n-coordinates.

Let S be a set. We say **y** is an *m*-variable on S if $\mathbf{y} : S \to \mathbf{R}^m$. We say **x** is an *n*-coordinate on S if **x** is an *n*-variable on S, the range of **x** is an open subset of \mathbf{R}^n and **x** is one to one.

Suppose \mathbf{y} is an *m*-variable on S and \mathbf{x} is an *n*-coordinate on S. Note that $\mathbf{y} \circ \mathbf{x}^{-1}$ is a function whose domain is the range of \mathbf{x} and whose range is the range of \mathbf{y} . Evidently,

$$\mathbf{y} = (\mathbf{y} \circ \mathbf{x}^{-1}) \circ \mathbf{x}$$

That is, the function $\mathbf{y} \circ \mathbf{x}^{-1}$ is what you do to \mathbf{x} to get \mathbf{y} . We say

$$y = b$$
 when $x = a$

and write

$$\mathbf{y}|_{\mathbf{x}=\mathbf{a}} = \mathbf{b}$$

if **a** is in the range of **x** and $\mathbf{y}(\mathbf{x}^{-1}(\mathbf{a})) = \mathbf{b}$. For each j = 1, ..., n we set

$$\frac{\partial \mathbf{y}}{\partial x_j} = \partial_j (\mathbf{y} \circ \mathbf{x}^{-1}) \circ \mathbf{x}$$

and call $\frac{\partial \mathbf{y}}{\partial x_j}$ the **partial derivative of y with respect to** x_j ; note that $\frac{\partial \mathbf{y}}{\partial x_j}$ is a \mathbf{R}^m valued function whose domain is a subset of S. This notation is ambiguous! Do you see why?

Suppose $s \in S$. We say **y** differentiable with respect to **x** at s if $\mathbf{y} \circ \mathbf{x}^{-1}$ is differentiable at $\mathbf{x}(s)$. We say **y** differentiable with respect to **x** if $\mathbf{y} \circ \mathbf{x}^{-1}$ is differentiable at $\mathbf{x}(s)$ at each s in S.

We have the following.

Differentiating with respect to more that one *n***-coordinate.** Suppose \mathbf{x} and \mathbf{t} are coordinates on the set S and \mathbf{y} is an *m*-variable on S. Suppose \mathbf{y} is differentiable with respect to \mathbf{x} and \mathbf{x} is differentiable with respect to \mathbf{t} .

Then \mathbf{y} is differentiable with respect to \mathbf{t} and

$$\frac{\partial \mathbf{y}}{\partial t_j} = \sum_{i=1}^n \frac{\partial x_i}{\partial t_j} \frac{\partial \mathbf{y}}{\partial x_i} \quad \text{for each } j = 1, \dots, n.$$

Proof. Unwrap the definitions and invoke the chain rule for vector functions. \Box

Important Remark. Here is a good way to think of the chain rule. Given an coordinate \mathbf{x} on S, for each $j = 1 \dots, n$ we let

$$\frac{\partial}{\partial x_j}$$

be the function which assigns $\frac{\partial y}{\partial x_j}$ to the variable y on S. That is, $\frac{\partial}{\partial x_j}$ is an operation you apply to one variable on S to get another variable on S, or at least a subset of S. The above formula amounts to the statement if \mathbf{t} is another coordinate on S then

$$\frac{\partial}{\partial t_j} = \sum_{i=1}^n \frac{\partial x_i}{\partial t_j} \frac{\partial}{\partial x_i}.$$

Example. Polar coordinates. Let $S = \mathbf{R}^2 \sim \{(a, b) \in \mathbf{R}^2 : a \leq 0, \text{ and } b = 0\}$. Define real valued functions x, y, r, θ on S by setting

$$x(a,b) = a$$
 and $y(a,b) = y;$

requiring that the range of r equal $(0, \infty)$; that the range of θ equal $(-\pi, \pi;$ and requiring that

$$x = r\cos\theta$$
 and $y = r\sin\theta$.

Then

$$\frac{\partial}{\partial x} = \frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta} = \frac{x}{r}\frac{\partial}{\partial r} - \frac{y}{r^2}\frac{\partial}{\partial \theta};\\ \frac{\partial}{\partial y} = \frac{\partial r}{\partial y}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial y}\frac{\partial}{\partial \theta} = \frac{y}{r}\frac{\partial}{\partial r} + \frac{x}{r^2}\frac{\partial}{\partial \theta};$$

and

$$\frac{\partial}{\partial r} = \frac{\partial x}{\partial r}\frac{\partial}{\partial x} + \frac{\partial y}{\partial r}\frac{\partial}{\partial y} = \cos\theta\frac{\partial}{\partial r} + \sin\theta\frac{\partial}{\partial\theta};$$
$$\frac{\partial}{\partial \theta} = \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x} + \frac{\partial y}{\partial \theta}\frac{\partial}{\partial y} = -r\sin\theta\frac{\partial}{\partial x} + r\cos\theta\frac{\partial}{\partial y}.$$

Exercise. Obtain the formula for the Laplacian in polar coordinates:

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial \theta^2}.$$

Exercise. Do the analogue of the above for cylindrical coordinates.

Exercise. Do the analogue of the above for spherical coordinates.