Math 103.02; Fall 2010; Test One

I have neither given nor received aid in the completion of this test. Signature:

TO GET FULL CREDIT YOU MUST SHOW ALL WORK!

		Your Score
1	5 pts.	
2	20 pts.	
3	5 pts.	
4	5 pts.	
5	10 pts.	
6	15 pts.	
7	10 pts.	
8	5 pts.	
9	5 pts.	
10	10 pts.	
11	15 pts.	
Total	105 pts.	

The average on this 50 minute test was 54.16 and the standard deviation was 17.25.

1. 5 pts. Let P be the plane consisting of those (x, y, z) such that x + y + z = 1. Exhibit parametric equations for the line passing through (1, 2, 3) which meets P in a right angle.

Solution. Let $\mathbf{n} = (1, 1, 1)$; then \mathbf{n} is normal to P so

$$\mathbf{r}(t) = (1, 2, 3) + t(1, 1, 1), \quad t \in \mathbb{R},$$

parameterizes the line.

2. (a) **5 pts.** Show that the points (1, 1, 0), (1, 0, 0), (0, 1, 1) do not lie on a line.

Solution. Let $\mathbf{v} = (1, 0, 0) - (1, 1, 0) = (0, -1, 0)$ and let $\mathbf{w} = (0, 1, 1) - (1, 1, 0) = (-1, 0, 1)$. Then

$$\mathbf{v} \times \mathbf{w} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}_{1} = -\mathbf{i} - \mathbf{k} = (-1, 0, -1).$$

Since $\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$ the points do not lie on a line.

(b) **5 pts.** Let P be the plane containing the points in part (a). Exhibit scalars a, b, c, d such the point (x, y, z) is in P if and only if

$$ax + by + cz = d.$$

Solution. $\mathbf{n} = \mathbf{v} \times \mathbf{w}$ is normal to *P* and (1, 1, 0) lies in *P*. So

$$-x - z = (x, y, z) \bullet (-1, 0, -1) = (1, 1, 0) \bullet (-1, 0, -1) = -1$$

is an equation for P so we may take

$$a = -1, \quad b = 0, \quad c = -1, \quad d = -1.$$

(c) 10 pts. Let $\mathbf{q} = (1, 2, 3)$. Show that \mathbf{q} does not lie on P and determine the point \mathbf{p} in P which is closest to \mathbf{q} .

Solution. $(-1)1 + (0)2 + (-1)3 = -4 \neq -1$ so **q** does not lie in *P*. Moreover,

$$\mathbf{r}(t) = \mathbf{q} + t\mathbf{n} = (1, 2, 3) + t(-1, 0, -1), \quad t \in \mathbb{R}$$

parameterizes the line passing through **q** perpendicular to P so $\mathbf{p} = \mathbf{r}(t)$ if

$$-1 = \mathbf{r}(t) \bullet \mathbf{n} = ((1,2,3) + t(-1,0,-1)) \bullet (-1,0,-1) = -4 + 2t$$

so t = 3/2 and

$$\mathbf{p} = \mathbf{r}\left(\frac{3}{2}\right) = (1,2,3) + \frac{3}{2}(-1,0,-1) = \frac{1}{2}(-1,4,3).$$

3. 5 pts. Suppose for P_i is the plane with equation

$$a_i x + b_i y + c_i z = d_i$$

for each i = 1, 2. How do you tell if P_1 is parallel to P_2 ?

Solution. Let $\mathbf{n}_i = (a_i, b_i, c_i)$ for i = 1, 2. Then \mathbf{n}_i is normal to P_i , i = 1, 2, so $P_1 \parallel P_2$ if and only if $\mathbf{n}_1 \times \mathbf{n}_2 = \mathbf{0}$.

4. 5 pts. Compute $comp_{(3,0,4)}(1,2,3)$.

Solution. We have

$$\mathbf{comp}_{(3,0,4)}(1,2,3) = \frac{(1,2,3) \bullet (3,0,4)}{|(3,0,4)|} = \frac{1 \cdot 3 + 2 \cdot 0 + 3 \cdot 4}{\sqrt{3^2 + 0^2 + 4^2}} = 3$$

5. 10 pts. Suppose I is an open interval and $\mathbf{r} : I \to \mathbb{R}^3$ is a twice continuously differentiable curve in \mathbb{R}^3 . Suppose $t_0 \in I$ and

$$\mathbf{r}'(t_0) = (1, 0, 1), \quad \mathbf{r}''(t_0) = (1, 1, 1),$$

Determine

$$\mathbf{T}(t_0), \quad |\mathbf{v}|'(t_0), \quad \mathbf{N}(t_0), \quad \kappa(t_0).$$

Solution. We have

$$\mathbf{v}(t_0) = \mathbf{r}'(t_0) = (1, 0, 1)$$
 so $|\mathbf{v}|(t_0) = \sqrt{2}$

and

$$\mathbf{T}(t_0) = (\mathbf{v}/|\mathbf{v}|)(t_0) = \frac{1}{\sqrt{2}}(1,0,1).$$

We have

$$\mathbf{a}(t_0) = \mathbf{r}''(t_0) = (1, 1, 1)$$

and

$$\mathbf{v}|'(t_0) = (\mathbf{a} \bullet \mathbf{T})(t_0) = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

We have

$$(\kappa |\mathbf{v}|^2 \mathbf{N})(t_0) = (\mathbf{a} - (\mathbf{a} \bullet \mathbf{T})\mathbf{T})(t_0) = (1, 1, 1) - \sqrt{2} \frac{1}{\sqrt{2}}(1, 0, 1) = (0, 1, 0).$$

Since $\kappa(t_0) > 0$ we find that

$$\mathbf{N}(t_0) = (0, 1, 0)$$
 and $\kappa(t_0) = \frac{1}{|\mathbf{v}|^2(t_0)} = \frac{1}{2}$.

6. 15 pts. Let f(x, y) = xy - x + 2 and let $R = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 4 - x^2\}$. Find the maxima and minima of f on R. (Note that f is continuous and R is closed and bounded so both maxima and minima exist.)

Solution. First we find the critical points. We have

$$\frac{\partial f}{\partial x} = y - 1$$
 and $\frac{\partial f}{\partial y} = x$

so the unique critical point is (0, 1) which lies in R.

Next we note the boundary of ${\cal R}$ consists of the arcs which are the ranges of the curves

$$C_1(x) = (x, 0)$$
 for $-2 < x < 2$

and

$$C_2(x) = (x, 4 - x^2)$$
 for $-2 < x < 2$

together with the endpoints of these arcs, namely the points $(\pm 2, 0)$. Since

$$\frac{d}{dx}f(C_1(x)) = \frac{d}{dx}(-x+2) = -1$$

there are no candidates for minimum or maximum points of f on R on C_1 . Since

$$\frac{d}{dx}f(C_2(x)) = \frac{d}{dx}(x(4-x^2)-x+2) = 3(1-x^2)$$

we find that $(\pm 1, 3)$ are candidates for minimum or maximum points of f on R on C_2 . Finally, we consider the endpoints $(\pm 2, 0)$.

We consider the table

x	у	f(x,y)
0	1	2
-1	3	0
1	3	4
2	0	0
-2	0	4

7. 10 pts. Let

$$f(x,y) = \begin{cases} \frac{-x}{x^2 + y^2} & \text{if } x < y, \\ \frac{y}{x^2 + y^2} & \text{if } x \ge y. \end{cases}$$

Does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? If so, what is it? Why?

Solution. If
$$0 < x < \infty$$
 we have $f(x, 0) = 0$ and $f(x, x) = 1/x$. Thus

$$\lim_{x\downarrow 0} f(x,0) = 0 \quad \text{and} \quad \lim_{x\downarrow 0} f(x,x) = \infty$$

so the limit does not exist.

8. 5 pts. Exhibit an equation for the tangent plane to the graph of $z = \cos xy$ at $(1, \pi/2, 0)$.

Solution. Note that $f(1, \pi/2) = 0$; otherwise the problem is incorrectly posed. We have

$$\frac{\partial f}{\partial x} = -y \sin xy$$
 which at $(1, \pi/2)$ equals $-\frac{\pi}{2}$

and

$$\frac{\partial f}{\partial y} = -x \sin xy$$
 which at $(1, \pi/2)$ equals -1 .

Thus

$$z = -\frac{\pi}{2}(x-1) + (-1)\left(y - \frac{\pi}{2}\right) = -\frac{\pi}{2}x - y + \pi$$

is the desired equation.

9. 5 pts. Calculate

$$\frac{\partial^2}{\partial x \partial y} e^{xyz}.$$

Solution. We have

$$\frac{\partial^2}{\partial x \partial y} e^{xyz} = \frac{\partial}{\partial x} (xze^{xyz})$$
$$= ze^{xyz} + (xz)(yz)e^{xyz}$$
$$= z(1 + xyz)e^{xyz}.$$

9. 11 pts. Suppose g, h are continuously differentiable functions on the interval I, f is a continuously differentiable function on \mathbb{R}^2 and

$$w(t) = f(g(t), h(t)) \text{ for } t \in I.$$

Suppose

$$2\in I, \quad g(2)=1, \quad g'(2)=1, \quad h(2)=4, \quad h'(2)=3$$

as well as

$$f(1,4) = 5, \quad \frac{\partial f}{\partial x}(1,4) = 3$$

and

$$w'(2) = 4$$

$$\frac{\partial f}{\partial y}(1,4).$$

Solution. The Chain Rule says that

$$w'(t) = \frac{\partial f}{\partial x}(g(t), h(t))g'(t) + \frac{\partial f}{\partial y}(g(t), h(t))h'(t)$$

for any $t \in I$. If t = 2 then (g(t), h(t)) = (1, 4) so

$$4 = \frac{\partial f}{\partial x}(1,4)(1) + \frac{\partial f}{\partial y}(1,4)(3) = (3)(1) + \frac{\partial f}{\partial y}(1,4)(3)$$

 \mathbf{so}

$$\frac{\partial f}{\partial y}(1,4)=\frac{1}{3}(4-3)=\frac{1}{3}.$$

11. 15 pts. Suppose $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are points in \mathbb{R}^3 which do not lie in a plane. Let P be the plane passing through $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and let Q be the plane passing through the midpoints of the segments joining \mathbf{a} to \mathbf{d} , \mathbf{b} to \mathbf{d} and \mathbf{c} to \mathbf{d} , respectively. Show that P and Q are parallel.

Solution. The vector

$$(\mathbf{b}-\mathbf{a})\times(\mathbf{c}-\mathbf{a})$$

is normal to P. The vectors

$$\mathbf{m}_{\mathbf{a}} = \frac{1}{2}(\mathbf{d} - \mathbf{a}), \quad \mathbf{m}_{\mathbf{b}} = \frac{1}{2}(\mathbf{d} - \mathbf{b}), \quad \mathbf{m}_{\mathbf{c}} = \frac{1}{2}(\mathbf{d} - \mathbf{c})$$

are the midpoints of the segments joining ${\bf a}$ to ${\bf d},$ ${\bf b}$ to ${\bf d}$ and ${\bf c}$ to ${\bf d},$ respectively. We have

$$(\mathbf{m}_{\mathbf{b}} - \mathbf{m}_{\mathbf{a}}) \times (\mathbf{m}_{\mathbf{c}} - \mathbf{m}_{\mathbf{a}}) = \left(\frac{1}{2}(\mathbf{a} - \mathbf{b})\right) \times \left(\frac{1}{2}(\mathbf{a} - \mathbf{c})\right) = \frac{1}{4}((\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}))$$

from which we infer that P and Q are parallel.