
1. Vectors.

In what follows n will always be a positive integer.

A scalar is a real number. An n-vector is an ordered n-tuple of scalars. When
it is clear from the context what n is we will frequently say “vector” instead of
“n-vector”. If (x1, . . . , xn) is an n-vector then, for each i = 1, . . . , n, the scalar xi

is called the i-th component of the n-vector. (In the book

(x1, . . . , xn) is denoted by < x1, . . . , xn > .

Let

Rn

denote the set of vectors.
Given a vector x and a scalar c we let

cx = (cx1, . . . , cxn)

be the vector whose i-th component is c times the i-th component of x, i = 1, . . . , n;
cx is called scalar multiplication of x by c. If c 6= 0 we will often write

x
c

for
1
c
x.

Given a vector x and a vector y we let

x + y = (x1 + y1, . . . , xn + yn)

to be the vector whose i-th component is the sum of the i-th component of x and
the i-th component of y, i = 1, . . . , n; x+y is called the vector sum of x and y.

We let 0 ∈ Rn be the n-vector all of whose components are zero; we call this
vector the zero vector. Given an n-vector x we set −x = (−1)x. We let

x− y = x + (−y) for x,y ∈ Rn.

Make sure you understand the geometric and physical interpretation
of these operations! Check out the book for lots of pictures. Better still, draw
some of your own.

We urge the reader to verify the following properties of the vector operations we
have just introduced:

Suppose c, d are scalars and x,y, z are n-vectors. Then

(v1) x + y = y + x;
(v2) (x + y) + z = x + (y + z);
(v3) x + 0 = x;
(v4) x− x) = 0;
(v5) c(x + y) = cx + cy;
(v6) (c + d)x = cx + dx;
(v7) c(dx) = (cd)x;
(v8) 1x = x.
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We leave to the reader the tedious(!) exercise of verifying these properties. We’ll
prove (v4) here.

x− x = x + (−1)x

= (x1, . . . , xn) + (−1)(x1, . . . , xn)

= (x1, . . . , xn) + ((−1)x1, . . . , (−1)xn)

= (x1 + (−1)x1, . . . , xn + (−1)xn)

= (x1 − x1, . . . , xn − xn)

= (0, . . . , 0)
= 0.

The vectors x and y are parallel if one is a scalar multiple of the other.
For each i = 1, . . . , n we let

ei

be the vector whose i-th component is 1 and whose other components are 0 and we
let

ei

be the function with domain Rn which assigns to a n-vector its i-th component.
Note that

x = e1(x)e1 + · · ·+ en(x)en =
n∑

i=1

ei(x)ei whenever x ∈ Rn.

2. The dot product.

Given n-vectors x = (x1 . . . , xn) and y = (y1, . . . , yn) we set

x • y =
n∑

j=1

xjyj

and call this scalar the dot product of x and y. As you will see, the dot product
allows us to deal with lengths and angles. We urge the reader to verify the following
properties of the dot product:

Suppose c, d are scalars and x,y, z are n-vectors. Then
(1) (x + y) • z = x • z + y • z;
(2) (cx) • y = c(x • y);
(3) x • y = y • x;
(4) x • x ≥ 0 with equality only if x = 0.

Note that (1) and (3) imply that
(1’) x • (y + z) = x • y + x • z

and that (2) and (3) imply that
(2’) x • (cy) = c(x • y).

Keeping in mind (4),for each x ∈ Rn we set

|x| =
√

x • x

and call this nonnnegative real number the norm or length or magnitude of x.
We have

|x| = 0 ⇔ x = 0 for x ∈ Rn.



3

A direction (in Rn) is, by definition, a vector of length one; unit vector is a
synonym for direction. If x ∈ Rn then

x
|x|

is called the direction of x; evidently,

x = |x|
(

x
|x|

)
= ru for x ∈ Rn ∼ {0}

where r is the magnitude of x and u is the direction of x. Evidently,

|cx| = |c||x| whenever c ∈ R and x ∈ Rn.

The use of this terminology is justified by the Pythagorean Theorem from Euclidean
geometry, the relevance of which to the real world has been established by millenia of
experience. Note that in this setup the Pythagorean Theorem becomes a definition.
Is this reasonable?) Many good things about the dot product, and there are many,
follow from the

Theorem 2.1 (Cauchy-Schwartz Inequality.). Suppose x,y ∈ Rn. Then

|x • y| ≤ |x| |y|
with equality only if there is a scalar c such that either y = cx or x = cy.

Proof. We may assume that y is nonzero since otherwise the assertion holds
trivially. For any t ∈ R we have

(1) 0 ≤ (x + ty) • (x + ty) = |x|2 + 2t(x • y) + t2|y|2;
We leave as Exercise 1 for the reader to prove this using (d1)-(d4) above. Substi-
tute

t = −x • y
|y|2

and transpose a bit to get the inequality. The remaining assertion follows by ob-
serving that if equality holds in (1) then (x + ty) • (x + ty) must be zero which
forces x + ty = 0 by (d4).

Remark 2.1. Note that the proof depended only on (d1)-(d4) and not the defini-
tion of the dot product. Thus the Cauchy-Schwartz Inequality holds in any context
where (d1)-(d4) (and, implicitly, (v1)-(v8)) hold. For example, given continuous
f, g : [a, b] → R we could set

f • g =
∫ b

a

f(x)g(x) dx

and conclude that
∣∣∣
∫ b

a

f(x)g(x) dx
∣∣∣ ≤

( ∫ b

a

f(x)2 dx
)1/2( ∫ b

a

g(x)2 dx
)1/2

with equality only f = cg or g = cf for some constant c. The utility of the
above dot product on functions is amazing; modern communications depend on the
mathematics derived from it.
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Theorem 2.2 (The triangle inequality). Suppose x,y ∈ Rn. Then

|x + y| ≤ |x|+ |y|
with equality only if there is a scalar c such that either y = cx or x = cy.

Proof. Square both sides and use the Schwartz Inequality. Give the details in
Exercise 2.

3. Orthogonal projection onto the line through the zero vector
and a nonzero vector.

Suppose x is a nonzero n-vector with magnitude r and direction u. We let

projx(y) = x • uu =
x • y
|x|2 x for each n-vector y

and call this vector the orthogonal projection of y on the line passing
through 0 and x. Let us explain. Let

L = {tx : t ∈ R}.
By taking t = 0 and t = 1 we find that 0 ∈ L and x ∈ L, respectively. Moreover,
L is a line; in fact, it is the unique line containing 0 and x. (We will define what a
line is shortly; maybe you can do it now.) We claim that projx(y) is that point
on L which is closest to y. To see this we set

S(t) = |y − tx|2 = |y|2 − 2x • y + t2|x|2 for t ∈ R
and note that S has a unique minimum point when t = x • y/|x|2.

4. The angle between two vectors.

Given nonzero n-vectors x,y we keep in mind the Cauchy-Schwartz Inequality
and define the angle between them to be

∠(x,y) = arccos
( x • y
|x||y|

)
∈ [0, π].

In nearly all situations you can use the dot product instead angles! Evidently,

x • y = |x||y| cos ∠(x,y).

This terminology will be justified if we can show that it is consistent with Euclidean
geometry. We do this by considering the parallelogram

P = {ux + vy : u, v ∈ [0, 1]}
whose vertices are 0,x,y,x + y. The area of this parallelogram (Definition?) is

|x||y − projx(y)| =
√
|x|2|y|2 − (x • y)2;

we leave it as Exercise 3 for the reader to show that the square of both sides is
the same. But the right hand side of this equation is

|x||y| sin ∠(x,y)

which is as it should be. In particular, we find that x and y are perpendicular in
the sense of Euclidean geometry if and only if there dot product is zero which is
the case if and only if the angle between them is π/2.
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5. Volume.

Given n n-vectors x1, . . . ,xn we set

[x1, . . . ,xn] = detX

where X is the n×n matrix in whose i-th row and j-th column is the i-th component
of xj . We call this scalar the volume of the sequence of vectors x1, . . . ,xn. The
justification of this terminology will be furnished shortly.

6. Some special features of R2.

We set
i = e1 and j = e2.

Suppose x = (x, y) ∈ R2. We set

x⊥ = (−y, x).

Note that
i⊥ = j and j⊥ = −i.

Draw some pictures to verify that x⊥ is obtained by rotating x counterclockwise
through an angle of π/2. (Definition?)

Proposition 6.1. Suppose x,y ∈ R2 and c is a scalar. Then
(1) (x + y)⊥ = x⊥ + y⊥;
(2) (cx)⊥ = c(x⊥);
(3) x⊥ • x = 0;
(4) (x⊥)⊥ = −x;
(5) (x⊥) • (y⊥) = x • y;
(6) |x⊥| = |x|;
(7) [x,y] = x⊥ • y.

Proof. Exercise 4 for the reader.

7. Some special features of R3.

We set
i = e1, j = e2, and k = e3.

Proposition 7.1. Suppose x,y ∈ R3. Then there is one and only one vector

x× y,

called the cross product of x and y, with the property that

(x× y) • z = [x,y, z] for any z ∈ R3.

Moreover, if x = (x1, x2, x3) and y = (y1, y2, y3) then

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Proof. Supposing the cross product of x and y exists as in the defining property,
we set z equal to i,j and k, respectively, to deduce the given formula for the cross
product and its uniqueness. Stuffing the formula into the defining property, we see
that the defining property holds.
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Check out the book for all the properties of the cross product. Perhaps its most
important property is that x× y is perpendicular to both x and y and that it is 0
if and only if x and y are parallel. We leave for the reader as Exercise 5 to verify
that

|x× y| =
√
|x|2|y|2 − (x • y)2;

if neither x nor y is zero, this is

|x||y sin ∠(x,y)

which is the area of the parallelogram

P = {ux + vy : (u, v) ∈ [0, 1]× [0, 1]}.
Using all of the above we find that

(x× y) • z = [x,y, z]

is the volume of the solid

S = {ux + vy + wz : (u, v, w) ∈ [0, 1]× [0, 1]× [0, 1]}.
I’ll discuss the meaning and proof of the following fundamental fact.

Theorem 7.1. The cross product is invariant under rotations.

Theorem 7.2. Suppose x,y, z ∈ R3. Then

(x× y)× z = (y • z)x− (x • Z)y.

Proof. I’ll do this one in class. We will not do it by brute force calculation. We will
observe that both sides are trilinear so that it suffices to check it in the cases when
x,y, z are i, j,k in any order. We will exploit the symmetries and antisymetries of
both sides to reduce it to very few of the 33 = 27 of these possibilities.

8. Operations on vector valued functions.

Suppose f is an n-vector valued function. For each i = 1, . . . , n its i-th component
is the function ei ◦ f .

Suppose c is a scalar and f is an n-vector valued function. Then

cf

is the n-vector valued function whose domain is the domain of f and whose value
at x in the domain of f is cf(x).

Suppose f is a scalar valued function and v is an n-vector. Then

fv

is the n-vector valued function whose domain is the domain of f and whose value
at x in the domain of f is f(x)v.

Suppose f and g are n-vector valued functions.

f + g

is the n-vector valued function whose domain is the intersection of the domains of
f and g and which whose value at x in this intersection is f(x) + g(x).

Suppose f is a scalar valued function and g is an n-vector valued function. Then

fg
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is the n-vector valued function whose domain is the intersection of the domains of
f and g and which whose value at x in this intersection is f(x)g(x).

Covectors. We say α is an n-covector if

(c1); α : Rn → R

(c2) α(x + y) = α(x) + α(y) whenever x,y ∈ Rn;

(c3) α(cx) = cα(x) whenever c ∈ R and x ∈ Rn.

We let
Rn

be the set of n-covectors. It is a simple matter to verify that a scalar multiple of a
covector is a covector and that the sum of two covectors is a covector. Note that

e1, . . . , en

are n-covectors.

Proposition 8.1. Suppose α : Rn → R. Then α is a covector if and only if there
is a vector a such that

α(x) = x • a whenever x ∈ Rn.

Proof. The sufficiency follows from properties (d1) and (d2) of the dot product.
Suppose α is a covector. Let a be the vector whose i-th component equals

α(ei), i = 1, . . . , n. Then for any vector x = (x1, . . . , xn) we have

α(x) = α(
n∑

i=1

xjej) =
n∑

i=1

xjα(ej) = x • a.

9. Linear functions.

Suppose

(l1) l : Rn → Rm.

We say l is linear if

(l1) l(cx) = cl(x) whenever c ∈ R and x ∈ Rn and

(l2) l(x + y) = l(x + l(y) whenever x,y ∈ Rn.

We let
Rm

n

be the set of linear functions from Rn to Rm. It is a simple matter to verify that
the sum of two members of Rm

n is in Rm
n and that a scalar multiple of a member of

Rm
n is in Rm

n . Proceed as in Exercise 6. We let

Rm
n
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be the set of real valued linear functions from Rn to R. Note that R1
n is the set of

n-covectors.

Proposition 9.1. Suppose l ∈ Rn and v ∈ Rm. Then

lv

is linear.

Proof. Exercise 7.

Proposition 9.2. ej is linear for each j = 1, . . . , n.

Proof. This is a direct consequence of the definitions.

Proposition 9.3. Suppose l ∈ Rm
n and k ∈ Rm

1 . Then l ◦ k ∈ Rm
1 .

Proof. Exercise 7.

Proposition 9.4. Suppose

l : Rn → Rm.

The l is linear if and only if each its components is linear.

Proof. Suppose l is linear. Then, by the preceding Proposition, lj = ej ◦ l is
linear for each j = 1, . . . , n.

Suppose each component of l is linear. Then for any x ∈ Rn we have

l(x) =
n∑

i

li(x)ei = (
n∑

i

liei)(x)

which is to say that

l =
n∑

i

liei.

But we have already noted that scalar multiples and sums of linear functions are
linear.

Proposition 9.5. Suppose l ∈ Rm
n . Let

ai
j = ei(l(ej)) i = 1 . . . ,m, j = 1, . . . , n.

Then

l(x) =
m∑

i=1

(
n∑

j=1

ai
j xj)ei for x ∈ Rn.
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Proof. Suppose x ∈ Rn. Then

l(x) = l(
n∑

j=1

xjej)

=
n∑

j=1

l(xjej)

=
n∑

j=1

xjl(ej)

=
n∑

j=1

xj(
m∑

i=1

ei(l(ej))ei)

=
n∑

j=1

xj(
m∑

i=1

aj
iei)

=
m∑

i=1

(
n∑

j=1

aj
ix

j)ei).

As an exercise, give reasons justifying each of these steps.

Remark 9.1. Thus a linear function from Rn to Rm is determined by its matrix
which is, by definition, the rectangular array with m rows and n columns which
has the scalar

ai
j = ei(l(ej))

in its i-th row and j-th column i = 1 . . . , m, j = 1, . . . , n. This array is usually
depicted as follows: 



a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
...

. . .
...

am
1 am

2 . . . am
n


 .

Suppose l ∈ Rn
m and A is its matrix. The if x ∈ Rn and y = l(x) ∈ Rm then the

preceding Proposition says that

yi =
n∑

j=1

ai
jx

j , i = 1, . . . , m

which amounts to 


y1

y2

...
ym


 = A




x1

x2

...
xn


 .

The interested reader can verify that all the definitions and properties of matrix op-
erations follow from corresponding but usually more simply established definitions
and properties of linear functions.


