

October 1, 2004

MATH 65S
CRYPTOGRAPHY AND SOCIETY
ASSIGNMENT 5

Due: Friday, October 8, 2004.

Journal: Write a one-page (12 pt, single-spaced) explication of the fourth chapter of Singh's book, with emphasis on the lessons to be learned from the use of Enigma.

1. Consider the 5-cycle $(2\ 5\ 6\ 4\ 9)$, a permutation of **13**. Compute the cycle decomposition of the result of composing this permutation with itself k times, $k = 2, \dots, 6$.
2. Let $\pi : \mathbf{13} \rightarrow \mathbf{13}$ be the permutation

$$\begin{aligned}\pi(1) &= 12, \quad \pi(2) = 13, \quad \pi(3) = 3, \quad \pi(4) = 1, \quad \pi(5) = 11, \\ \pi(6) &= 9, \quad \pi(7) = 5, \quad \pi(8) = 10, \quad \pi(9) = 6, \quad \pi(10) = 4, \\ \pi(11) &= 7, \quad \pi(12) = 8, \quad \pi(13) = 2.\end{aligned}$$

Find its decomposition into cycles. What is the least positive integer m such that $\pi^m = \epsilon$, the identity permutation, $\epsilon(k) = k$? (Here π^m means π composed with itself m times.) Now suppose given a permutation π of **n** whose cycle decomposition has cycles of length ℓ_1, \dots, ℓ_k . Using your experience with the example in the first part of the problem, guess (with explanation!) the least integer m such that $\pi^m = \epsilon$.

3. Compute the cycle decompositions of compositions $\pi_2 \circ \pi_1$ and $\pi_1 \circ \pi_2$, where the cycle decompositions of π_1 and π_2 are

$$\pi_1 = (1\ 4)(2\ 8)(6\ 7)(3\ 5)$$

and

$$\pi_2 = (6\ 7)(3\ 4)(8\ 1)(2\ 5)$$

Do the same with

$$\pi_1 = (1\ 14)(12\ 5)(13\ 6)(7\ 9)(8\ 4)(10\ 11)(2\ 3)$$

and

$$\pi_2 = (9\ 12)(13\ 4)(5\ 6)(3\ 11)(7\ 1)(8\ 14)(2\ 10)$$

4. Show that if σ is a permutation of **n** and $\sigma^2 = \epsilon$, then the cycle decomposition of σ consists solely of transpositions. Thus, any involutory cipher on the 26 letters of the alphabet (like EM) has such a structure.

5. Show that the number of ways of wiring the reflecting drum in EM is $26!/2^{13}13!$ (*Suggestion:* Remember the reasoning used to count the number of plugboard settings.)
6. You would expect that no setting of EM would give the trivial cipher ($EM(p)=p$, for all plaintext letters p .) Show that the following stronger statement holds: $EM(p) \neq p$, for every p .
7. The example of the four cycles on p. 152 in Singh can't come from EM, as claimed there. Why not?
8. Suppose the two 7-cycles on p. 152 in Singh were part of the cycle decomposition coming from 1st-4th letter chains. (This could happen.) Suppose you knew that the first plain letter of some message key were D and that its corresponding cipher letter were X . If the first letter of an intercepted (encrypted) message key were N , what would the first letter of the message key have been?