Math 103.02; Fall 2010; Test One

I have neither given nor received aid in the completion of this test. Signature:

TO GET FULL CREDIT YOU MUST SHOW ALL WORK!

		Your Score
1	5 pts.	
$\overline{2}$	20 pts.	
3	5 pts.	
4	5 pts.	
5	10 pts.	
6	15 pts.	
7	10 pts.	
8	5 pts.	
9	5 pts.	
10	10 pts.	
11	15 pts.	
Total	105 pts.	

The average on this 50 minute test was 54.16 and the standard deviation was 17.25.

1. 5 pts. Let P be the plane consisting of those (x, y, z) such that $x + y + z = 1$. Exhibit parametric equations for the line passing through $(1, 2, 3)$ which meets P in a right angle.

Solution. Let $\mathbf{n} = (1, 1, 1)$; then **n** is normal to *P* so

$$
\mathbf{r}(t) = (1, 2, 3) + t(1, 1, 1), \quad t \in \mathbb{R},
$$

parameterizes the line.

2. (a) **5 pts.** Show that the points $(1, 1, 0), (1, 0, 0), (0, 1, 1)$ do not lie on a line.

Solution. Let $\mathbf{v} = (1, 0, 0) - (1, 1, 0) = (0, -1, 0)$ and let $\mathbf{w} = (0, 1, 1) - (1, 1, 0) =$ $(-1, 0, 1)$. Then

$$
\mathbf{v} \times \mathbf{w} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = -\mathbf{i} - \mathbf{k} = (-1, 0, -1).
$$

Since $\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$ the points do not lie on a line.

(b) 5 pts. Let P be the plane containing the points in part (a). Exhibit scalars a, b, c, d such the point (x, y, z) is in P if and only if

$$
ax + by + cz = d.
$$

Solution. $\mathbf{n} = \mathbf{v} \times \mathbf{w}$ is normal to P and $(1, 1, 0)$ lies in P. So

$$
-x - z = (x, y, z) \bullet (-1, 0, -1) = (1, 1, 0) \bullet (-1, 0, -1) = -1
$$

is an equation for P so we may take

$$
a = -1
$$
, $b = 0$, $c = -1$, $d = -1$.

(c) 10 pts. Let $q = (1, 2, 3)$. Show that q does not lie on P and determine the point \bf{p} in P which is closest to \bf{q} .

Solution. $(-1)1 + (0)2 + (-1)3 = -4 \neq -1$ so q does not lie in P. Moreover, $\mathbf{r}(t) = \mathbf{q} + t\mathbf{n} = (1, 2, 3) + t(-1, 0, -1), \quad t \in \mathbb{R}$

parameterizes the line passing through q perpendicular to P so p = r(t) if

$$
-1 = \mathbf{r}(t) \bullet \mathbf{n} = ((1,2,3) + t(-1,0,-1)) \bullet (-1,0,-1) = -4 + 2t
$$

so $t = 3/2$ and

$$
\mathbf{p} = \mathbf{r} \left(\frac{3}{2} \right) = (1, 2, 3) + \frac{3}{2}(-1, 0, -1) = \frac{1}{2}(-1, 4, 3).
$$

3. 5 pts. Suppose for P_i is the plane with equation

$$
a_i x + b_i y + c_i z = d_i
$$

for each $i = 1, 2$. How do you tell if P_1 is parallel to P_2 ?

Solution. Let $\mathbf{n}_i = (a_i, b_i, c_i)$ for $i = 1, 2$. Then \mathbf{n}_i is normal to P_i , $i = 1, 2$, so $P_1 \parallel P_2$ if and only if $\mathbf{n}_1 \times \mathbf{n}_2 = \mathbf{0}$.

4. 5 pts. Compute $comp_{(3,0,4)}(1,2,3)$.

Solution. We have

comp_(3,0,4)(1,2,3) =
$$
\frac{(1,2,3) \cdot (3,0,4)}{|(3,0,4)|} = \frac{1 \cdot 3 + 2 \cdot 0 + 3 \cdot 4}{\sqrt{3^2 + 0^2 + 4^2}} = 3.
$$

5. 10 pts. Suppose I is an open interval and $\mathbf{r}: I \to \mathbb{R}^3$ is a twice continuously differentiable curve in \mathbb{R}^3 . Suppose $t_0 \in I$ and

$$
\mathbf{r}'(t_0) = (1, 0, 1), \quad \mathbf{r}''(t_0) = (1, 1, 1).
$$

Determine

$$
\mathbf{T}(t_0), \quad |\mathbf{v}|'(t_0), \quad \mathbf{N}(t_0), \quad \kappa(t_0).
$$

Solution. We have

$$
\mathbf{v}(t_0) = \mathbf{r}'(t_0) = (1, 0, 1)
$$
 so $|\mathbf{v}|(t_0) = \sqrt{2}$

and

$$
\mathbf{T}(t_0) = (\mathbf{v}/|\mathbf{v}|)(t_0) = \frac{1}{\sqrt{2}}(1,0,1).
$$

We have

$$
\mathbf{a}(t_0) = \mathbf{r}''(t_0) = (1, 1, 1)
$$

and

$$
|\mathbf{v}|'(t_0) = (\mathbf{a} \bullet \mathbf{T})(t_0) = \frac{2}{\sqrt{2}} = \sqrt{2}.
$$

We have

$$
(\kappa|\mathbf{v}|^2\mathbf{N})(t_0) = (\mathbf{a} - (\mathbf{a} \bullet \mathbf{T})\mathbf{T})(t_0) = (1, 1, 1) - \sqrt{2}\frac{1}{\sqrt{2}}(1, 0, 1) = (0, 1, 0).
$$

Since $\kappa(t_0) > 0$ we find that

$$
\mathbf{N}(t_0) = (0, 1, 0)
$$
 and $\kappa(t_0) = \frac{1}{|\mathbf{v}|^2(t_0)} = \frac{1}{2}$.

6. 15 pts. Let $f(x,y) = xy - x + 2$ and let $R = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 4 - x^2\}.$ Find the maxima and minima of f on R . (Note that f is continuous and R is closed and bounded so both maxima and minima exist.)

Solution. First we find the critical points. We have

$$
\frac{\partial f}{\partial x} = y - 1 \quad \text{and} \quad \frac{\partial f}{\partial y} = x
$$

so the unique critical point is $(0, 1)$ which lies in R.

Next we note the boundary of R consists of the arcs which are the ranges of the curves

$$
C_1(x) = (x, 0) \quad \text{for } -2 < x < 2
$$

and

$$
C_2(x) = (x, 4 - x^2) \quad \text{for } -2 < x < 2
$$

together with the endpoints of these arcs, namely the points $(\pm 2, 0)$. Since

$$
\frac{d}{dx}f(C_1(x)) = \frac{d}{dx}(-x+2) = -1
$$

there are no candidates for minimum or maximum points of f on R on C_1 . Since

$$
\frac{d}{dx}f(C_2(x)) = \frac{d}{dx}(x(4-x^2) - x + 2) = 3(1-x^2)
$$

we find that $(\pm 1, 3)$ are candidates for minimum or maximum points of f on R on C_2 . Finally, we consider the endpoints $(\pm 2, 0)$.

We consider the table

7. 10 pts. Let

$$
f(x,y) = \begin{cases} \frac{-x}{x^2 + y^2} & \text{if } x < y, \\ \frac{y}{x^2 + y^2} & \text{if } x \ge y. \end{cases}
$$

Does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? If so, what is it? Why?

Solution. If
$$
0 < x < \infty
$$
 we have $f(x, 0) = 0$ and $f(x, x) = 1/x$. Thus

$$
\lim_{x \downarrow 0} f(x,0) = 0 \quad \text{and} \quad \lim_{x \downarrow 0} f(x,x) = \infty
$$

so the limit does not exist.

8. 5 pts. Exhibit an equation for the tangent plane to the graph of $z = \cos xy$ at $(1, \pi/2, 0).$

Solution. Note that $f(1, \pi/2) = 0$; otherwise the problem is incorrectly posed. We have

$$
\frac{\partial f}{\partial x} = -y \sin xy \quad \text{which at } (1, \pi/2) \text{ equals } -\frac{\pi}{2}
$$

and

$$
\frac{\partial f}{\partial y} = -x \sin xy \quad \text{which at } (1, \pi/2) \text{ equals } -1.
$$

Thus

$$
z = -\frac{\pi}{2}(x - 1) + (-1)\left(y - \frac{\pi}{2}\right) = -\frac{\pi}{2}x - y + \pi
$$

is the desired equation.

9. 5 pts. Calculate

$$
\frac{\partial^2}{\partial x \partial y} e^{xyz}.
$$

Solution. We have

$$
\frac{\partial^2}{\partial x \partial y} e^{xyz} = \frac{\partial}{\partial x} (xze^{xyz})
$$

= $ze^{xyz} + (xz)(yz)e^{xyz}$
= $z(1 + xyz)e^{xyz}$.

9. 11 pts. Suppose g, h are continuously differentiable functions on the interval I , f is a continuously differentiable function on \mathbb{R}^2 and

$$
w(t) = f(g(t), h(t)) \text{ for } t \in I.
$$

Suppose

$$
2 \in I
$$
, $g(2) = 1$, $g'(2) = 1$, $h(2) = 4$, $h'(2) = 3$

as well as

$$
f(1, 4) = 5, \quad \frac{\partial f}{\partial x}(1, 4) = 3
$$

and

$$
w'(2) = 4.
$$

Determine

$$
\frac{\partial f}{\partial y}(1,4).
$$

Solution. The Chain Rule says that

$$
w'(t) = \frac{\partial f}{\partial x}(g(t), h(t))g'(t) + \frac{\partial f}{\partial y}(g(t), h(t))h'(t)
$$

for any $t \in I$. If $t = 2$ then $(g(t), h(t)) = (1, 4)$ so

$$
4 = \frac{\partial f}{\partial x}(1,4)(1) + \frac{\partial f}{\partial y}(1,4)(3) = (3)(1) + \frac{\partial f}{\partial y}(1,4)(3)
$$

so

$$
\frac{\partial f}{\partial y}(1,4) = \frac{1}{3}(4-3) = \frac{1}{3}.
$$

11. 15 pts. Suppose $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are points in \mathbb{R}^3 which do not lie in a plane. Let P be the plane passing through $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and let Q be the plane passing through the midpoints of the segments joining $a \text{ to } d$, $b \text{ to } d$ and $c \text{ to } d$, respectively. Show that P and Q are parallel.

Solution. The vector

$$
(\mathbf{b}-\mathbf{a})\times(\mathbf{c}-\mathbf{a})
$$

is normal to P. The vectors

$$
\mathbf{m_a}=\frac{1}{2}(\mathbf{d-a}),\quad \mathbf{m_b}=\frac{1}{2}(\mathbf{d-b}),\quad \mathbf{m_c}=\frac{1}{2}(\mathbf{d-c})
$$

are the midpoints of the segments joining a to d, b to d and c to d, respectively. We have \mathbf{r} \overline{a} \mathbf{r}

$$
(\mathbf{m_b} - \mathbf{m_a}) \times (\mathbf{m_c} - \mathbf{m_a}) = \left(\frac{1}{2}(\mathbf{a} - \mathbf{b})\right) \times \left(\frac{1}{2}(\mathbf{a} - \mathbf{c})\right) = \frac{1}{4}((\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}))
$$

from which we infer that P and Q are parallel.