of f .

Theorem 0.1. Suppose A is closed and bounded and f is continuous. Then f has a minimum and a maximum.

Proof. For each $c \in \mathbf{rng} f$ let $F_c = \{x \in A : f(\mathbf{x}) \leq c\}$ and note that $F_c \neq \emptyset$ and, because f is continuous, F_c is closed. Because A is closed and bounded the set

$$
\bigcap_{c \in \mathbf{rng}\,f} F_c \neq \emptyset.
$$

Any member of this set is obviously a minimum for f .

To show a maximum for f exists replace \leq by \geq int the definition of F_c . \Box

Theorem 0.2. Suppose

(i) $\mathbf{a} \in \text{int } A$;

(ii) a is a local maximum or minimum for f ;

(iii) $\frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{a})$ exists for each $i \in \{1, \ldots, n\}.$

Then

$$
\frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{a}) = 0 \quad \text{for } i \in \{1, \dots, n\}.
$$

Proof. For each $i \in \{1, ..., n\}$ let $g_i(t) = f(\mathbf{a} + t\mathbf{e}_i)$ for $t \in \mathbb{R}$ such that $\mathbf{a} + t\mathbf{e}_i \in A$; note that 0 is a local maximum or minimum for g_i ; and apply the corresponding Theorem from one variable calculus to conclude that

$$
\frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{a}) = g'_i(0) = 0.
$$

Remark 0.1. A point a as in the preceding Theorem is called a critical point for f .