A summary of the basic integral theorems of vector calculus.

Part One. n=2.

Suppose

$$\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$$

Green's Theorem. Suppose R is a bounded region in \mathbb{R}^2 with boundary C. Suppose \mathbb{T} is a unit tangent vector to C which points in the counterclockwise direction on the outer part of C and in the clockwise direction on the inner part of C. Then

$$\int_C \mathbf{F} \bullet \mathbf{T} \, ds = \iint_R \nabla \times \mathbf{F} \, dA.$$

 $\nabla \times \mathbf{F}$ here is, by definition, the scalar $Q_x - P_y$.

Remark. This may also be written

$$\int_C P \, dx + Q \, dy = \iint_R Q_x - P_y \, dx dy$$

where C is oriented as before.

The Divergence Theorem. Suppose R is a bounded region in \mathbb{R}^2 with boundary C. Suppose \mathbf{n} is the outward pointing unit exterior normal to R along its boundary C. Then

$$\int_C \mathbf{F} \bullet \mathbf{n} \, ds = \iint_R \nabla \bullet \mathbf{F} \, dA.$$

Part Two. n = 3. Suppose

$$\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}.$$

Stokes' Theorem. Suppose S is a surface in \mathbb{R}^3 with boundary C and unit normal \mathbf{n} . Suppose \mathbf{T} is the unit tangent field along C such that $\mathbf{n} \times \mathbf{T}$ points into S. Then

$$\int_C \mathbf{F} \bullet \mathbf{T} \, ds = \iint_S (\nabla \times \mathbf{F}) \bullet \mathbf{n} \, dA.$$

Remark. This may also be written

$$\int_{C} P \, dx + Q \, dy + R \, dz = \iint_{S} (R_{y} - Q_{z}) \, dy dz + (P_{z} - R_{x}) \, dz dx + (Q_{x} - P_{y}) \, dx dy$$

where S is oriented as before.

The Divergence Theorem. Suppose T is a bounded region in \mathbb{R}^3 with boundary S. Suppose \mathbf{n} is the outward pointing unit exterior normal to T along its boundary S. Then

$$\iint_{S} \mathbf{F} \bullet \mathbf{n} \, dA = \iiint_{T} \nabla \bullet \mathbf{F} \, dV.$$