
Math 103.02; Fall 2010; Test Three

I have neither given nor received aid in the completion of this test.
Signature:

TO GET FULL CREDIT YOU MUST SHOW ALL WORK!

Your Score
1 20 pts.
2 15 pts.
3 10 pts.
4 10 pts.
5 10 pts.
6 10 pts.
7 15 pts.
8 15 pts.

Total 105 pts.

The average was 58.5 and the standard deviation was 21.8.

1. Let

B = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 1 < x2 − y2 < 4 and 4 < x2 + y2 < 9}
and let

F (x, y) = (x2 − y2, x2 + y2) for (x, y) ∈ B.

I tell you that F carries A in one-to-one fashion onto the rectangle

{(u, v) ∈ R2 : 1 < u < 4 and 4 < v < 9}.

(a) 10 pts. Use the Change of Variables formula to calculate
∫ ∫

B

x2 + y2 dxdy.

(b) 10 pts. Calculate the inverse of F .

Solution. First note that

JF (x, y) =
∣∣∣∣
2x −2y
2x 2y

∣∣∣∣ = 8xy 6= 0 for (x, y) ∈ B.
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Let A be the rectangle

{(u, v) ∈ R2 : 1 < u < 4 and 4 < v < 9}.
Then F−1 carries A in one-to-one fashion onto B since F carries B in one-to-one
fashion onto A. Moreover, by the Chain Rule and the product rule for determinants
(see (9) on page 1005) we have

JF−1(u, v) =
1

JF (F−1(u, v))
for (u, v) ∈ A.

By the Change of Variable Formula for Multiple Integrals (Theorem 1 on page
1004) we have

∫ ∫

B

f(x, y) dxdy

=
∫ ∫

F−1[A]

f(x, y) dxdy

=
∫ ∫

A

f(F−1(u, v))JF−1(u, v) dudv

=
∫ ∫

A

f(F−1(u, v))
JF (F−1(u, v))

dudv.

(1)

In the original statement of the problem I should have had you integrate f(x, y) =
xy instead of f(x, y) = x2 + y2 because this leads to an easy integral as follows. If
f(x, y) = xy for (x, y) ∈ B we have

f(x, y)
JF (x, y)

=
xy

8xy
=

1
8

so ∫ ∫

B

xy dxdy =
∫ ∫

A

1
8

dudv =
(4− 1)(9− 4)

8
=

15
8

.

Back to the problem as stated. Now let f(x, y) = x2 + y2 for (x, y) ∈ B. Fix
(x, y) ∈ B and let

(u, v) = F (x, y) = (x2 − y2, x2 + y2).

It follows that

F−1(u, v) = (x, y).

Now

x2y2 =
(x2 + y2)− (x2 − y2)

4
=

v − u

4
so

xy =
√

v − u

2
since v > u.

Consequently,

f(F−1(u, v))
JF (F−1(u, v))

=
v

4
√

v − u
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which gives
∫ ∫

B

x2 + y2 dxdy

=
∫ ∫

A

v

4
√

v − u
dudv

=
∫ 4

1

(∫ 9

4

v

4
√

v − u
dv

)
du

=
464
15

√
2− 14

5

√
3− 35

3

√
5

(I meant to have you end up with a real easy integral. So I should have told you
to integrate xy instead of x2 + y2.)

To calculate the inverse of F we need to solve u = x2 − y2 and v = x2 + y2 for
u and v. Keep in mind that v > u for (x, y) ∈ B. Adding these equations we get
u + v = 2x2 so x =

√
(u + v)/2 and subtracting the second from the first we get

v − u = 2y2 so y =
√

(v − u)/2. That is,

F−1(u, v) =

(√
u + v

2
,

√
v − u

2

)
for (u, v) ∈ A.

Note that having these formulae will allow you to calculate JF−1(u, v) directly,
giving another way to do (a).
2. Let

P (x, y) = 2x2 + x and Q(x, y) = −3x2 + y for (x, y) ∈ R2

and let R be the triangle in R2 with vertices (0, 0), (1, 1), (0, 1).

(a) 5 pts. Calculate
∫ ∫

R

x dxdy.

(b) 5 pts. Calculate
∫

C

P dx + Qdy

where C is the boundary of R traversed in the counterclockwise sense.

(c) 5 pts. Explain how the answer to either one of (a) or (b) may be used to find
the answer to the other.

Solution. We have
∫ ∫

R

x dxdy =
∫ 1

0

(∫ x

0

x dx

)
dy =

1
6
.
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Moreover, if Ci, i = 1, 2, 3, are the segments joining (0, 0) to (1, 1); (1, 1) to (0, 1);
and (0, 1) to (0, 0), respectively, we have

∫

C

P dx + Qdy

=
(∫

C1

+
∫

C2

+
∫

C3

)
P dx + Qdy

=
∫ 1

0

(2t2 + t) dt + (−3t2 + t) dt

−
∫ 1

0

(2t2 + t) dt + (−3t2 + 1) dt

−
∫ 1

0

(202 + 0) dt + (−302 + t) dt

= −1.

Now Green’s Theorem says
∫

C

P dx + Qdy =
∫ ∫

R

∂Q

∂x
− ∂P

∂y
dxdy =

∫ ∫

R

−6x dxdy

so the answer to (b) should be −6 times the answer to (a).

3. 10 pts. Let
F(x, y) = (y, 0) for (x, y) ∈ R2

and let C be the curve in R3 which consists of the line segment which goes from
(1, 0) to (2, 0) and then follows the circle with center (0, 0) and radius 2 from (2, 0)
counterclockwise to (0, 2). Calculate

∫

C

F •T ds.

Solution. Let C1 and C2 be the line segment which goes from (1, 0) to (2, 0)
and let C2 be the part of the circle with center (0, 0) and radius 2 from (2, 0)
counterclockwise to (0, 2). Then

∫

C1

F •T ds =
∫ 1

0

(0, 0) • (1, 0) dt = 0

and
∫

C2

F •T ds =
∫ π/2

0

(2 sin t, 0) • (−2 sin t, 2 cos t) dt =
∫ π/2

0

−4 sin2 t dt = −π.

So ∫

C

F •T ds =
∫

C1

F •T ds +
∫

C2

F •T ds = 0 + (−π) = −π.

4. Let
F(x, y) = (x + y2, 2xy) for (x, y) ∈ R2.
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(a) 5 pts. Find a continuously differentiable function f on R2 such that F = ∇f .

(b) 5 pts. Calculate ∫

C

F •T ds

where C is a curve which goes from (1, 1) to (−2,−3).

Solution. By partial integration we have

f(x, y) = A(y) +
x2

2
+ xy2 and f(x, y) = B(x) + xy2

so we can take B(x) = x2/2 and A(y) = 0 and let

f(x, y) =
x2

2
+ xy2.

Because F = ∇f we have∫

C

F •T ds = f(−2,−3)− f(1, 1) = −35
2

.

5. 10 pts. Let
S = {(x, y, z) : z = xy and x2 + y2 ≤ 1}

and let
F(x, y, z) = (y, x, 0) for (x, y, z) ∈ R3.

Calculate the flux ∫ ∫

S

F • n dS

where n is the upward pointing unit normal to S.

Solution. Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and note that S is the graph of
f(x, y) = xy over D. Thus as

n dS = (−fx,−fy, 1) dxdy = (−y,−x, 1)

we obtain ∫ ∫

S

F • n dS =
∫ ∫

D

(y, x, 0) • (−y,−x, 1) dxdy

=
∫ ∫

D

−(x2 + y2) dxdy

= −
∫ 1

0

(∫ 2π

0

(r2)r dr

)
dθ

= −π

2
.

6. 10 pts. Let

F(x, y, z) = (yz, xz, xy) for (x, y, z) ∈ R3.

Find a continuously differentiable function f on R3 such that F = ∇f .
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Solution. By partial integration we obtain

f(x, y, z) = A(y, z)+xyz, f(x, y, z) = B(x, z)+xyz, f(x, y, z) = C(x, y)+xyz.

Letting A(y, z) = 0, B(x, z) = 0 and C(x, y) = 0 we obtain

f(x, y, z) = xyz for (x, y, z) ∈ R3.

7. Let

F(x, y, z) = (x + eyz, y + sin xz, z + cos xy) for (x, y, z) ∈ R3.

(a) 5 pts. Calculate the divergence of F.

(b) 10 pts. Use the Divergence Theorem to evaluate
∫ ∫

S

F • n ds

where S is the surface which bounds the region

T = {(x, y, z) : z ≥ 0 and z2 ≤ 25− x2 − y2}
and where n is the unit normal to S which points out of T . You only need express
your answer as iterated single integrals.

Solution. We have

∇ • F =
∂

∂x
(x + ey,z) +

∂

∂y
(y + sin xz) +

∂

∂(z
z + cos xy) = 1 + 1 + 1 = 3.

Let D = {(x, y) ∈ R2 : x2+y2 ≤ 25} and note that T is the region whose projection
onto the xy-plane is D and which is between z = 0 and z =

√
25− x2 − y2. By

the Divergence Theorem,
∫ ∫

S

F • n dS

=
∫ ∫ ∫

T

∇ • F dV

= 3Volume(T )

=
∫ ∫

D

√
25− x2 − y2 dxdy

=
∫ 5

0

(∫ 2π

0

√
25− r2r dr

)
dθ

=
250π

3
.

8. Let
F(x, y, z) = (y2, z2, x2) for (x, y, z) ∈ R3.

(a) 5 pts. Calculate the curl of F.
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(b) 10 pts. Use Stokes’s Theorem to evaluate∫

C

F •T ds

where C is the intersection of the cylinder x2 + y2 = 2y with the plane z = y
oriented counterclockwise when viewed from above. You only need to express your
answer as iterated single integrals.

Solution. We have

(∇× F) =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

y2 z2 x2

∣∣∣∣∣∣
= −2(z, x, y).

Our surface S is the graph of f(x, y) = y over the disk D in R2 with center (0, 1)
and radius 1. Moreover,

D = {(r cos θ, r sin θ) : 0 ≤ θ ≤ π and 0 ≤ r ≤ 2 sin θ}.
Thus

n dS = (−fx,−fy, 1) dxdy = (0,−1, 1).
Thus ∫

C

F •T ds =
∫ ∫

S

(∇× F) • n dS

=
∫ ∫

D

−2(z, x, y) • (0,−1, 1)

= 2
∫ ∫

D

y − x dxdy

= 2
∫ π

0

(∫ 2 sin θ

0

(r sin θ − r cos θ)r dr

)
dθ

= 2π.


