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Enigma

The Enigma enciphering machine, so named by its inventor, Adolph Scherbius, was the
first secure and practical mechanical encryption device. Invented as a means to store and
protect commercial secrets, Enigma was not widely adopted until the German military,
motivated in part by its embarrassing cryptographic failures both during and after WWI,
bought the design in 1927 and later put it to use to secure the communications of its
army, air force and, most famously, its Atlantic submarine fleet. Although conceptually
not revolutionary, Enigma exploited available technology to mechanize encryption in an
entirely new and effective way.

Part Ia: The machine

We will abbreviate “Enigma” or “Enigma machine” to EM. Its principal components
were as follows (refer to the diagram on the following page):

Key board: an ordinary (German) keyboard.

Lamp board: similar, but with lamps in place of keys, on which were printed alphabetic
characters which became visible when the corresponding lamps were illu-
minated

Switch board: single plug outlets, one for each alphabetic character, to be connected in
six pairs with wire connectors. (This was not part of Scherbius’ original
design, but rather was added by the German military to increase security.)

Three (rotating) drums: removeable, coaxial insulated discs, also called rotors, with two sets of 26
contacts, one for each alphabetic character, arranged near the outer edge
of the flat sides of the drums and wired together (through the discs) in
pairs. The 26 alphabetic characters were inscribed along the round edge
of each rotor, and a removeable plate enclosed the whole set of rotors, with
small windows revealing the top-most letter so as to specify the (rotatable)
position of the rotor.

Reflecting drum: a fixed insulated disc, with a single set of 26 contacts, wired together in
pairs.

Wiring: connections between the keys and lamps, between the lamps and and
fixed spring-loaded contacts to the first rotor, between fixed, spring-loaded
contacts connecting the first and second rotors, the second and third rotors
and the third and the reflecting drum.

Battery: to power the lamps.



All operators had identical machines to ensure interoperability. To initiate encryption
of a message, an operator did two things. First he set the position of each rotor, both
its order among the three available positions and its rotation (as seen through the small
windows); then he chose six pairs of letters to be connected on the plug board. In practice,
the operators did not themselves choose the rotor and plugboard settings: they were set
by code books shared by all operators. At first, these settings were changed daily, later in
WWII hourly in some cases. These settings constitute the key of the Enigma cryptosystem.

To encrypt a message, the operator pressed the key corresponding to the first letter
of plaintext, thus closing the circuit and illuminating a lamp showing the first letter of
ciphertext. One of the most important properties of EM is that this process is involutory:
if plain letter D (from the keyboard) was sent to cipher letter U (on the lampboard), then
any other operator using the same plug and rotor settings typed in U and got D on the
lampboard. Thus, the enciphering and deciphering keys were the same.

Another feature of EM was that after each press of a key, the first rotor rotated to the
next letter in the window; i.e. 1/26th of a complete turn. Every 26 presses, the second
would also rotate 1/26th and every 262 = 676 presses, the third rotor rotated through
1/26th of a complete turn. Thus, only after 263 = 17,576 turns did the machine return to
its initial setting. It could thus be expected that each setting of EM gave rise to 17,576
alphabets.

Part Ib: The protocol

All ciphertext was sent by radio and so was easily intercepted by the Allies. The
Germans feared that with that a lot of ciphertext sent using the same day key, plus other
information, an enemy might break EM. (In fact, Rejewski claims to have achieved such a
break against a Swiss cipher machine in 1940.) So to avoid this possibility, the Germans
adopted a protocol which set a different, operator specified message key for each message
encrypted with EM. It is both surprising and ironic that this extra step, which was taken
to enhance security, is exactly what allowed Polish mathematicians to break Enigma, as
we will see.

To do this, an operator set the EM according to the day key, then sent a three-letter
message key, randomly chosen by him, giving the three rotor settings for the coming
message. The operator who received this three-letter encrypted code group then typed it
into his EM, thus recovering the sender’s three letters. Now the sender set the rotors on
his EM to his three-letter choice and encrypted his message. Since the receiver had an
identical machine and the correct setting of the rotors, he had only to type in the received
ciphertext, in order to recover the plaintext. Notice that the involutory property of the
key is being used here.

Radio transmission conditions were, however, often not optimal, resulting in the loss of
some of the letters in this protocol. This is not even to mention that the life-and-death
situations under which technicians sometimes had to operate could make accurate keying,
reception and transcription difficult. If one of the first three letters, i.e. the message key,
were lost, then the whole message that followed it would be unintelligible.

In order to minimize this possibility, operators were instructed to send the message key
twice. So if the message key were hot, then the sender set EM according to the day-key,
typed hothot, read off the corresponding letters from the lampboard, say dugraz, reset



EM to hot, and typed in the message, reading off the corresponding cipher letters from
the lamp board; this ciphertext , preceded by the six letters duqraz, were radioed to the
receiver. Notice that because the rotors are turning each time a key is pressed, there
is (in general) no repetition in the encipherment, dugraz of hothot. Again because of
the involutory property of EM, when the receiver typed in dugraz, the lamps would give
hothot, thus providing proof that the message key was hot.



Part II: Keys

The Germans believed EM was secure because of the size of the key space, which was
so large as to be invulnerable to brute-force attack at the time. Let us look at this more
closely.

Since there were three rotors, there were 3!=6 possibilities for their placement in the
slots: 3 choices for the first slot, and, having placed one, 2 remaining rotors for the second.
Then the third had only one place left to go. Once placed, each rotor could be rotated
in its slot to any one of 26 positions. So there are 263 = 17,576 possibilities for all three
rotations. Altogether then, there are 6 - 17,576 = 105,476 possibilities for the placement
of the rotors. In other words, there are 105,476 possible keys. This key space, which was
what was available on Scherbius’ commercial EM, seemed too small to the Germans, so
they added the plugboard.

Now the number of ways of choosing a pair of letters to connect is the same as the
number of two-element subsets of the set of 26 alphabetic characters, also known as “26-

choose-2.” This number is
26\ 26! 26-25
2 ) 24120 2

Once this has been done, there are 24 letters remaining, so

24 -23
2

ways of choosing two letters to connect. So it would seem there are altogether

26-2524-2322-2120-1918-1716-15 26!
2 2 2 2 2 2 14126

ways to choose six pairs of letters to connect. However, this reasoning would count the
choices
(A,8)(D, F)(G, H)(J, K)(L,0)(U,I)

and
(D,F)(A,S)(G,H)(J,K)(L,0)(U,I)

as being different, because their first pairs (A, S) and (D, F') are different, even though
they differ only in the order in which they were chosen. Since there are 6! ways of ordering
the six pairs of connections, there are in fact

26!
——— =100, 391, 791, 500
1416126 ’ ’ ’
possible plugboard configurations. So altogether, the size of the key space of the military
EM is
26!
1416126

Keep in mind that, although very large, the size of this key space is close to 2%, the size
of the key space of DES, the former standard for secure private-key cryptosystems. In

263 - 3! = 186, 075, 649, 051, 516, 224, 000



fact, the vulnerability of DES was due to the fact that machines could be built which were
capable of searching its key space quickly. So if this were all the possible EM keys, then
it could be broken with today’s technology. But in practice there was a much larger key
space.

Remember Kerckhoff’s principle: one must assume that the enemy knows the cryptosys-
tem, so only the key protects an encrypted message from being read. But in this case,
the Poles (the enemy) had more than the key space to contend with: although they had
a commercial EM, so that they knew exactly how EM functioned, they did not possess a
military EM, whose internal wirings were different. This meant that they had to take the
rotor wirings to be part of the key, making cryptanalysis both quantitatively and qualita-
tively much more difficult. Specifically, each rotor could be wired in any one of 26! ways:
A on one side could be wired to any one of 26 letters on the other side of a rotor, then B
to any of the remaining 25 letters, and so on. So there are

(26!)° = 65592937459144468297405473968303761468794234820105359750856704 - 108

possible ways to wire the three rotors. By reasoning as we did when we computed the
number of possible plugboard configurations, we see that the number of ways to wire the

reflecting drum is
26!

13126

So the actual key space has size

= 17,905, 853, 580, 025

5185681594357332218627181827913462359847405536726104702340010153791717376 - 102°
times the number of rotor and plugboard settings we computed above, giving

964929068444542065097252210287218695
981196905757970817178691444526584908808785585686708224 - 10%2

possible keys altogether. This is a number with 113 decimal digits, and a key space of this
size is impossible to search on a modern computer. Rejewski certainly knew all this, and
yet, in a brilliant series of attacks, was able to read EM-encrypted messages almost as fast
as the intended receivers.



Part III: Rejewski

Rejewski’s attack on EM began with the determination of all the message keys on a given
day from 60-80 intercepted repeated encipherments of message keys. He did this without
knowledge of the day keys used to encipher the message keys and without knowing the
wirings of the drums.

His procedure was as follows:

(1)

First collect the six letter twice-enciphered message keys, say
duq raz
Imr dek
haf mxj
zzl itm
rch Ipo

and so on.
Next take the first and fourth letters from each group,

dr
Il d
h m
z 1
r

and look for chains constructed as follows. Write down the first and fourth letter
of one of these groups; then if this fourth letter is the first letter of another group,
write down the fourth letter of that group; then if this fourth letter is the first
letter of another group, write down the fourth letter of that group, and so on until
the the circle is complete: a fourth letter is reached which was the very first letter.
Call the resulting collection of letters a cycle. For instance, with the collection of
first and fourth letters above we would get the cycle

d—=r—=1—=d

We denote this cycle
(drl)

Clearly, if we had started with the pair, » — [, of first and fourth letters, we would
have gotten the cycle (rld), so we regard the cycles (drl), (rld) and (Idr) as identical
for this procedure. Each is called a cyclic permutation of the others.

Keep doing this until you run out of letters. It turns out in fact that these cycles
are disjoint and exhaustive: if you find another cycle with d, [ or r in it, it has
to be (dlr) or a cyclic permutation of it; and (with enough intercepts) every letter
will eventually appear in one of these cycles. Thus you find all the letters of the
alphabet, divided into disjoint cycles.

Now do the same thing for the second and fifth and then for the third and sixth
letters.



This procedure produces three lists of cycles, each of which gives a complete irredundant
list of the letters in the alphabet. These lists have some remarkable properties. For
instance, each collection of cycles occurs in pairs of equal length. So where we have a cycle
(dlr) as above, we must have another 3-letter cycle.

From this and other properties like it, plus some skill and intuition, Rejewski was able
to deduce all the message keys from the intercepts he used to produce the three lists of
cycles. To see how he did this we must study the mathematical tool he used, the theory
of permutations.



Part IV: Permutations

Fix a set X of n distinct objects. For instance, X might be the alphabetic characters

A:={a,b,..., z},

where n=26. Another example is the set of the first n integers

n:={1,2,...,n}

for some integer n. A permutation of X is a one-to-one function 7 : X — X, meaning that
if z # y, then w(z) # 7 (y).

For instance, for each setting of EM, we get a permutation of A. In fact, the set
of encryption functions for monoalphabetic ciphers (which use the letters from A) is the
same as the set of permutations of A.

For another example, if the cards in a deck are numbered top to bottom from 1 to 52,
then shuffles of the deck are the same as permutations of 52. For instance, the permutation
w of 6 given by

)
7(2)
m(3) =
(4)
m(5)
(6) =

3
)
=2
4
6

is often called a “perfect shuffle”: cut the deck in half and interleave the cards.

An interesting property of this shuffle, indeed of any shuffle or even any permutation,
is that if it is repeated often enough, the cards (or letters or numbers) will return to their
original order. We will see later why this is so.

Here are some abstract properties of permutations, together with their crypto-counterparts.

(1)
(2)
3)

If w1 and w9 are permutations, so is the composition 75 o 1. Doing two monoal-
phabetic encipherments in succession is still a monoalphabetic cipher.

The function € : X — X | e(x) = z, is a permutation such that eonm =7 = 7oe.
It is called the identity permutation. The non-cipher!

For every permutation 7, there is a permutation ¢ such that com = ¢ = wo 0.
This uses two things: first the Pidgeonhole Principle to conclude that every y € X
is m(z) for some z; and second the one-to-one-ness of 7 to conclude that there is
only one such z. So if we define

oy) ==

then because 7(z) = y, we have what we want. If 7 : A — A is an enciphering
rule, then there is a deciphering counterpart o which “undoes” the encipherment
of a plaintext letter: o(n(p)) =p



(4) Given permutations 7 and o, it’s not always true that 7 o 0 = o o 7. For instance,
the permutations of 3

satisfy
moo(2)=2 but conw(2)=3

Take care with the order of repeated encipherment.
(5) There are n! permutations of X. There are 26! monoalphabetic ciphers.

A very simple sort of permutation is a cycle, which we introduce by example. From 6
choose a subset, say 1, 6, 4. Then define a permutation v : 6 — 6 which takes 1 to 6, 6 to
4 and 4 to 1:

Notice that 2, 3, and 5 are fixed. A convenient notation for this permutation is

v = (164)(2)(3)(5)

or just
(164),

called a 3-cycle. Since the notation means that 1 is taken to 6, 6 to 4 and 4 to 1, we have
(164) = (641) = (416);

but
(164) # (614)!

Now looking back at the definition of a perfect shuffle, we see it is the 4-cycle
(2354)

Recall we said above that the order of composition of permutations matters: for per-
mutations m and o, m 0 0 # o o w in general. Some exceptions to this “inequality” were
noted there. Another is that the order of composition of disjoint cycles doesn’t matter. For
instance,

(164) o (235) = (235) o (164)



It’s easy to see why this is so: because the subsets {1,6,4} and {2,3,5} are disjoint, it
doesn’t matter in which order you move them around, first {1,6,4} then {2,3,5}, or vice-
versa. Notice that the permutations 7 and o in property (4) were not moving disjoint sets
around.

The second important property of disjoint cycles is that they are everywhere. For
example, let’s take the example v above and change it slightly, by changing the values of

7(2) and 7(3):

Then
7' = (164)(23)

meaning that " takes 1 to 6, 6 to 4 and 4 to 1; and 2 to 3 and 3 to 2. The way this was
done should remind you of the procedure Rejewski used to find his cycles in Part III: ~
sends 1 to 6, then 6 to 4 and finally 4 back to 1; next take a number not among those in
(164), say 2, and find that 2 goes to 3 and 3 back to 2; finally, the remaining number, 5,
is not moved by v’.

We say that 4’ contains the cycles (164) and (23) and sometimes write

(164) € v/ and (23) € v
Notice that the two cycles (164) and (23) are disjoint. In fact, this procedure can be

carried out for any permutation:

Theorem. FEvery permutation can be decomposed uniquely (in only one way) into disjoint
cycles.

This explains why every shuffle, repeated often enough, returns the deck to its original
order. Suppose the shuffle o is decomposed into disjoint cycles

g =9172---Tm

Since the order of composition of the 7’s does not matter, if we compose o with itself &
times (i.e., repeat the shuffle v k times), then we get

o = (71)k(72)k e (’Ym)k

Now if, say, v is a 4-cycle, then it’s easy to see that v* = ¢, the identity permutation. So
if k£ is chosen carefully
o =¢€



meaning that the deck has been returned to its original order.

The examples of greatest interest to us are the permutations (encryptions) effected by
EM. Remember its involutory property: if, say, EM(a)=s, then EM(s)=a. So given a
setting of EM, its encryption rule looks like

(as)(rz)(bl)(rh). ..

Now 2-cycles like these are important enough to have their own name: transpositions. So
we have shown
e EM encryptions are decomposed into disjoint transpositions



Part V: Rejewski Redux
Now finally we can see what Rejewski was doing when he constructed his chains. Using
his notation (from the handout) let A, B, C, D, E and F' denote the first six permutations
(encryptions) effected by EM; it is using these to encrypt the repeated 3-letter message
keys. These permutations will be used to encrypt every message key on a given day.

Suppose
A = (as)(rz)(bl)(dh) ...,

the permutation above, and D is
D = (tk)(rh)(bd)(=l) ...,

so that if the message key were hot, so that the sender typed hothot, then since
A(h) =d and D(h) =7

the first and fourth letters of ciphertext would be d and r. Now since A(h) = d, A(d) = h.
So for the composition D o A, we have

Do A(d) := D(A(d)) = D(h) = r

Next suppose the message key were chosen (for another message) to be zip. Then the first
and fourth letters of the encryption of zipzip would be

A(z) =r and D(z) =1,

so that
Do A(r):= D(A(r)) = D(z) =1

If a third intercept were an encryption of bbbbbb, then the first and fourth letters of the
enciphered version would be

A(b) =1 and D(b) =d,

so that
DoA(l)=d

So the first-to-fourth letter cycle Rejewski would build from these intercepts is
(drl)

which is also a part of the cycle decomposition of the permutation D o A. So

e Rejewski’s first-to-fourth letter cycle decomposition of the set A = {a,b,...,z} of
alphabetic characters is the same as the cycle decomposition of the permutation D o A of
A. In other words, by determining this decomposition, he was determining the composite
permutation Do A.

Of course what he wanted was A or D: with these, he could take any intercepted
encryption of a message key and find the first plain letter by applying A to the first cipher
letter, or D to the fourth cipher letter. So here is the



Goal. Given Do A (which has been determined from a large collection of intercepts) find
A or D.

Rejewski reached this goal with a combination that is very common in successful attacks
on cryptosystems: mathematics and intuition, i.e., guessing. Since we're on the subject,
we discuss the mathematics first.

We won’t reach our goal directly, instead discovering some of the hidden structure of
composed permutations like D o A first.

Suppose the transposition (ajas) were in A. Then the letter as would have to appear
in some transposition in D, say (aga3). If a3 = aq, stop. Otherwise, az is in some
transposition (other than (ajasz)) in A, say (asa4) is in A. Now a4 is somewhere in D, say
(agas) is in D. Here is a summary:

(a1a2) € A and (aga3) € D

then if as 75 ai,
(agaq) € A and (agas) € D

and if a5 # ay, ... eventually
(agk—10a2k) € A and (agkaq) € D

That is, we get back to a;.
Here is what it looks like schematically:

a1 i>a2 £>a3 i>a4£>a5...agk_1 i)azk £>a1
For instance, if A and D are
A = (as)(rz)(bl)(dh) ... and D = (tk)(rh)(bd)(zl) ...
as at the beginning of this section, then this chain starting at d is
d5r S r A2 145054

Going back to the general picture, we see that

(a1a3...a95—1) € Do A
and, starting at agr and going backward,

(agka2k—2...a2) € Do A

as well. In our example these two cycles in Do A are (drl) and (bzh). We have thus proved:



Rejewski’s Theorem. Let A and D be two permutations composed solely of disjoint
transpositions. Then

(1) The cycles in D o A appear in pairs of equal length.

(2) The two letters in any transposition in A or D appear in different cycles of D o A
of the same length.

(3) Suppose in (2) that (ab) is in A, that a is in the cycle y; of D o A and that b is in
the cycle v of D o A. Let ¢ be the letter just before a in 1 and let d be the letter
just after b in vya. Then (cd) is in A.

That’s the mathematical side of the story. It tells us that if we can discover just one
(ab) € A for each pair of equal length cycles in D o A (remember we know D o A from
intercepts), as in part (2) of Rejewski’s Theorem, then part (3) says we get all of the
transpositions in A, i.e., we get all of A. But how does one find that first (ab) € A? One
can’t be a successful cryptanalyst without a sense for how real people will use a machine like
Enigma, and in this Rejewski shows his second, equally brilliant, but completely different
skill: intuition.

Let’s follow the example he gives on p.218 of the handout. Suppose we have from
intercepts that

Do A = (dvpfkzgzyo)(eijmunglht)(bc)(rw)(a)(s)

E o B = (bl fqueoum)(hjpswizrn)(axt)(cgy)(d)(k)
F o C = (abviktjg fcqny)(duzrehlzwpsmo)

By Part (2) of Rejewski’s Theorem, we know right away that (as) is in both A and D,
because the two letters of each transposition in A or D have to appear in cycles of equal
length in D o A. Now Rejewski makes the remarkable observation that “...cryptographers
are inclined to choose three identical letters...” for their message keys, in spite of the fact
that the protocol calls on them to choose three random letters. And it turns out he’s right!

For example, let’s see whether one of the senders of the intercepts of encrypted message
keys

sug smf

sjm spo
SYyxr scw

could have been using aaa as his message key. We’ve chosen to try out aaa because s
appears as both first and fourth letters of these intercepts, and we know that these s’s
decrypt to a.

Look at the first intercept. If © had been an encryption of a, then we would have had

B(a) =u

or, in other words
(au) € B

However, a is in a 3-cycle and u in a 9-cycle of E'o B, so by Part (2) of Rejewski’s theorem,
(au) couldn’t have been in B. So the first intercept is not an encryption of aaa.



For the second intercept to be a repeated encryption of aaa, (aj) must be in B. But
since j is in a 9-cycle of E o B, this is again impossible

However, in the third intercept we have y and c¢ in the second and fifth positions, so
they could well be encryptions of a, because it is in one of the 3-cycles of E o B while y
and c are in the other. Moreover, in F' o C, we find a in the left 13-cycle and both x and
w in the right 13-cycle. Although this doesn’t prove that syc scw is the encryption of aaa
aaa, it is strong evidence.

How does Rejewski test whether this evidence is conclusive? For this he uses Part (3)
of his theorem: the assumption that (az) € C leads to the complete determination of C!
Similarly, the assumption that (ay) € B means that (zg) € B and (tc) € B, so B has been
partly determined, and if we knew (or guessed) one other transposition in £ o B in the
9-cycles of B, we’d have B completely. And this would be done by guessing other three-
letter message keys and seeing whether these guesses fit into a coherent determination
of A, B and C. As Rejewski says (p.218) : “..a good knowledge of the practice of
cryptographers regarding the selection of message keys was necessary...The changing tastes
of cryptographers were very carefully followed, and other predilections were uncovered.”

This then is the second half of the story of Rejewski’s break into the first secret of
Enigma, the message keys. He and his co-workers went on to determine the day keys (the
configuration of the rotors and plugboard) and even the wirings of the rotating and fixed
drums, again using information from the encrypted message keys. Like the discovery of
the message keys, the rest of Enigma was broken into pieces, in spite of its appearance as
an integral whole. All this was done without anything but a model of Enigma.

And it was all made possible, not by a design flaw in Enigma, but rather by the German
decision to repeatedly encrypt the message keys.



