I have neither given nor received aid in the completion of this test. Signature:

Let L be the line in \mathbb{R}^3 with parameterization

 $\mathbf{r}(t) = <1, 1, 2 > +t < 1, 0, 1 > \text{ for } t \in \mathbb{R}$

and let M be the line in \mathbb{R}^3 with parameterization

 $\mathbf{s}(u) = \langle 2, 2, 1 \rangle + u \langle 1, 1, 1 \rangle$ for $u \in \mathbb{R}$.

(1.) Show that L and M are not parallel.

Since L and M are not parallel there are unique parallel planes P and Q such that $L \subset P$ and $M \subset Q$.

(2.) Find equations for the planes P and Q and show that $P \cap Q = \emptyset$. Find the distance between P and Q.

(3.) It follows from (2.) that $L \cap M = \emptyset$. Find $t, u \in \mathbb{R}$ such that if N is the line containing $\mathbf{r}(t)$ and $\mathbf{s}(u)$ then N is normal to both P and Q.

Solution. Let

 $\mathbf{a}=<1,1,2>,\quad \mathbf{v}=<1,0,1>,\quad \mathbf{b}=<2,2,1>,\quad \mathbf{w}=<1,1,1>$

let

 $\mathbf{r}(t) = \mathbf{a} + t\mathbf{v}, \ t \in \mathbb{R}$ and let $\mathbf{s}(u) = \mathbf{b} + u\mathbf{w}, \ u \in \mathbb{R}.$

Then \mathbf{r} is parameterization of L and \mathbf{s} is a parameterization of M. We have

$$\mathbf{n} = \mathbf{v} \times \mathbf{w} = < -1, 0, 1 > .$$

Since $\mathbf{n} \neq \mathbf{0}$ we conclude that L and M are not parallel. Let

 $c = \mathbf{a} \bullet \mathbf{n} = 1$ and let $d = \mathbf{b} \bullet \mathbf{n} = -1$.

Then

 $\mathbf{x} \bullet \mathbf{n} = c \quad \text{and} \quad \mathbf{x} \bullet \mathbf{n} = d$

are equations for P and Q, respectively (Do you see why?). Moreover,

$$\frac{c}{|\mathbf{n}|^2}\mathbf{n} \in P \quad \text{and} \quad \frac{d}{|\mathbf{n}|^2}\mathbf{n} \in Q$$

so the distance between P and Q is

$$\left|\frac{c}{|\mathbf{n}|^2}\mathbf{n} - \frac{d}{||\mathbf{n}|^2}\mathbf{n}\right| = \frac{|c-d|}{|\mathbf{n}|} = \frac{|-2|}{\sqrt{2}} = \sqrt{2}.$$

In the last part we are looking for $t, u \in \mathbb{R}$ such that

$$(\mathbf{r}(t) - \mathbf{s}(u)) \bullet \mathbf{u} = 0$$
 and $(\mathbf{r}(t) - \mathbf{s}(u)) \bullet \mathbf{v} = 0.$

Now

$$\mathbf{r}(t) - \mathbf{s}(u) = <1, 1, 2 > +t < 1, 0, 1 > -(<2, 2, 1 > +u < 1, 1, 1 >)$$
$$= <-1 + t - u, -1, -u, 1 + t - u >;$$

dotting with ${\bf v}$ we obtain

$$2t - 2u = 0$$

and dotting with ${\bf w}$ we obtain

$$2t - 3u = 1$$

so t = -1 and u = -1.